Räumliche Statistik

Übungsblatt 8

Präsentation der Lösungen: 17.01.07

Aufgabe 1

- (a) Implementiere den in der Vorlesung diskutieten Metropolis-Hastings-Algorithmus zur Simulation eines Gibbs-Prozesses auf einem Beobachtungsfenster $W=[0,m]^2$. Der Prozedur sollen als Parameter die Geburtswahrscheinlichkeit p, eine beliebige nicht normalisierte Dichte $g:\mathbb{N}^{(e)}\to\mathbb{R}$ und die Anzahl der Iterationen übergeben werden. Als Startkonfiuration soll die Prozedur das Nullmaß und die Realisierung eines homogenen Poisson-Prozesses auf W mit vorgegebener Intensität verwenden können.
- (b) Erweitere das Programm aus (a), so dass ein Strauss-Prozess mit Parametern a, b, R > 0 und ein Hard-Core-Prozess mit Hard-Core-Radius R > 0 und Parameter a > 0 simuliert werden können.
- (c) Füge in das Programm eine Prozedur zur Berechnung der empirischen Nächster-Nachbar-Abstands-Verteilungsfunktion (NNAVF) $\hat{D}_x(r)$, r > 0 ein (siehe Blatt 5). Für ein Punktmuster $x = \{x_1, \ldots, x_n\} \subset W$ ist diese wie folgt definiert:

$$\hat{D}_x(r) = \frac{1}{\hat{\lambda}_x} \sum_{i=1}^{|x|} \frac{1}{(m - 2d(x_i, x))^2} \mathbb{I}_{\{d(x_i, x) \le r\}} \mathbb{I}_{\{d(x_i, x) < D(x_i, \partial W)\}}.$$

Dabei bezeichnet $D(x_i, \partial W)$ den Abstand des Punktes x_i zum Rand des Beobachtungsfensters und $d(x_i, x) = \min_{j \neq i} \{ \|x_i - x_j\| \}$ den Abstand von x_i zu seinem nächsten Nachbarn. Der Intensitätsschätzer $\hat{\lambda}_x$ hat die Form

$$\hat{\lambda}_x = \sum_{i=1}^{|x|} \frac{1}{(m - 2d(x_i, x))^2} \mathbb{I}_{\{d(x_i, x) < D(x_i, \partial W)\}}.$$

- (d) Die Prozedur aus (a) soll nun während der Simulation alle 10 Schritte
 - an vorgegebenen Stellen (r_1, \ldots, r_n) die NNAVF schätzen,
 - die Anzahl der Punkte protokollieren und
 - im Falle der Simulation des Hard-Core-Prozesses den ML-Schätzer

$$\widehat{R}(x) = \min_{i \neq j} \{ \|x_i - x_j\| \} \mathbb{I}_{\{|x| \geq 2\}} + \text{diam} W \mathbb{I}_{\{|x| < 2\}}$$

berechnen.

Die Ergebnisse sollen im Anschluss als Funktionen der Anzahl der Schritte visualisiert werden können.

(e) Simuliere einen Strauss-Prozess mit den Parametern a=2, b=0.7 und R=2, sowie einen Hard-Core-Prozess mit Hard-Core-Radius R=1 und Parameter a=1 auf dem Beobachtungsfenster $W=[0,20]^2$. Verwende als Startkonfiguration die Realisierung eines homogenen Poisson-Prozesses mit Intensität 2, die Geburtswahrscheinlichkeit p=0.5 und führe 4000 Iterationen durch. Visualisiere gemäß

- Teil (d) die zeitliche Entwicklung der dort genannten Charakteristika, wobei die NNAVF für $r \in \{0.5, 1, 1.5\}$ geschätzt werden soll.
- (f) Wie ändert sich die zeitliche Entwicklung der Charakteristika aus (d), wenn das Nullmaß als Startkonfiguration verwendet wird?