Stochastische Geometrie und ihre Anwendungen Thema: Faserprozesse

Universität Ulm

Degang Kong

28.01.2010

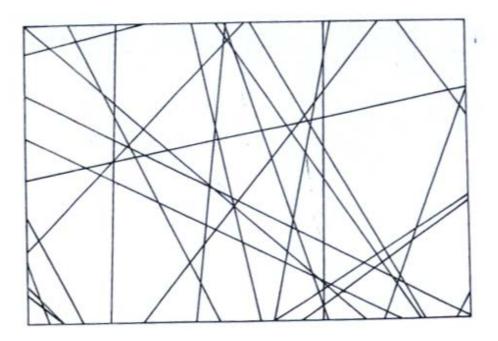
Inhaltsverzeichnis

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen
 - 2.2 Schnittpunktprozesse
 - 2.3 Schätzung der Richtungsrose R

1. Ungerichtete Linienprozesse als Faserprozesse

2. Planare Faserprozesse

Beispiel:



Poisson Geraden-Mosaik (PGM)

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse

- Sei $\phi = \{l_1, l_2, l_3, ...\}$ eine Familie von Geraden im \mathbb{R}^2
- Dann ist das Maß gegeben durch

$$\phi(B) = \sum_{l \in \Phi} h_1(l \cap B)$$

wobei -
$$B \in \mathcal{B}(\mathbb{R}^2)$$

- h_1 ist das 1-dimensionale Hausdorff Maß

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse

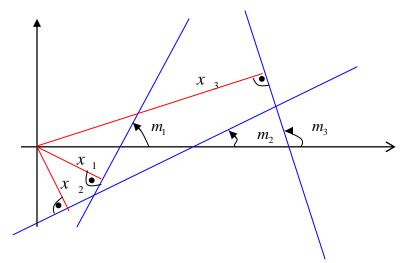
Beispiel:

- $X = \{X_1, X_2, ...\}$ ein stationärer Poisson Prozess auf \mathbb{R}

mit Intensität λ

- $M_i \sim U(0,\pi), \ \forall i$
- → Markierter PP

$$(X_1, M_1), (X_2, M_2)...$$



- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse

Das gewichtete zufällige Maß

$$\Psi(B \times L) = \sum_{l \in \Phi, \alpha(l) \in L} h_1(B \cap l)$$

wobei -
$$\alpha(l) \in (0,\pi]$$
 ist die Richtung von l - $B \in \mathcal{B}(\mathbb{R}^2)$, $L \in \mathcal{B}\big((0,\pi]\big)$

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse

■ Intensität L_{A} von Φ : für Φ stationär gilt

$$L_A v_2(B) = \mathbf{E}(\Phi(B))$$
 für alle $B \in \mathcal{B}(\mathbb{R}^2)$

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse

■ Intensität L_{A} von Φ : für Φ stationär gilt

$$L_A v_2(B) = \mathbf{E}(\Phi(B))$$
 für alle $B \in \mathcal{B}(\mathbb{R}^2)$

Intensitätsmaß Λ von Ψ :

$$\Lambda = L_A \cdot v_2 \times \Re$$

wobei - \Re ist ein Wahrscheinlichkeitsmaß auf $(0,\pi]$, heißt "the rose of directions" oder "Richtungsrose"

Inhaltsverzeichnis

- 2. Planare Faserprozesse
 - 2.1 Grundlagen
 - Fasern und Fasersysteme
 - Faserprozess
 - □ 2.2 Schnittpunktprozesse
 - □ 2.3 Schätzung der Richtungsrose

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Fasern und Fasersysteme

- Faser γ ist das Bild der Kurve $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ mit den Eigenschaften:
 - $\square \ \gamma : [0,1] \to \mathbb{R}^2$ ist einmal stetig differenzierbar
 - $|\gamma'(t)|^2 = |\gamma'_1(t)|^2 + |\gamma'_2(t)|^2 > 0, \forall t \in [0,1]$
 - \square γ ist injektiv

- M
 - 1. Ungerichtete Linienprozesse als Faserprozesse
 - 2. Planare Faserprozesse
 - 2.1 Grundlagen → Fasern und Fasersysteme

- Faser γ ist das Bild der Kurve $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ mit den Eigenschaften:
 - $\square \ \gamma : [0,1] \to \mathbb{R}^2$ ist einmal stetig differenzierbar
 - $|\gamma'(t)|^2 = |\gamma'_1(t)|^2 + |\gamma'_2(t)|^2 > 0, \forall t \in [0,1]$
 - \square γ ist injektiv

• γ kann auch als Maß gesehen werden:

$$\gamma(B) = h_1(\gamma \cap B) = \int_0^1 \mathbf{1}_B(\gamma(t)) \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt$$

für
$$B \in \mathcal{B}(\mathbb{R}^2)$$

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Fasern und Fasersysteme

■ Fasersystem $\phi = \{ \gamma^{(1)}, \gamma^{(2)}, ... \}$ ist eine abgeschlossene Menge auf \mathbb{R}^2 , lokal endlich mit $\gamma^{(i)}((0,1)) \cap \gamma^{(j)}((0,1)) = \emptyset$ falls $i \neq j$

 \square das entsprechende Längemaß $\phi(B)$:

$$\phi(B) = \sum_{\gamma^{(i)} \in \phi} \gamma^{(i)}(B)$$
 für $B \in \mathcal{B}(\mathbb{R}^2)$

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Faserprozess

■ Ein (planarer) Faserprozess $\Phi: \Omega \to \mathbb{D}$ ist eine Zufallsvariable, d.h. eine messbare Abbildung vom Wahrscheinlichkeitsraum [Ω, \mathcal{A} , \mathbf{P}] nach [\mathbb{D} , \mathcal{D}]

wobei

- \mathbb{D} ist die Familie von allen Fasersystemen im \mathbb{R}^2
- \mathcal{D} ist die von den Mengen $\{\phi \in \mathbb{D} : \phi(B) < x\}$ $B \in B(\mathbb{R}^2)$ kompakt, $x \in \mathbb{R}$ erzeugte σ - Algebra

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Faserprozess

■ Ein (planarer) Faserprozess $\Phi: \Omega \to \mathbb{D}$ ist eine Zufallsvariable, d.h. eine messbare Abbildung vom Wahrscheinlichkeitsraum [Ω, \mathcal{A} , \mathbf{P}] nach [\mathbb{D} , \mathcal{D}]

wobei

- \mathbb{D} ist die Familie von allen Fasersystemen im \mathbb{R}^2
- \mathcal{D} ist die von den Mengen $\{\phi \in \mathbb{D} : \phi(B) < x\}$ $B \in B(\mathbb{R}^2)$ kompakt, $x \in \mathbb{R}$ erzeugte σ - Algebra
- $\Phi(B)$ bezeichnet auch das Längemaß

$$\Phi(B) = \sum_{\gamma \in \Phi} h_1(\gamma \cap B) \text{ für } B \in \mathcal{B}(\mathbb{R}^2)$$

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Faserprozess

- Stationarität und Isotropie
 - \square stationär, falls der verschobene Faserprozess Φ_x die gleiche Verteilung wie Φ besitzt, d.h.

$$P(Y) = P(Y_x) \qquad \text{für alle } Y \in \mathcal{D} \quad \text{und alle } x \in \mathbb{R}^2$$
 wobei $Y_x = \{ \varphi \in \mathbb{D} : \varphi_{-x} \in Y \}$

 isotrop, falls sich die Verteilung nach der Drehung um den Ursprung nicht ändert

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Faserprozess

- Intensität
 - □ Intensitätsmaß:

$$\Lambda(B) = \mathrm{E}(\Phi(\mathrm{B})) = \mathrm{E}\left(\sum_{\gamma \in \Phi} h_1(\gamma \cap B)\right) \quad \text{für } B \in \mathcal{B}(\mathbb{R}^2)$$

□ falls der Prozess Φ stationär ist, dann gilt

$$\Lambda = L_A v_2$$

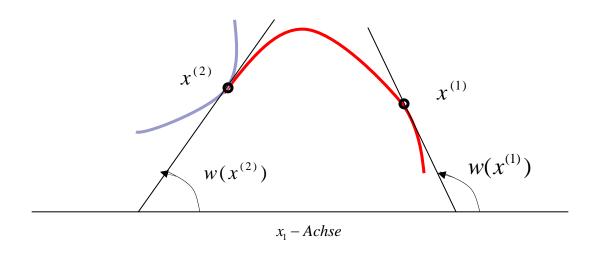
- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Faserprozess

■ Gewichtetes zufälliges Maß $\Psi: \mathcal{B}(\mathbb{R}^2) \times \mathcal{B}((0,\pi]) \to [0,\infty)$ mit

$$\Psi(B \times L) = \int_{B} \mathbf{1}_{L}(w(x))\Phi(dx) \quad \text{für } B \in \mathcal{B}(\mathbb{R}^{2}), L \in \mathcal{B}((0,\pi])$$

- wobei $w(x) \in (0, \pi]$ ist die Tangentenrichtung in x
 - $\Psi(B \times L)$ ist die Länge aller Fasern in B mit Richtung in L

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Faserprozess



Tangentenrichtung w(x)

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Faserprozess
 - \square Intensitätsmaß Λ_{Ψ} von Ψ

$$\Lambda_{\Psi}(B \times L) = \mathbf{E}(\Psi(B \times L))$$
 für $B \in \mathcal{B}(\mathbb{R}^2), L \in \mathcal{B}((0, \pi])$

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.1 Grundlagen → Faserprozess
 - \square Intensitätsmaß Λ_{Ψ} von Ψ

$$\Lambda_{\Psi}(B \times L) = \mathbf{E}(\Psi(B \times L))$$
 für $B \in \mathcal{B}(\mathbb{R}^2), L \in \mathcal{B}((0, \pi])$

□ Falls Ψ stationär ist, dann gilt

$$\Lambda_{\Psi}(B \times L) = L_A v_2(B) \Re(L) \text{ für } B \in \mathcal{B}(\mathbb{R}^2), L \in \mathcal{B}((0, \pi])$$

wobei \Re ist die Richtungsrose, wird als Verteilung der Tangentenrichtung in einem 'typischen' Punkt einer Faser bezeichnet.

→Bew.

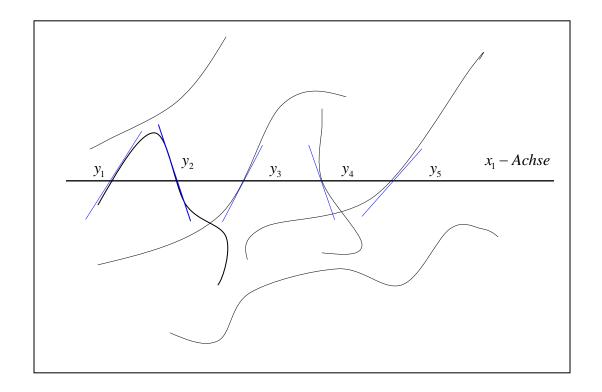
Inhaltsverzeichnis

- 2. Planare Faserprozesse
 - □ 2.1 Grundlagen
 - 2.2 Schnittpunktprozesse
 - Schnitt mit Geraden
 - Schnitt mit Fasersystemen
 - □ 2.3 Schätzung der Richtungsrose

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.2 Schnittpunktprozesse → mit Linien

- Sei Φ ein stationärer Faserprozess mit
 - □ Verteilung *P*
 - \square Intensität $L_{\!\scriptscriptstyle A}$
 - \square Richtungsrose \Re , mit $\Re(\{\pi\}) < 1$
 - \square eine feste vorgegebene Gerade e (hier: $x_1 Achse$)

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.2 Schnittpunktprozesse → mit Linien
- Sei $\Psi = \{[y_n; w(y_n)]\}$ ein markierter Punktprozess, wobei alle Punkte $y_n \in \Phi \cap e$ mit dem Schnittwinkel zur x_1 -Achse $w(y_n)$ markiert sind.



- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.2 Schnittpunktprozesse → mit Linien
- Seien P_L die Intensität des stationären Prozesses Ψ und H die Markenverteilung auf $(0,\pi]$ dann gilt:

$$P_{L}\int_{\mathbb{R}}\int_{(0,\pi]}h(z,\alpha)H(d\alpha)dz=L_{A}\int_{\mathbb{R}}\int_{(0,\pi]}h(z,\alpha)\sin\alpha\,\Re(d\alpha)dz$$

wobei heine nicht-negative und messbare Funktion auf $\mathbb{R} \times (0,\pi]$ ist

 \rightarrow Bew.

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.2 Schnittpunktprozesse → mit Linien

■ Folgerung: für alle $\beta \in (0, \pi]$ gilt

$$P_L H((0,\beta]) = L_A \int_{(0,\beta]} \sin \alpha \Re(d\alpha)$$

somit ist die Verteilungsfunktion

$$F_{H}(\beta) = H((0, \beta]) = \frac{\int_{(0, \beta]} \sin \alpha \, \Re(d\alpha)}{\int_{(0, \pi]} \sin \alpha \, \Re(d\alpha)}$$

→Bew.

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.2 Schnittpunktprozesse → mit Fasersystem

- Sei Φ ein stationärer Faserprozess mit
 - \square Intensität $L_{\!\scriptscriptstyle A}$
 - \square Richtungsrose \Re
 - \square einem vorgegebenen nicht-zufälligen planaren Fasersystem ψ mit der gesamten Länge $L < \infty$

Hier wird der Schnittpunktprozess $\Phi \cap \psi$ diskutiert.

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.2 Schnittpunktprozesse → mit Fasersystem
- Die Winkelverteilung η_{ψ} ist ein Maß auf $(0,\pi]$, mit

$$\eta_{\psi}(A) = \frac{h_1(\{x \in \psi : w_{\psi}(x) \in A\})}{L} \quad \text{für } A \in B((0, \pi])$$

wobei $w_{yy}(x)$ ist der Winkel der Fasertangenten von x

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.2 Schnittpunktprozesse → mit Fasersystem
- Die Winkelverteilung η_{ψ} ist ein Maß auf $(0,\pi]$, mit

$$\eta_{\psi}(A) = \frac{h_1(\{x \in \psi : w_{\psi}(x) \in A\})}{L} \quad \text{für } A \in B((0, \pi])$$

wobei $w_{w}(x)$ ist der Winkel der Fasertangenten von x

$$L_{\psi}(\beta) = \int_{l_{\beta}^{\perp}} \#\{\psi \cap (l_{\beta} - y)\} dy$$

wobei - l_{β} ist eine Gerade mit Richtung eta und l_{β}^{\perp} ist die Senkrechte zu l_{β}

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.2 Schnittpunktprozesse → mit Fasersystem

Beispiel:

Falls Ψ ein Kreis mit Radius R ist, dann ist η_{Ψ} gleich verteilt auf $(0,\pi]$ mit

$$L_{\psi}(\beta) = 2L/\pi$$

Inhaltsverzeichnis

- 2. Planare Faserprozesse
 - □ 2.1 Grundlagen
 - □ 2.2 Schnittpunktprozesse
 - \square 2.3 Schätzung der Richtungsrose \Re

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.3 Schätzung der Richtungsrose

- Schnittpunktrose $P_L(\bullet)$ mit der Dichte f_R
- $P_L(\beta)$ Intensität des Punktprozesses der Schnittpunkte von Φ mit einer Geraden mit Winkel β zu e

es gilt:

$$P_L(\beta) = L_A F_R(\beta)$$

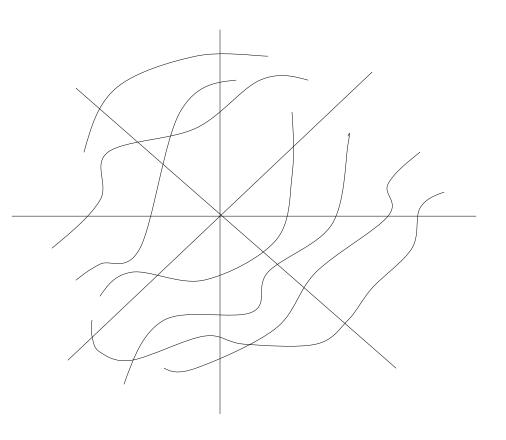
wobei -
$$F_{\mathcal{R}}(\beta) = \int_{(0,\pi]} |\sin(\alpha - \beta)| \mathcal{R}(d\alpha)$$

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse
 - 2.3 Schätzung der Richtungsrose

Beispiel:

$$\beta_i = (1+i)\frac{\pi}{4}, i = 0,1,2,3$$

Anzahl der Schnittpunkte3, 7, 7, 6



- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.3 Schätzung der Richtungsrose
- Falls \mathcal{R} eine stetige Dichte $f_{\mathcal{R}}$ besitzt, gilt für die Verteilung:

$$F_{\mathcal{R}}(\beta) = \int_0^\beta f_{\mathcal{R}}(\alpha) d\alpha = \mathcal{R}((0, \beta])$$

Durch ableiten erhält man

$$\frac{d^2}{d\beta^2}P_L(\beta) + P_L(\beta) = 2L_A f_{\mathcal{R}}(\beta)$$

- 1. Ungerichtete Linienprozesse als Faserprozesse
- 2. Planare Faserprozesse2.3 Schätzung der Richtungsrose

Schätzer:

$$\hat{F}_{\mathcal{R}}(\beta) = \frac{1}{2L_{A}} \left(\frac{d \hat{P}_{L}(\beta)}{d \beta} + \int_{0}^{\beta} \hat{P}_{L}(\alpha) d\alpha \right) \quad \text{für } 0 < \beta \le \pi$$

wobei - $\hat{P}_L(\beta) = \frac{\#\{T^{(\beta)} \cap \Phi \cap W\}}{h_1(T^{(\beta)} \cap W)}$, W- Beobachtungsfenster (kompakt), mit $T^{(\beta)}$ ein Testsystem von Linien mit dem Winkel β zur x_1 -Achse

Literatur:

- [1]. D.Stoyan, W.S.Kendall, J.Mecke(1995) *Stochastic Geometry and its Applications*. J. Wiley & Sons, Chichester
- [2]. Prof. Dr. Volker Schmidt, *Räumliche Statistik*. Vorlesungsskript, WS 2007/08, Universität Ulm
- [3]. V.Benes, J.Rataj (2004), *Stochastic Geometry: Selected Topics*. Kluwer Academic, New York

Vielen Dank für Ihre Aufmerksamkeit!