Simulation von Zufallsvariablen und Punktprozessen

Martin Fuchs

09.11.2009

Einleitung Pseudozufallszahlen Punktprozess

Inhaltsverzeichnis

- 1 Einleitung
- 2 Pseudozufallszahlen
- 3 Punktprozesse

Zufallszahlen

Definition (Duden): Eine Zufallszahl ist "eine Zahl, die rein statistisch ("zufällig") aus einer Menge von Zahlen herausgegriffen wird. Eine (unendliche) Folge von Zahlen ohne (algorithmisches) Bildungsgesetz heißt Zufallszahlenfolge."

- "echte" Zufallszahlen: physikalische Experimente (Münzwurf, Würfel werfen, kosmisches Rauschen, etc.).
- \Rightarrow Pseudozufallszahlen

Zufallszahlen

Anwendung in den unterschiedlichsten Gebieten (Physik, Biologie, Meteorologie, Informatik)

Verfahren, die auf computergenerierten Daten basieren haben wesentliche Vorteile:

- schnell und kostengünstig
- beliebig oft wiederholbar (Beobachtungsobjekt beliebig oft vorhanden)
- numerische Lösung komplexer analytischer Probleme

Berechnung von π

- E:=Einheitskreis im ersten Quadranten
- $A := [0,1] \times [0,1]$
- $u_1, u_2 \sim U([0,1]).$

Dann gilt:

$$P((u_1,u_2) \in E) = P(u_1^2 + u_2^2 \le 1) = rac{\mathsf{Fl\"{a}che\ von\ E}}{\mathsf{Fl\"{a}che\ von\ A}} = rac{\pi}{4}$$

 $\Rightarrow \pi \approx \frac{4 \cdot \text{Anzahl der Punkte in E}}{\text{Anzahl der Punkte in A}}$ für eine große Anzahl an simulierten Punkten.

Einleitung Pseudozufallszahlen Punktprozess

Berechnung von π

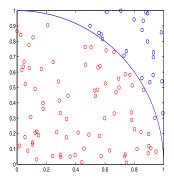


Abbildung: Simulation für 100 Punkte, Ergebnis $\pi \approx 3.12$

Einleitung Pseudozufallszahlen Punktprozesso

Pseudozufallszahlen

Pseudozufallszahlen sind Zahlen, die durch einen deterministischen Algorithmus berechnet werden, aber dennoch zufällig erscheinen.

Gängige Möglichkeiten, Pseudozufallszahlen zu erzeugen sind unter anderem

- Bitfolgen
- linearer/nichtlinearer Kongruenzgenerator
- Inversionsgenerator

Güteeigenschaften von Pseudozufallszahlen

Eine Folge von auf [0, 1] gleichverteilten Pseudozufallszahlen sollte folgende Eigenschaften erfüllen:

- Für jeden Startwert x_0 gleichmäßige Streuung der Folgenglieder auf [0, 1]
- Für jeden Startwert x₀ lange Periode der Folge der Pseudozufallszahlen
- Für jeden Startwert x_0 effiziente Berechenbarkeit der Folgenglieder $x_i, i \in \mathbb{N}$

Der lineare Kongruenzgenerator

Sei $\mathsf{m} \in \mathbb{N}$, a, c, $x_0 \in \{0,1,...,m-1\}$. Dann nennt man

$$x_n = (ax_{n-1} + c) mod(m)$$

$$\forall n \in \mathbb{N}$$

einen linearen Kongruenzgenerator.

Offenbar gilt $x_n \in \{0, 1, ..., m-1\}$, und somit bildet x_n , $n \in \mathbb{N}$, eine periodische Folge.

Der lineare Kongruenzgenerator

Die Normierung

$$u_n = \frac{x_n}{m} \quad \forall n \in \mathbb{N}$$

erzeugt die Folge u_n , deren Elemente alle in [0, 1) liegen.

χ^2 -goodness of fit test für gleichverteilte Zufallsvariablen

Dieser Test dient zur Feststellung, ob $\{u_i\}_{i\in\{1,...,n\}}$ auf [0,1] gleichverteilt sind.

- Zerlege [0, 1) in r gleichlange Teilintervalle $[0, \frac{1}{r}), [\frac{1}{r}, \frac{2}{r}), ..., [\frac{r-1}{r}, 1)$
- Definiere $p := (p_1, ..., p_r)$, mit

$$p_{j} = \frac{\#\{i : u_{i} \in \left[\frac{j-1}{r}, \frac{j}{r}\right)\}}{n}, \quad j \in \{1, ..., r\}$$

$$T_n(u_1,...,u_n) = \sum_{j=1}^r \frac{(Z_j(u_1,...,u_n) - \frac{n}{r})^2}{\frac{n}{r}}$$

wobei
$$Z_i(u_1, ..., u_n) = \#(i : 1 \le j \le n, j - 1 < ru_i \le j)$$

Wir lehnen die Hypothese H_0 : p = $p_o = (\frac{1}{r}, \frac{1}{r}, ..., \frac{1}{r})$ also ab, falls $T_n > \chi^2_{r-1,1-\alpha}$

Inversionsmethode

Sei U $\sim U([0,1])$. Für jede umkehrbare Verteilungsfunktion F besitzt die Zufallsvariable

$$X = F^{-1}(U)$$

die Verteilungsfunktion F, wobei

$$F^{-1}(u) := \inf\{x : F(x) \ge u\}$$

Beispiel

Sei X \sim Exp(λ), λ > 0, F die Verteilungsfunktion von X mit

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

und u eine Realisierung von U \sim U([0,1]).

Beispiel

Um eine Realisierung x von X zu erhalten, setzen wir u in obiges Lemma ein:

$$x = F^{-1}(u)$$

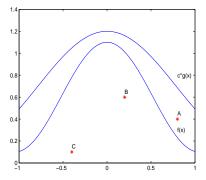
$$\Leftrightarrow u = F(x)$$

$$\Leftrightarrow u = 1 - e^{-\lambda x}$$

$$\Leftrightarrow x = -\frac{1}{\lambda}log(1 - u)$$

$$\Leftrightarrow x = -\frac{1}{\lambda}log(u)$$

Motivation



y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F)

$$\frac{f(x)}{g(x)} \le c,$$
 $c \in \mathbb{R}$

y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F)

g: berechenbare Dichte mit

$$\frac{f(x)}{g(x)} \le c,$$
 $c \in \mathbb{R}$

■ Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g

y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F)

$$\frac{f(x)}{g(x)} \le c,$$
 $c \in \mathbb{R}$

- Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g
- Schritt 2: Generiere eine auf [0,1] gleichverteilte Zufallszahl u

y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F)

$$\frac{f(x)}{g(x)} \le c,$$
 $c \in \mathbb{R}$

- Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g
- Schritt 2: Generiere eine auf [0,1] gleichverteilte Zufallszahl u
- Schritt 3: Falls $u \le \frac{f(x)}{cg(x)}$, setze y=x, andernfalls gehe wieder zu Schritt 1

y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F)

$$\frac{f(x)}{g(x)} \le c,$$
 $c \in \mathbb{R}$

- Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g
- Schritt 2: Generiere eine auf [0,1] gleichverteilte Zufallszahl u
- Schritt 3: Falls $u \le \frac{f(x)}{cg(x)}$, setze y=x, andernfalls gehe wieder zu Schritt 1

y: gesuchte Zufallszahl die der Verteilungsfunktion F genügt (f Dichte von F)

g: berechenbare Dichte mit

$$\frac{f(x)}{g(x)} \le c,$$
 $c \in \mathbb{R}$

- Schritt 1: Generiere eine Zufallszahl x gemäß Dichte g
- Schritt 2: Generiere eine auf [0,1] gleichverteilte Zufallszahl u
- Schritt 3: Falls $u \leq \frac{f(x)}{cg(x)}$, setze y=x, andernfalls gehe wieder zu Schritt 1

Die so generierte Zufallszahl y genügt der Verteilung von F.

Der Poissonprozess

 $\{N_B, B \in \mathcal{B}_0(\mathbb{R}^n)\}$ heißt ein Poissonprozess mit lokal endlichem Intensitätsmaß μ , wenn

- $N_{B_1}, N_{B_2},...$ unabhängige Zufallsvariablen sind für disjunkte $B_1, B_2, ... \in \mathcal{B}_0(\mathbb{R}^n)$
- $N_B \sim Poi(\mu(B))$, $\forall B \in \mathcal{B}_0(\mathbb{R}^n)$

Existiert ein $\lambda \in (0, \infty)$, sodass

$$\mu(B) = \lambda \upsilon_n(B), \qquad \forall B \in \mathcal{B}_0(\mathbb{R}^n)$$

dann heißt $\{N_B\}$ homogener Poissonprozess mit Intensität λ

Wenn μ absolutstetig bzgl. v_n , d.h. \exists eine Borel-messbare Funktion $\lambda: \mathbb{R}^n \to [0,\infty)$ mit

$$\mu(B) = \int_{B} \lambda(x) dx, \qquad \forall B \in \mathcal{B}_{0}(\mathbb{R}^{n})$$

dann heißt $\{N_B\}$ inhomogener Poissonprozess mit Intensitätsfunktion $\lambda(x)$

 $\{S_i \in B\}$ bezeichnen wir als messbare Indizierung der (zufälligen) Atome von N_B in B.

Einleitung Pseudozufallszahlen Punktprozesse

Der Poissonprozess in $\mathbb R$

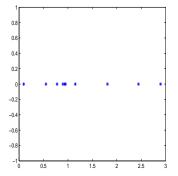


Abbildung: 10 Erneuerungszeitpunkte eines homogenen Poissonprozesses mit Intensität $\lambda=3$

Die bedingte Gleichverteilungseigenschaft

Theorem:

Sei $\{N_{\tilde{\mathcal{L}}}\}$ ein homogener Poissonprozess auf

$$\tilde{C} := [a_1, b_1)x[a_2, b_2)x...x[a_n, b_n)$$

Dann ist der Zufallsvektor $S_i = (S_{i1},...,S_{in})$ gleichverteilt in \tilde{C} , d.h. die unabhängigen Komponenten $S_{ij} \sim U([a_j,b_j))$

Erzeugung eines Poissonprozesses auf einem Quader

- Schritt 1: Generiere eine Realisierung $N_{\tilde{C}} \sim Poi(\lambda v_n(\tilde{C}))$
- Schritt 2: Falls $N_{\tilde{C}} = k$, generiere $S_1, ..., S_k$ mit $S_i = (S_{i1}, ..., S_{in})$, wobei $S_{ij} \sim U([a_j, b_j))$
- Die Menge $\{S_i\}$ sind eine Realisierung des Poissonprozesses $N_{\tilde{C}}$ auf dem Quader \tilde{C}

Akzeptanz- und Verwerfungsmethode

- C $\subset \mathcal{B}(\mathbb{R}^n)$: eine beliebige, beschränkte Borelmenge.
- $\mu: \mathcal{B}(\mathbb{R}^n) \to [0,\infty]$: ein beliebiges, lokal endliches Maß mit $0 < \mu(\mathcal{C}) < \infty$.
- $\tilde{C} = (a_1, b_1]x...x(a_n, b_n]$: ein n-dimensionaler Quader mit $C \subset \tilde{C}$ und $\mu(\tilde{C}) < \infty$

Einleitung Pseudozufallszahlen Punktprozesse

Algorithmus

- Schritt 1: Generiere eine Realisierung $N_C \sim Poi(\lambda v_n)$
- Schritt 2: Falls N_C =k, dann generiere solange eine Realisierung $s_1, s_2, ...$ der unabhängigen Zufallsvektoren $S_i \in \tilde{C}$, bis k der $s_1, s_2, ...$ in C liegen.
- Dann ist die Menge $\{s_i : s_i \in C\}$ eine Realisierung des Poissonprozesses $\{N_B\}$ in C.

Theoreme

Sei $\{N_B, B \in \mathcal{B}(E)\}$ ein Poissonprozess in E mit lokal endlichem Intensitätsmaß μ und $T: E \to \tilde{E}$ Borel-messbar, wobei die Urbilder von beschränkten Borel-Mengen beschränkt seien. Dann gilt:

■ Theorem 1: $\{\tilde{N}_{\tilde{B}}, \tilde{B} \in \mathcal{B}_0(\tilde{E})\}$ mit $\tilde{N}_{\tilde{B}} = N_{T^{-1}(\tilde{B})}$ ist ein Poissonprozess in \tilde{E} mit Intensitätsmaß $\tilde{\mu}(\tilde{B}) = \mu(T^{-1}(B))$.

Theoreme

Sei $\{N_B, B \in \mathcal{B}(E)\}$ ein Poissonprozess in E mit lokal endlichem Intensitätsmaß μ und $T: E \to \tilde{E}$ Borel-messbar, wobei die Urbilder von beschränkten Borel-Mengen beschränkt seien. Dann gilt:

- Theorem 1: $\{\tilde{N}_{\tilde{B}}, \tilde{B} \in \mathcal{B}_0(\tilde{E})\}$ mit $\tilde{N}_{\tilde{B}} = N_{T^{-1}(\tilde{B})}$ ist ein Poissonprozess in \tilde{E} mit Intensitätsmaß $\tilde{\mu}(\tilde{B}) = \mu(T^{-1}(B))$.
- Theorem 2: Seien $\{S_i\}$ die Atome eines Poissonprozesses $N_B, B \in \mathcal{B}_0(E)$. $\{U_i\}$ eine Folge iid Zufallsvektoren in \mathbb{R}^m , die von $\{S_i\}$ unabhängig sind, dann gilt: $N_{B\times C} = \#\{i: (S_i, U_i) \in B\times C\}$, $B \in \mathcal{B}(E)$, $C \in \mathcal{B}(\mathbb{R}^m)$ ist ein Poissonprozess.

Radiale Simulation (eines hom. Poissonprozesses im \mathbb{R}^2)

Sei $T_1, T_2, ... : \Omega \to [0, \infty)$ eine Folge von iid Zufallsvariablen, mit $T_i \sim Exp(1) \ \forall i$.

Sei $\lambda > 0$ beliebig, dann folgt mit Theorem 1, dass

$$N_B = \#\{i : \sqrt{\sum_{k=1}^i \frac{T_k}{\pi \lambda}} \in B\}$$
 $\forall B \in \mathcal{B}([0, \infty))$

ein Poissonprozess in B ist.

Insbesondere ist $\{s_i\} = \sqrt{\sum_{k=1}^i \frac{t_k}{\pi \lambda}}$ eine Realisierung der Atome von $\{N_B\}$.

Seien nun $u_1, u_2, ...$ eine Folge von auf $[0, 2\pi)$ gleichverteilter Zufallszahlen, die unabhängig von den T_i sind.

- \Rightarrow Mit Theorem 2 folgt: $\{(s_i, u_i)\}$ sind Realisierung eines Poissonprozesses.
- \Rightarrow Ebenso folgt mit Theorem 1: $\{F(s_i, u_i)\}$, $F: [0, \infty)x[0, 2\pi) \to \mathbb{R}^2$ mit $F(s, u) := (s\cos(u), s\sin(u))$ sind Realisierung eines Poissonprozesses im \mathbb{R}^2 .

Verdünnung von Poissonprozessen

■ $\lambda_1, \lambda_2 : \mathbb{R}^n \to [0, \infty)$: Borel-messbare, lokal integrierbare Funktionen mit

$$\lambda_1(x) \ge \lambda_2(x) \qquad \forall x \in \mathbb{R}^n$$

- $\{S_i\}$: Atome eines Poissonprozesses mit Intensitätsfunktion λ_1 .
- $U_1, U_2, ... \text{ mit } U_i \sim U([0,1])$
- Dann gilt:

$$\{\tilde{N}_B, B \in \mathcal{B}(\mathbb{R}^n)\}$$
 mit

$$\tilde{N}_B = \#\{d: S_d \in B, \ U_d \leq \frac{\lambda_2(S_d)}{\lambda_1(S_d)}\}$$
 $\forall B \in \mathcal{B}_0(\mathbb{R}^n)$

ist ein Poissonprozess mit Intensitätsfunktion λ_2 .

Inhomogener Poissonprozess (Simulationsalgorithmus)

■ Schritt 1: Generiere die Realisierung $s_1, ..., s_k \in C$ eines homogenen Poissonprozesses in C, mit Intensität

$$\tilde{\lambda} = \sup_{x \in C} \lambda(x) < \infty$$

- **Schritt 2:** Generiere eine Realisierung $u_1, ..., u_k$ von auf [0, 1] gleichverteilten Zufallszahlen
- Schritt 3: Eliminiere diejenigen Punkte s_i , für die $u_i > \frac{\lambda(s_i)}{\tilde{\lambda}}$

Die verbleibenden Punkte bilden einen inhomogenen Poissonprozess in C mit Intensitätsfunktion $\lambda: C \to [0, \infty)$

Einleitung Pseudozufallszahlen Punktprozesse

Quellen & Literatur

- Schmidt, V. (2007), Vorlesungsskript Räumliche Statistik für Punktprozesse und weitere Modelle der stochastischen Geometrie. Ulm: Institut für Stochastik.
- Schmidt, V. (2006), Lecture Note Markov Chains and Monte-Carlo Simulation. Ulm: Department of Stochastics
- Ross, S. M. (1996), Simulation 2nd. ed., Berkeley: Department of Industrial Engineering and Operations Research

Vielen Dank für Eure Aufmerksamkeit!