(6)

Übungen zu Stochastik II - Blatt 10

(Abgabe: Donnerstag, 07.01.2010, vor den Übungen)

Aufgabe 1

Sei $\{X_t\}_{t\geq 0}$ ein Wiener Prozess auf dem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) . Zeige, dass es genau eine lineare Isometrie $I: L^2(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \nu_1) \longrightarrow L^2(\Omega, \mathcal{F}, P)$ gibt, so dass $I(\mathbb{I}_{(s,t]}) = X_t - X_s$ für alle $t > s \geq 0$. Dabei bezeichnet ν_1 das Lebesgue-Maß. Ein linearer Operator $I: V_1 \to V_2$ zwischen zwei normierten Vektorräumen V_1 und V_2 heißt Isometrie, falls $||I(v)||_{V_2} = ||v||_{V_1}$ für alle $v \in V_1$. Insbesondere ist I dann stetig und inkjektiv. Die in dieser Aufgabe diskutierte Isomterie definiert das stochastische Integral $I(f) = \int f \ dX_t(\omega)$ auf $L^2(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \nu_1)$, obwohl dieses im Lebesgue-Stieltjes Sinne nicht definiert ist.

Aufgabe 2

Betrachte die folgende Funktion $\varphi: \mathbb{R} \to \mathbb{C}$ mit

$$\varphi(t) = e^{\psi(t)}$$
, wobei $\psi(t) = 2 \sum_{k=-\infty}^{\infty} 2^{-k} (\cos(2^k t) - 1)$.

Zeige, dass $\varphi(t)$ die charakteristische Funktion einer unbegrenzt teilbaren Verteilung ist. (4)

Hinweis: Betrachte die Lévy-Chintschin-Darstellung mit Maß $\nu(\{\pm 2^k\})=2^{-k}, k\in\mathbb{Z}.$

Aufgabe 3

Gegeben sei eine reellwertige Zufallsvariable X mit Verteilungsfunktion F und charakteristischer Funktion φ .

- (a) Zeige: Falls X unbegrenzt teilbar ist, dann gilt $\varphi(t) \neq 0$ für alle $t \in \mathbb{R}$. (4) Hinweis: Zeige, dass $\lim_{n\to\infty} |\varphi_n(s)| = \mathbb{I}_{\{\varphi(s)\neq 0\}}$ für alle $s \in \mathbb{R}$, falls $\varphi(s) = (\varphi_n(s))^n$. Zeige, dass daraus folgt, dass $\lim_{n\to\infty} \varphi_n(s) = \mathbb{I}_{\{\varphi(s)\neq 0\}}$. Benutze dabei ohne Beweis, dass für eine Folge $\{c_n\}_{n\in\mathbb{N}}$ komplexer Zahlen mit $\lim_{n\to\infty} c_n = e^{i\theta}$, wobei $0 < \theta < 2\pi$, der Grenzwert $\lim_{n\to\infty} c_n^n$ nicht existiert.
- (b) Es gelte P-fast sicher $|X| \leq c$ für ein $c < \infty$. Zeige: Die Zufallsvariable X ist genau dann unbegrenzt teilbar, wenn X P-fast sicher konstant ist. (4) Hinweis: Zeige $P(|X_{j,n}| \leq \frac{c}{n}) = 1$ für $\sum_{j=1}^{n} X_{j,n} \stackrel{d}{=} X$, und folgere Var(X) = 0.
- (c) Gib ein Beispiel (mit Begründung) für eine Verteilung an, die nicht unbegrenzt teilbar ist.