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Summary. A stochastic network model is developed which describes the 3D morphology of
the pore space in fibre-based materials. It has the form of a random geometric graph, where
the vertex set is modelled by random point processes and the edges are put using tools from
graph theory and MCMC simulation. The model parameters are fitted to real image data gained
by X-ray synchrotron tomography. In particular, they are specified in such a way that the dis-
tributions of vertex degrees and edge lengths, respectively, coincide to a large extend for real
and simulated data. Furthermore, the network model is used to introduce a morphology-based
notion of pores and their sizes. The model is validated by considering physical characteristics
which are relevant for transport processes in the pore space, like geometric tortuosity, i.e., the
distribution of shortest path lengths through the material relative to its thickness.
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1. Introduction

A stochastic network model is developed which is based on methods from stochastic geom-
etry and spatial statistics; see Kendall and Molchanov (2010) and Gelfand et al. (2010) for
comprehensive surveys on recent results in these fields. It describes the 3D morphology of
pore systems in fibre-based materials and can be used for scenario analyses e.g. with the
objective of developing improved materials and technologies for renewable energies. In par-
ticular, porous materials are considered where the solid phase consists of a rather complex
system of curved fibres. They mainly run parallel to some fixed 2-dimensional plane, say
the x-y plane, forming wafers with small thicknesses (along the z-axis) which can be seen
as stacks of thin layers of fibres. Such velt-type materials are used e.g. in the gas-diffusion
layer (GDL) of polymeric fuel cells; see Figure 1.

Recently, several models for the solid phase of GDL, in particular for the fibre system
itself, have been proposed where the pore space is considered as complementary set (Inoue
et al. (2007, 2008), Schulz et al. (2007), Thiedmann et al. (2008), Yoneda et al. (2007)).
However, this indirect description of pore space often leads to very complex geometric
structures, i.e., it is described by huge sets of voxels, which make numerical simulations of
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transport processes quite complicated and computer time consuming, especially for large
domains.

In the present paper, a stochastic network model is developed which has the form of a
random geometric graph, representing the pore space directly. It can be applied e.g. to
investigate transport processes in GDL on a large scale. Furthermore, the model can be used
to introduce a morphology-based notion of pores and their sizes. The model parameters are
fitted to real image data gained by X-ray synchrotron tomography. In particular, they are
specified in such a way that the distributions of vertex degrees and edge lengths, respectively,
coincide to a large extend for real and simulated data.

The vertex set of the random geometric graph is constructed by a stack of 2D point
processes, which can be seen as a point process in 3D, whose points have continuous x-
and y-coordinates, but discrete z-coordinates. Then, by ‘smearing’ the z-coordinates in
an appropriate way, a point process in 3D is obtained, where all three coordinates of its
points are continuous random variables. These points can physically be interpreted as can-
didates for pore centres. Their minimum distances to the solid phase, so-called contact
distances, can be seen as marks which describe pore sizes. Note that in the network ex-
tracted from synchrotron data, the contact distances of neighbouring vertices are strongly
(positively) correlated. Thus, they cannot be modelled just by independent marking, but a
certain moving-average procedure is proposed, which mimics this correlation structure quite
well. For details concerning point processes in multidimensional spaces and their statistical
inference and simulation, we refer e.g. to Diggle (2003), Illian et al. (2008), Møller and
Waagepetersen (2004) and Stoyan et al. (1995).

The edges are constructed combining tools from graph theory and MCMC simulation;
see e.g. Thulasiraman and Swamy (1992), Asmussen and Glynn (2007) and Rubinstein and
Kroese (2008). Candidates for vertex degrees, i.e. the numbers of edges outgoing from
vertices, are sampled in an independent and identically distributed (iid) way, using the his-
togram of vertex degrees which has been computed from synchrotron data. This is followed
by an acceptance-rejection procedure which ensures that the conditions of the Erdös-Gallai
theorem are fulfilled, regarding the existence of graphs for a given configuration of vertex
degrees. Then, for an admissible configuration of vertex degrees, edges are put using the
well-known Hakimi-Havel algorithm of graph theory. However, this algorithm does not take
into account the locations of vertices, which means that in general the distribution of edge
lengths computed from synchrotron data is not fitted well. Thus, in order to minimize
this discrepancy, the Hakimi-Havel algorithm is supplemented by an MCMC procedure to
rearrange edges in such a way that the distribution of vertex degrees is kept fixed and, simul-
taneously, the fit of the empirical distribution of edge lengths computed from synchrotron
data is improved.

Finally, the network model is validated by considering physical characteristics which
are relevant for transport processes in the pore space, like the minimum spanning tree and
geometric tortuosity, i.e., the distribution of shortest path lengths through the material
relative to its thickness. It turns out that both characteristics coincide quite nicely for real
and simulated data.

The type of our random graph model is rather different from random graphs considered
in literature; see e.g. Alon and Spencer (2000), Bollobas (2001), Franceschetti and Meester
(2008), Janson et al. (2000) and Penrose (2003). Note however that the models discussed
in these books do not fit to the data considered in the present paper, which show e.g.
interactions between neighbouring vertices and edges.

As already mentioned above, the network model developed in the present paper is mo-
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tivated by computer-based scenario analyses with the general objective of developing im-
proved materials and technologies for renewable energies. In particular, our model has been
fitted to synchrotron data for velt-type materials used e.g. in the GDL of fuel cells which
is responsible for transport/diffusion of oxygen and hydrogen towards the electrode, where
electricity is produced. Furthermore, as a by-product of the electrochemical processes in
low temperature fuel cells, liquid water is produced which has to be drained off. Note that
all these transport processes take place in the pore phase of the GDL, i.e., the phase which
is not occupied by fibres or binder, see e.g. Mathias et al. (2003).

Recently, several models have been proposed in literature describing the solid phase of
fibre-based GDL, i.e., the fibres themselves and the binder (Inoue et al. (2007, 2008), Schulz
et al. (2007), Thiedmann et al. (2008), Yoneda et al. (2007)). However, these models are
focused on GDL materials of paper-type where the fibres can be approximated by straight
lines. For the solid phase of velt-type GDL with clearly curved fibres, no stochastic models
are available which would describe their microstructure sufficiently well. Moreover, an
important disadvantage of the microstructure models existing so far for the solid phase
of paper-type GDL is that the pore space is only described indirectly, as complement of
the solid phase. This results in a description of the pore space by a huge set of voxels
which complicates numerical computations especially with respect to run time and memory
requirements. Furthermore, it restricts the size of domains in which the microstructure of
GDL can be analysed by numerical computations. At first glance, an alternative could be
to reduce the resolution of data, but this would coarsen the microstructure which causes
inaccuracies. Thus, to avoid these conflicts between run time and accuracy, we propose a
direct description of the pore space by 3D random geometric graphs. The advantages of
this representation are manifold. First of all, the pore space is now described directly and
numerical computations on the edges of a graph can be done relatively easily. In addition,
the proposed graph model is off-grid, i.e., the computations on the graph can be realized in
terms of Euclidean coordinates which do not depend on any given resolution.

We also mention that the idea to represent pore systems by 3D graphs is not completely
new; see e.g. Blunt et al. (2002) and Thiedmann et al. (2009). But no off-grid models exist
so far which could be used for stochastic simulation and scenario analysis based on real
3D image data. On the other hand, some authors consider grid-based graph models for
the pore space of polymeric GDL; see Gostick et al. (2007), Sinha et al. (2007) and Sinha
and Wang (2007). But these graph models for the pore space do not take into account its
real microstructure. The pores are located just on a grid and the models are calibrated
with respect to global physical characteristics as, e.g., permeability. In contrast to this
type of global model fitting, the model which we propose in the present paper is fitted to
local microstructural characteristics of the pore space. They are computed from real 3D
image data gained by means of X-ray synchrotron tomography; see Hartnig et al. (2008)
and Manke et al. (2007).

The paper is organized as follows. In Section 2, the 3D image data are described which
are used to fit the graph model. Then, in Section 3, the vertex model based on random
point processes is explained. In Section 4, the marking of vertices is described, whereas in
Section 5 the edge model is introduced. Some issues of model validation are discussed in
Section 6. Finally, Section 7 summarizes the results.
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2. Preprocessing of image data

In this section, the 3D image data are described gained by means of X-ray synchrotron
tomography. Then, their binarization and skeletonization is briefly explained. In particular,
the construction of vertices and edges of graphs representing the pore space is described,
and a morphology-based approach to the notions of pores and their sizes is given.

2.1. Data description
In order to fit a random graph model to the microstructure of real GDL materials, we use
3D image data which are gained by means of X-ray synchrotron tomography as described
e.g. in Hartnig et al. (2008) and Manke et al. (2007). These data are grey scale images
which have to be preprocessed. This is done in the same way as in Thiedmann et al.
(2008), i.e., first using a certain filter to smooth the data, then to binarize them by (global)
thresholding, and, subsequently, using an opening to remove small objects which are not
connected to the fibre system. The binarization threshold is chosen such that the estimated
porosity in the resulting binary image, i.e., the volume fraction of the pore space, is about
75%. Further details on this type of morphological image processing can be found in e.g.
Jähne (2005), Ohser and Schladitz (2009), and Soille (1999).

In order to keep the computational effort for extracting graphs from real data at a
reasonable level, we consider cutouts of the original 3D data set. These cutouts are cuboids
with 512×512×100 voxels, which corresponds to images of size 768µm×768µm×150µm. To
randomize the locations where the cutouts are taken we apply a bootstrap, i.e., the locations
of cutouts are chosen at random; see e.g. Lahiri (2003). We consider 50 such data sets as our
sample drawn from the original (synchrotron) data. Notice that the corresponding cuboids
do not have to be completely disjoint.

2.2. Extraction of graphs
Note that a 3D image of (segmented) synchrotron data is given as a stack of 2D binary
images, i.e., the 3D information is given as a 3D matrix with entries being equal to 0 and 1
representing occupied voxels (solid phase) and pore space, respectively. To extract a graph
from the voxelized pore space, a skeletonization of pore space is applied. The principal
idea is to change voxels belonging to the pore space into background voxels in such a
way that just a thin line is left over with thickness of one voxel, where the connectivity
of the skeleton should be the same as the connectivity of the original pore space. An
example in 2D is shown in Figure 2, where Figure 2(a) displays three objects (white).
We are interested in skeletonization of the black phase between these objects as our focus
is directed to pore space. Figure 2(b) shows the skeleton of the pore space. For this
skeletonization in 3D, we use an algorithm described in Fourard et al. (2006). Subsequently,
the skeleton is transformed into vector data by classifying skeleton voxels into ‘end voxels’,
‘line segment voxels’, and ‘junctions’, respectively, where all voxels of the skeleton with
exactly one neighbour are said to be end voxels, all voxels with exactly two neighbours
are line segment voxels, and all voxels with more than two neighbours are junctions. If a
junction consists of more than one voxel, the centre of gravity is assumed to be the location
of the junction.

The end voxels and junctions form the vertices of the graph to be constructed. Connect-
ing some pairs of them by line segments leads to a 3D graph. An example in 2D is shown
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in Figure 2(c). Note that such a connection of vertices will be represented by a polygonal
track instead of just by one single segment if the connection is not straight but curved.

To reduce boundary effects in fitting our model to the extracted graphs, we apply a
minus sampling, i.e., we neglect data which are too close to the boundary of the sampling
window.

2.3. Detection of pores
A problem in computing pore size distributions for materials with high porosity (of about
75%) is the (unique) definition of pores as geometrical objects. However, using the 3D
graph introduced in Section 2.2, we can consider all vertices of the graph as potential pore
centres; see also Thiedmann et al. (2009). The pore size is then the spherical distance of
such a pore centre to the solid phase. But, if we took all vertices as pore centres, some pores
would be contained partially or completely in other pores. Therefore only those vertices are
considered as pore centres, which are not contained in larger pores, otherwise the number
of small pores would be overestimated.

The following algorithm is used to determine the pore size distribution. For each po-
tential pore, i.e. vertex of the graph, the spherical distance to the solid phase is computed.
This can be done very efficiently using a distance transformation as described e.g. in Saito
and Toriwaki (1994). The potential pores are then ordered according to their sizes. Be-
ginning with the largest pore, all other potential pores with pore centres belonging to that
pore are deleted from the list of potential pores. Then, for the largest remaining (i.e. not
yet deleted) pore the same procedure is realized, and so on. The result is a set of pores
which can mutually overlap, but no pore contains a centre of another pore. An illustrating
example is given in Figure 3. In Figure 3(a) all potential pores are shown, i.e., each vertex
is seen as a potential pore centre and the balls around are the corresponding pores. In
Figure 3(b) only those balls are shown which are classified as pores.

The notion of pore size distribution is of special interest in electrochemistry, because
characteristics of this type can be accessed directly from real GDL by porosimetric meth-
ods such as mercury or water porosimetry; see e.g. Armatas (2006) and Maheshwaria et
al. (2008). However, note that the results of physical porosimetric measurements do not
coincide with the pore size distribution of graphs extracted from 3D images, because the
analysis of e.g. mercury porosimetry results uses lots of assumptions about the structure
of pores which are not fulfilled for real GDL materials; see e.g. León (1998). A systematic
comparison of our results for pore size distributions based on graphs extracted from 3D
images with those obtained by porosimetric methods will be the subject of a forthcoming
paper. Note that a similar attempt has been considered in Münch and Holzer (2008).

2.4. Modified graph describing the pore system
According to the morphology-based definition of pores given in Section 2.3, we slightly
modify the graph considered in Section 2.2, where we delete all those vertices which have
not been classified as pore centres. This implies that those edges such that at least one of
their endpoints is deleted, have to be changed as well. Note that these endpoints are then
shifted towards the vertices classified as pore centres in whose pores they are located in.
This is done in a way that all pores which were connected before are still connected in the
modified graph, see Figure 4(a). Furthermore, if there are some overlapping pores which
have no common edge, we add such an edge to the graph, see Figure 4(b).
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3. Stochastic modelling of vertices

The stochastic network model is constructed in two steps. First, the vertices of the random
geometric graph are modelled which is described in this section. Then, for a given set of
vertices, the edge set is constructed which is explained in Section 5.

3.1. Multi-layer representation
The basic idea for modelling the vertices of the 3D graph described in Section 2.2 is to use a
multi-layer representation of vertices. This is motivated by the microstructure of real GDL;
see Figure 5 which shows the profile of the fibre-based porous material. In Figure 5 it is
clearly visible that the fibres are orientated (more or less) horizontally. Thus, they can be
seen as a stack of thin layers formed by planar fibre systems. Therefore it is plausible to
assume that also the complement of the fibres, i.e. the pore space, has such a multi-layer
structure. Note that a similar approach has been used in Thiedmann et al. (2008) to model
the solid phase of paper-type GDL.

The fibres of the velt-type GDL considered in the present paper have a thickness of
about 9 to 10µm. So we assume that the fibre system forms a stack of thin layers (parallel
to the surface of the GDL), each with a thickness of 9µm. Furthermore, we decompose the
3D point pattern of vertices into the same type of thin layers, with the same thickness of
9µm. In order to model these layers of vertices we project all points of a given layer onto
its base, being parallel to the x-y plane, say. These 2D point patterns are then the data
basis for fitting our vertex model.

3.2. Point-process model
The pair-correlation function estimated from the point pattern of vertices of the 3D graph
introduced in Section 2.2 indicates strong clustering of vertices with an unusually high peak
at small distances of about 4 to 5µm; see Figure 6. This suggests the idea to fit a clustered
point-process model with narrow and, simultaneously, elongated clusters.

3.2.1. Generalized Thomas process and its pair-correlation function

As a model for the (projected) 2D point patterns described in Section 3.1, we thus use a
generalized Thomas process with elliptically shaped clusters; see e.g. Daley and Vere-Jones
(2008). This cluster model has the following structure. The parent points form a stationary
Poisson point process with intensity λp. The random number of child points per cluster
is Poisson distributed with expectation c, and the random deviations of child points from
their parent points are given via a 2D normal distribution N(o, C), with expectation vector
o and covariance matrix

C =
(

σ2
1 0
0 σ2

2

)
.

Additionally, according to the uniform distribution on the interval [0, 2π), the child points
of each cluster are jointly rotated around their parent point. In this way, it is ensured
that the generalized Thomas process is isotropic, although it possesses elliptically shaped
clusters. Note that as points of the generalized Thomas process, only the child points are
considered.
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To fit the generalized Thomas process, its pair-correlation function gθ : (0,∞) → [0,∞)
is considered, where θ = (λp, σ

2
1 , σ2

2). Note that the value gθ(r) is proportional to the
frequency of point pairs with distance r > 0 from each other. The following formula holds
(see e.g. Daley and Vere-Jones (2008)):

gθ(r) = 1 +
1

4πλpσ1σ2
exp

(
−r2 σ2

1 + σ2
2

8σ2
1σ2

2

)
I0

(
r2 σ2

1 − σ2
2

8σ2
1σ2

2

)
, r ≥ 0 ,

where I0 denotes the modified Bessel function which can be evaluated by

I0(z) =
∞∑

k=0

(1/4z2)k

(k!)2
, z ∈ IR .

3.2.2. Model fitting
The pair-correlation function is estimated for all 50 cutouts of synchrotron data, where a
standard (boundary-corrected) estimator is used; see e.g. Illian et al. (2008). As already
mentioned above, each cutout is divided into thin layers with a thickness of 9µm and the
vertices are projected onto their bases. The pair-correlation function is then estimated for
all these 2D data sets separately and the pointwise average of the estimated pair-correlation
functions is computed which will be denoted by ĝ(r) in the following.

In order to fit the Thomas process to data, four parameters have to be determined: λp,
c, σ2

1 and σ2
2 , where a minimum-contrast method can be used with respect to the pair-

correlation function. This means that the following minimization problem has to be solved:

f(θ) =

r2∫
r1

(ĝ(r)− gθ(r))
2 −→ min

for an appropriately chosen pair r1, r2 > 0. Then a minimum–contrast estimator θ̂ =
(λ̂p, σ̂

2
1 , σ̂2

2) for θ is given by θ̂ = arg minθ f(θ). The mean number c of child points per
cluster is estimated using the formula

ĉ =
λ̂

λ̂p

,

where λ̂ denotes the natural estimator of the over all intensity λ which can be estimated
quite easily, just by counting the number of all points in the sampling window divided by
its volume. On a scale where one distance unit corresponds to 1.0µm, the result of this
fitting is λ̂p = 0.000533, ĉ = 2.28, σ̂2

1 = 4.5, σ̂2
2 = 78.75. Thus, the estimated variances σ̂2

1

and σ̂2
2 are rather different, which means that the fitted Thomas process has clusters with

clearly elongated shapes.

3.2.3. ‘Smearing’ of points along the z-axis
Finally, the projection of vertices onto the bases of thin layers mentioned in Section 3.1 has
to be reversed. To incorporate this reversal step into the vertex model, we proceed in the
following way.
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Note that besides clustering, a certain hard-core effect is observed in the point pattern
of vertices of the 3D graph introduced in Section 2.2. This is a result of the skeletonization
and transformation into vector data, respectively, because possible vertices which are too
close together are identified as one single vertex. Therefore, also in the vertex model, a
(small) hard–core distance has to be included. Furthermore, analysing the z-coordinates
observed in the point pattern of vertices of the 3D graph, it can be seen that they are
almost uniformly distributed, see Figure 7. Besides, looking at the pair-correlation function
given in Figure 6, we see that there are many point pairs with a distance of about 4 to
5µm. In order to incorporate all these structural properties into the 3D vertex model, we
do not shift the points of the 2D Thomas processes independently from each other along
the z-axis. But we apply a dependent shifting which is based on the following property
of exponential distribution: For any fixed k ≥ 1, let Z1, . . . , Zk ∼ Exp( 1

k ) be independent
and exponentially distributed random variables. Then min{Z1, . . . , Zk} ∼ Exp(1) and,
therefore, exp (−min{Z1, . . . , Zk}) ∼ U(0, 1).

We use this property for k = 4. Thus, considering a sample of a Thomas process
which has n > 0 points in the sampling window, we associate these points with inde-
pendent random variables Z1, . . . , Zn ∼ Exp( 1

4 ) and, for the ith point of these n points,
i = 1, . . . , n, we consider its three closest neighbours with indices i1, i2, i3 ∈ {1, . . . , n}\{i},
say. Then, we shift the ith point within the corresponding layer along the z-axis, accord-
ing to exp (−min{Zi, Zi1 , Zi2 , Zi3}) ∼ U(0, 1) (suitably scaled to the thickness of the layer).
This dependent shifting along the z-axis ensures that the principal structure of the clustered
Thomas processes does not change.

Finally, to incorporate a hard-core distance into the model, we apply a subsequent shift
of the points along the z-axis if two points are too close to each other. Therefore we look
at that pair of points of the complete 3D point pattern which are closest to each other and
choose one of these two points at random. This point is then again shifted along the z-axis
within the corresponding layer, according to a uniformly distributed random variable. This
is repeated until the required hard-core distance of 3µm is achieved for all points, or if no
further improvement is possible.

3.3. Model validation
In order to validate the point-process model proposed in Section 3.2, we consider two dif-
ferent characteristics of stationary point processes: the distribution function of (spherical)
contact distances H : [0,∞) → [0, 1], and the nearest-neighbour-distance distribution func-
tion D : [0,∞) → [0, 1]. Note that H(r) is the probability that the distance from an
arbitrary location in IR3, chosen at random, to the closest point of the point process is not
larger than r > 0. Similarly, D(r) is the probability that the distance from an arbitrary
point of the point process, chosen at random, to its nearest neighbour within the point
process is not larger than r > 0.

Furthermore, we show that the pair-correlation functions computed from real and sim-
ulated 3D point patterns, respectively, are quite similar to each other.

To verify whether the 3D point-process model fits real data sufficiently well, we estimate
H(r) and D(r) for all 50 cutouts of vertex sets extracted from synchrotron data, where stan-
dard (boundary-corrected) estimators are used; see e.g. Illian et al. (2008). The pointwise
averages of these estimates are denoted by Ĥ(r) and D̂(r), respectively. Then, we compute
pointwise 96% confidence bands for the two point-process characteristics mentioned above,
where we generate 50 samples of the 3D point-process model with the estimated parameters



Random geometric graphs 9

as given in Section 3.2.2 in an sampling window of 768µm× 768µm× 150µm. These bands
are plotted as grey solid lines.

The results for H(r) are visualized in Figure 8 which shows that the empirical distribu-
tion function Ĥ(r) computed from real data (plotted as black dashed line) is more or less
within the confidence band obtained from simulated data (grey solid lines). Furthermore,
the results for D(r) are given in Figure 9. Also for this characteristic the estimates D̂(r)
(black dashed line) are within the confidence band obtained from simulated data (grey solid
lines).

Regarding the pair-correlation function, the estimate ĝ(r) which has been computed
for the 3D vertex sets extracted from synchrotron data, does not match the confidence
band of simulated data perfectly; see Figure 6. However, the main structural properties
of ĝ(r) as the hard–core distance, the large peak at about 4µm, and the declining rate of
the tail towards the level of 1 are not too different from corresponding properties of the
pair-correlation function computed from simulated data.

Considering all three characteristics together, we can conclude that the 3D vertex model
introduced in Section 3.2 fits quite well to real data described in Section 2.

4. Marked point processes

In the preceding section we introduced a stochastic point-process model for the vertex set
itself extracted from synchrotron data. In order to describe the pore space in more detail, we
now extend this point-process approach to marked point processes, considering two different
types of marks: the spherical distances of vertices to solid phase, and the numbers of edges
emanating from vertices. In the first case the marks are closely related with the notion
of pore sizes introduced in Section 2.3, whereas the second kind of marks is the degree of
vertices, also called the coordination number in physics and geology. Later on, in Section 5,
the distribution of vertex degrees will be used in order to model the edges of the random
geometric graph.

4.1. Spherical contact distances
In case of spherical contact distances of vertices, we fit a gamma distribution as their (Palm)
mark distribution. However, it turns out that in the network extracted from synchrotron
data, the contact distances of neighbouring vertices are strongly (positively) correlated.
Thus, they cannot be modelled just by independent marking, but a certain mowing-average
procedure is proposed, which mimics this correlation structure quite well.

4.1.1. Data analysis
In a first step we analysed the spherical contact distances to solid phase for the vertices
extracted from synchrotron data. Their histogram is shown in Figure 10. It can be nicely
fitted by a gamma distribution Γ(ρ, ζ) with parameters ρ > 0 (rate) and ζ > 0 (shape),
using maximum-likelihood estimation or the method of moments, see e.g. Casella and
Berger (2002). For the parameters of this gamma distribution (black curve in Figure 10),
the averaged values of ρ = 1.077 and ζ = 7.331 have been obtained, where the averages
extend over all 50 cutouts from synchrotron data.

Furthermore, the correlation structure of spherical contact distances has been analysed
using the so-called mark correlation function κ : (0,∞) → [−1, 1] of stationary marked point
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processes, where κ(r) is the correlation of the marks of an arbitrary pair of points, chosen
at random, with distance r > 0 from each other. Similar to the estimation of the functions
g(r), H(r), and D(r) discussed in Sections 3.2 and 3.3, the mark correlation function is
estimated for all 50 cutouts extracted from synchrotron data; see e.g. Illian et al. (2008).
The pointwise average of these estimates is denoted by κ̂(r). It is shown in Figure 11 (black
dashed line) and can be interpreted as follows. Vertices which are located close to each other
have strongly (positively) correlated contact distances and, vice versa, the spherical contact
distances of vertices which are far away from each other are more or less uncorrelated.

4.1.2. Moving-average model for dependent marking

To incorporate the correlation structure mentioned above into the model, we proceed similar
as in Section 3.2.3, now using the fact that the family of gamma distributions possesses a
well known stability property with respect to convolution.

If there are n > 0 points in the sampling window, we first associate these points with
independent random variables Z1, . . . , Zn ∼ Γ(ρ, ζ/4), distributed according to the Gamma
distribution shown in Figure 10, where ρ = 1.077 and ζ = 7.331. Then, for the ith point of
these n points, i = 1, . . . , n, we consider its three closest neighbours with indices i1, i2, i3 ∈
{1, . . . , n} \ {i}, say. Then, as mark of the ith point, we finally choose the sum

Zi + Zi1 + Zi2 + Zi3 ∼ Γ(ρ, ζ) .

This dependent marking of points ensures that the principal structure of the empirical mark
correlation function κ̂(r) computed in Section 4.1.1 is captured quite well; see Figure 11.
In this figure, pointwise 96% confidence bands are shown (grey solid lines), which were
computed from 50 samples of the 3D point-process model with the moving-average marking
as described above.

4.1.3. Detection of pores

For simulated vertex sets and their spherical contact distances, sampled from the model of
a marked point process as described in Sections 3.2 and 4.1.2, we can proceed exactly in the
same way as in Section 2.3 in order to detect pore centres within the vertex set of potential
pore centres. Furthermore, for a given subset of vertices detected as pore centres, we can
compute the distribution of their marks, i.e. pore sizes. Thus, still another possibility of
model validation is given, comparing this distribution with the pore size distribution which
has been computed in Section 2.3 for real data.

At first glance, one might think that the edge set of the random geometric graph to be
constructed could be built in a similar way, directly from simulated vertex sets and their
spherical contact distances. For example, just by connecting all those pairs of pore centres
whose distances from each other are smaller than the sum of their pore radii. However, this
happens only for a few pairs of pore centres, i.e., only a few pores overlap mutually. This
means that most edges of the random geometric graph to be constructed should be covered
by pores only partially, whereas their middle parts can be interpreted e.g. as ‘throats‘
between pores. Therefore, in order to build an edge model, we used another approach
combining tools from graph theory and MCMC simulation, which will be explained in the
following sections.
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4.2. Degrees of vertices
An important characteristic for describing the connectivity of a graph are the degrees or
coordination numbers of its vertices, i.e., the number of edges emanating from vertices.
Thus, we now consider the vertex degrees as marks for the point-process model of vertices
introduced in Section 3.2. However, our analysis is not directly based on the graph extracted
from synchrotron data as described in Section 2.2, but on the modified graph of pore centres
introduced in Section 2.4.

4.2.1. Data analysis

We first computed the empirical distribution of vertex degrees for the modified graph,
which is shown in Figure 12(a). Then, we computed the mark-correlation function of
vertex degrees, in the same way as this has been described in Section 4.1.1 for spherical
contact distances. The result is presented in Figure 12(b), which shows that there is almost
no correlation between vertex degrees. Thus, at first glance, it seems that the degrees of
vertices could be modelled in an iid way, according to the distribution shown in Figure 12(a).
However, this would get into conflict with the fact that not for each configuration of vertex
degrees, a graph can be constructed. A possible solution of this problem is to combine iid
sampling from the distribution shown in Figure 12(a) with a certain acceptance-rejection
procedure which leads to admissible configurations of vertex degrees.

4.2.2. Admissible configurations of vertex degrees

In order to solve the problem mentioned in the previous section, we propose a two-step
algorithm for generating admissible configurations of vertex degrees. Supposing that the
sample of the random graph to be constructed has n vertices in the sampling window, we
generate an iid sample d1, . . . , dn > 0 of candidates for vertex degrees according to the
distribution shown in Figure 12(a). Then, using the Erdös–Gallai theorem of graph theory,
see e.g. Thulasiraman and Swamy (1992), Tripathi and Vijay (2003), we check whether
d1, . . . , dn is an admissible configuration of vertex degrees. For this purpose, we rearrange
the numbers d1, . . . , dn > 0 in descending order getting the sequence d′1 ≥ d′2 ≥ . . . ≥ d′n > 0,
say. In accordance with the Erdös–Gallai theorem, a simple graph, i.e., each pair of vertices
has at most one direct connecting edge, can be constructed possessing the configuration
d1, . . . , dn > 0 of vertex degrees if and only if d1 + d2 + . . . + dn is even, and for all
k = 1, . . . , s, where s is determined by

d′s ≥ s and d′s+1 < s + 1 ,

it holds that
k∑

i=1

d′i ≤ k(k − 1) +
n∑

i=k+1

min{k, d′i} .

If the sequence d1, . . . , dn > 0 of potential vertex degrees fulfils these conditions, we can
construct a graph with n vertices and vertex degrees d1, . . . , dn > 0; see Section 5.1 below.
Otherwise, we reject the sample d1, . . . , dn > 0 and generate a new one according to the
distribution shown in Figure 12(a). This procedure is repeated until a sequence of vertex
degrees is generated which fulfils the conditions of the Erdös–Gallai theorem.
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5. Stochastic modelling of edges

We now describe a stochastic model for putting the edges of the random geometric graph
which combines tools from graph theory and MCMC simulation. In particular, the model
is constructed in such a way that the distributions of vertex degrees and edge lengths,
respectively, coincide to a large extend for real and simulated data.

As already mentioned in Section 4.2, candidates for vertex degrees are sampled in an
iid way, according to the distribution shown in Figure 12(a). Recall that this is followed
by an acceptance-rejection procedure which ensures that the conditions of the Erdös-Gallai
theorem are fulfilled.

Then, assuming that an admissible configuration of vertex degrees is given, edges are
put using the well-known Hakimi-Havel algorithm of graph theory. However, this algo-
rithm does not take into account the locations of vertices, which means that in general the
distribution of edge lengths computed from synchrotron data is not fitted well. In order
to minimize this discrepancy, the Hakimi-Havel algorithm is supplemented by an MCMC
procedure to rearrange edges in such a way that the distribution of vertex degrees is kept
fixed and, simultaneously, the fit of the empirical distribution of edge lengths computed
from synchrotron data is improved.

5.1. Hakimi-Havel algorithm
Suppose that the considered sample of the random graph to be constructed has n vertices
in the sampling window and that an admissible configuration d1, . . . , dn > 0 of vertex
degrees is given which has been sampled in an iid way, according to the distribution shown
in Figure 12(a). Furthermore, suppose that the integers d1, . . . , dn > 0 are numbered in
descending order, i.e., d1 ≥ d2 ≥ . . . ≥ dn > 0.

Then, a preliminary version of the edge set is constructed using an algorithm which is
based on the classical Hakimi–Havel theorem, see e.g. Thulasiraman and Swamy (1992).
This theorem states that there exists a simple graph with n vertices and degree sequence
d1 ≥ d2 ≥ . . . ≥ dn > 0 if and only if there exists one with n − 1 vertices and degree
sequence d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn.

This leads to the following algorithm: Suppose that a sequence d1 ≥ d2 ≥ . . . ≥ dn > 0
of vertex degrees is given, which fulfils the conditions of the Erdös-Gallai theorem. Assign
the vertex degrees d1, . . . , dn at random to the n vertices. Connect the vertex with degree
d1 with those vertices having degrees d2, . . . , dd1+1. Then, pick a vertex with the largest
residual (i.e. free) degree, say d′, and connect this vertex with d′ of other vertices, with
which it is not yet connected and which have the largest residual degrees. Repeat this
procedure until no free degrees are left.

The result of this construction is a random graph whose distribution of vertex degrees
fits to the corresponding empirical distribution of vertex degrees estimated from synchrotron
data; see Section 4.2.1. However, note that the algorithm described above does not take
into account the locations of vertices, which means that in general the distribution of edge
lengths observed in real image data may not be fitted very well. Thus, in order to minimize
this discrepancy, the Hakimi-Havel algorithm is supplemented by an MCMC procedure to
rearrange edges in such a way that the distribution of vertex degrees is kept fixed and, simul-
taneously, the fit of the empirical distribution of edge lengths computed from synchrotron
data is improved.
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5.2. Distribution of edge lengths
In Figure 13(a) the empirical distribution of edge lengths is shown which has been computed
for the modified graph extracted from synchtrotron data; see Section 2.4. It turned out that
a shifted gamma distribution Γ(ρ, ζ, c) with parameters ρ = 2.10 (rate), ζ = 0.11 (shape),
and c = 4.5µm (shift) can be fitted to this empirical distribution, using maximum-likelihood
estimation or the method of moments, see e.g. Casella and Berger (2002).

Thus, the goal is to construct a random geometric graph which fits sufficiently well
both the distribution of vertex degrees considered in Section 4.2.1 and the shifted gamma
distribution of egde lengths mentioned above.

5.3. Rearrangement of edges
The graph constructed in Section 5.1, using the Hakimi-Havel algorithm, does not fit the em-
pirical edge-length distribution sufficiently well which has been computed from real data; see
Figure 13(b). Thus, in order to get a better fit, the Hakimi-Havel algorithm is supplemented
by an MCMC procedure which rearranges the edges in such a way that the distribution of
vertex degrees is kept fixed and, simultaneously, the fit of the empirical distribution of edge
lengths computed from synchrotron data is improved. For further details on Markov chains
and MCMC simulation see e.g. in Asmussen and Glynn (2007) and Rubinstein and Kroese
(2008).

Our MCMC algorithm is based on the following idea. Let V = {v1, . . . , vn} denote the
vertex set considered, and let E = {e1, . . . , ek} be an edge set generated by the Hakimi-
Havel algorithm, say. Furthermore, for any not directly connected pair of edges ei, ej , where
i 6= j, we denote their endpoints by vi1 , vi2 and vj1 , vj2 , respectively. Then we consider all
(three) possible connections of the four vertices vi1 , vi2 , vj1 , vj2 by not directly connected
pairs of edges and evaluate the suitability of these edge pairs. Eventually, the original pair
of edges is replaced by another pair of edges which is evaluated better, where the evaluation
depends on the distance between the (empirical) length distribution of the current set of
edges and the shifted gamma distribution obtained in Section 5.2.

More precisely, in order to decrease the discrepance between the (empirical) edge-length
distribution of the current set of edges and the shifted gamma distribution fitted in Sec-
tion 5.2 to real data, we consider two different Markov chains. First, we run an auxiliary
Markov chain that eliminates all those edges which are too long, replacing them by shorter
ones. This Markov chain is defined in the following way. An edge, say ei, of the edge set
E = {e1, . . . , ek} is chosen with probability

pi =
|ei|

max1≤`≤n|e`|
, i = 1, . . . , k ,

and another edge, say ej , i 6= j, among those edges which are not directly connected to
ei is chosen with probability pj = |ej |/max1≤`≤n|e`|, where |e| denotes the length of edge
e. Subsequently, all three possible edge combinations which can be constructed by the
endpoints vi1 , vi2 , vj1 , vj2 of the chosen edges ei, ej are evaluated, where the ‘value’ ηij of
a pair of edges ei, ej is defined as the sum of their (current) selection probabilities, i.e.
ηij = pi + pj . If any of the other two possible edge pairs has a smaller value than ei, ej ,
then the edges ei, ej are replaced by that pair of edges. Otherwise, the pair ei, ej is not
replaced. This procedure is continued as long as no further improvement is found.

Note that the evaluation of edges by this Markov chain just depends on their lengths,
preferring edges which are short. In other words, we replace a pair of edges ei, ej if one of
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the other two, not directly connected pairs of edges has a shorter summary length. The
result is a graph where edges are as short as possible. Furthermore, the MCMC algorithm
described above helps to avoid numerical problems in computing the selection probabilities
of the following (main) Markov chain which is defined in a similar way.

Let fΓ(r) denote the density of the shifted Γ–distribution derived in Section 5.2. The
empirical edge-length density of the current configuration of edges is denoted by f̂(r). Then
an edge ei is chosen with probability

p̃i = max

{
0, 1− fΓ(|ei|)

f̂(|ei|)

}

and another edge ej among those edges which are not directly connected to ei is chosen
with probability p̃j = max{0, 1 − fΓ(|ej |)/f̂(|ej |)}. Subsequently, all three possible edge
combinations which can be constructed by the endpoints vi1 , vi2 , vj1 , vj2 of the chosen
edges ei, ej are evaluated, where the ‘value’ η̃ij of a pair of edges ei, ej is defined as the
sum of their (current) selection probabilities, i.e. η̃ij = p̃i + p̃j . If any of the other two
possible edge pairs has a smaller value than ei, ej , then the edges ei, ej are replaced by that
pair of edges. Otherwise, the pair ei, ej is not replaced. Thus, the idea of this Markov
chain is to eliminate edges e which have lengths occurring more often then required, i.e,
fΓ(|e|) < f̂(|e|).

A realization of the random geometric graph model, where the edge lengths have been
fitted to real data by the above described MCMC simulation, can be seen in Figure 14. Note
that Figure 14 just shows a small cutout of a realization of the network model describing
the pore space of a GDL.

5.4. Discussion of MCMC simulation
Note that the rearrangement of edges according to the MCMC procedure described in
Section 5.3 does not change the distribution of edge degrees. Moreover, the degrees of the
individual vertices are not changed at all. On the other hand, the discrepance between
the (empirical) edge-length distribution of the finally generated set of edges and the shifted
gamma distribution fitted in Section 5.2 is essentially improved; see Figure 13(c).

However, we are aware of the contingency that it might be possible that not all prede-
termined edge-length distributions can be achieved by our MCMC procedure. This mainly
depends on the spatial structure of vertex locations which has an essential influence on
possible edge-length distributions. For example, if there is a hard-core distance of 5µm
between vertices, no edge with length smaller than 5µm can be generated. Such a ’lower
bound’ for the edge-length distribution, i.e., a distribution of edge-lengths with as much
as possible probability mass next to zero, can be approximated using the first (auxiliary)
Markov chain described in Section 5.3.

For the image data considered in the present paper, such a ’lower bound’ was found
by this preprocessing Markov chain. Then, the second (main) Markov chain shifted the
probability mass away from zero and, as a result of this, the predetermined shifted Γ-
distribution had a good chance to be approximated well.

Another reason why in the present case the predetermined distribution could be fitted
well, originates from the fact that all other components of the stochastic network model
have been fitted quite well to real data. In particular, the vertex model has nicely been
fitted to the vertices extracted from synchrotron data; see Section 3.3. Furthermore, there
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is practically no difference between the distributions of vertex degrees for real and simulated
data, respectively.

Note that in the MCMC procedure described in the previous section we considered the
Kolmogorov distance of the predetermined and the current (empirical) edge-length distri-
butions as a stopping criterion. Besides, we also fixed a maximum number of possible edge
rearrangements. If this number was reached before the Kolmogorov distance fallen below a
given threshold, then the simulation was stopped anyway, and the current configuration of
the graph is seen as a sample from the random geometric graph to be constructed.

6. Validation of the network model

In the preceding sections of this paper, the validation of the stochastic network model has
been accomplished only by means ‘local’ characteristics of various model components. We
now consider two structural characteristics of the whole model in order to validate it. They
are relevant to transport properties of pore space and have not been used for model fitting.

6.1. Minimum spanning tree
An important structural characteristic which describes the connectivity of graphs is the
so-called minimum spanning tree (MST). It is based on the concept of thinning a graph
with the aim to minimize its total length and, at the same time, to keep its connectivity
preserved. In our context, the MST is a very useful structural characteristic, because the
skeletonization algorithm considered in Section 2.2 preserves principal connectivity proper-
ties of the complete 3D pore space. So a global validation of the random geometric graph
model with respect to connectivity seems to be reasonable.

Note that the total length of a graph is just the sum of the lengths of its edges. In other
words, the principal idea of the MST is to look at a graph where as many edges as possible
are removed without changing the connectivity, i.e., all vertices which have been connected
before are still connected. Note however that the sequences of vertex degrees of the original
graph and its MST are not the same.

In order to practically compute the MST, Prim’s algorithm can be used; see e.g. Diestel
(2005) and Jungnickel (1999). The property which is used for model validation is the relative
length ρ of the MST in comparison to the length of the original graph, i.e., we consider the
ratio

ρ =
length of the MST

length of the original graph
,

which provides important information about the connectivity of the graph. Note that the
numerical results which we obtained for the MST of real and simulated data, respectively,
are very similar to each other; see Table 1.

6.2. Geometric tortuosity
Other basic characteristics of porous media, which are considered when investigating trans-
port properties, are their porosity and, in order to describe the pathways through the
materials, their tortuosity. Note that tortuosity is a physical characteristic which is usually
defined as the ratio of the mean effective path length through the pore space of a porous
material and the material thickness, or, in other words, the mean extension of the real
pathway compared to the minimum distance between two points chosen at random; see e.g.
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Keil (1999) and Shen and Chen (2007). Note that this notion of tortuosity is given just by
a single number, which is not really a morphology-based characteristic.

On the other hand, the notion of geometric tortuosity, which has been introduced in
Thiedmann et al. (2009), describes the microstructure of pore space in more detail, dealing
with the distribution of shortest path lengths through a porous material, i.e., it allows for
the consideration of probability distributions and not just mean values.

In order to compute the lengths of shortest paths from top to bottom of GDL material,
along the edges of the 3D graph representing the pore space, we first have to determine the
starting points of these paths. Therefore a stationary planar Poisson point process with
some intensity λ > 0 is simulated on the top of the GDL. Recall that the sampled point
patterns then follow the principle of complete spatial randomness. Choosing this model
for the starting points of shortest paths, we had in mind that e.g. gas molecules can start
their diffusion/migration at any point of the GDL surface with the same probability and
independent of each other (in ex situ experiments).

Note that the starting points of shortest paths generated by the Poisson model men-
tioned above were not yet included into the random geometric graph model described in
the preceding sections. So we had to add these points to the graph, where each point of the
Poisson point process simulated on the top of the GDL was connected to the closest vertex
of the random graph representing the pore space.

Then, beginning from the starting points, the shortest paths along the edges from top to
bottom were determined using Dijkstra’s algorithm; see, e.g., Diestel (2005) and Jungnickel
(1999). This analysis has been done both for the graphs extracted from real 3D data and
for simulated graphs, where we obtained mean values and standard deviations as given in
Table 1. For the distributions of shortest path lengths, see Figure 15.

Although there is no perfect matching of these ‘local’ tortuosity characteristics for real
and simulated data, respectively, the difference between the two mean values is relatively
small and also the principal shapes of the two histograms representing the distributions
of shortest path lengths are relatively close to each other. This shows that the stochastic
network model proposed in the present paper is an appropriate tool in order to investigate
the geometry of and transport processes in the pore space of this type of GDL.

7. Summary and conclusions

In the present paper, we developed a model for random geometric graphs in 3D, where
we showed that our model can successfully be fitted to graph structures extracted from
real image data. The model is built in several steps. We first modelled the vertices of
the graph to be constructed using a multi-layer approach, i.e., by a stack of (smeared) 2D
point processes, where the 3D point process model obtained in this way has been validated
using different morphological image characteristics from stochastic geometry. Then, for any
given point pattern in 3D, we considered a depending marking of points, using spherical
contact distances as marks which are closely related to the physical notion of pore size. In
a third step, we proposed an edge model to reconnect a given set of vertices according to
a prespecified distribution of vertex degrees. For this purpose we assigned a sequence of
vertex degrees as marks to the vertices and checked whether such a configuration of vertex
degrees allows the construction of a graph or not. If possible, an algorithm based on the
Hakimi-Havel theorem of graph theory was used to construct a preliminary graph. However,
since this algorithm does not take into account the locations of vertices, we finally applied
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an MCMC simulation to rearrange edges in order to get a better fit to geometric properties
of graphs observed in real image data.

These steps altogether led to a 3D random geometric graph which can be simulated
relatively easily. A realization of this network model can be seen in Figure 14. Moreover,
by partitioning the model construction into different steps, our stochastic network model
becomes quite flexible having the potential to be successfully applied also to other porous
materials than those considered in the present paper.

To validate the 3D geometric graph model, morphology-based image characteristics were
considered which were not used for model fitting. They are related to physical properties of
the fibre-based porous material analysed in this paper. One of these characteristics was the
relative length of the minimum spanning tree which was used for analysing the connectivity
of the graph. The other one was geometric tortuosity, i.e., the ratio of the shortest path
length through a material and the material thickness. Note that also this morphology-based
image characteristic is very important in order to investigate transport processes in porous
materials.

In an ongoing research we are analysing the statistical properties of transport processes
along the edges of the stochastic network model developed in the present paper. Note that
there are clear computational advantages to investigate the properties of transport processes
on geometric graphs, i.e. on one-dimensional structures instead of considering a complete
3D model. In particular, the graph representation of pore space enables the consideration of
much larger domains and, simultaneously, keeping computer time at reasonable low levels.
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Table 1. Tortuosity and MST results
tortuosity MST

mean value standard deviation rel. length

Real data 1.35 0.11 0.38
Simulated graph 1.41 0.15 0.40

Rel. failure 4% 27% 5%

Fig. 1. 2D SEM image of the considered velt-type GDL
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Fig. 2. Skeletonization in 2D: a) pore space (black), b) skeletonized pore space (black line in pore
space), c) transformation into vector data
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Fig. 3. Definition of pores: a) all vertices of the graph with spherical distances to the solid phase, b)
deletion to those balls which are not classified as pores
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Fig. 4. Modification of the graph: a) elimination of vertices that are no pore centres, b) adding of
edges if pores overlap
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Fig. 5. Profile of a velt-type GDL
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Fig. 6. Pair–correlation functions for real (dashed line) and simulated data (grey solid lines)
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Fig. 7. Estimated distribution of z–coordinate of vertices for some layers
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Fig. 8. Spherical–contact–distance distribution functions for real (dashed line) and simulated data
(grey solid lines)
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Fig. 9. Nearest–neighbour–distance distribution functions for real (dashed line) and simulated data
(grey solid lines)
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Fig. 10. Histogram of spherical distances of vertices to the solid phase and fitted gamma distribution
(black solid line)
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Fig. 11. Mark–correlation functions for spherical distances of real (dashed line) and simulated (grey
solid lines) data
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Fig. 12. Coordination number analysis: a) estimated distribution of the coordination number; b)
estimated mark–correlation functions
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Fig. 13. Edge length analysis. Images show the length distribution for edges from a) the modified
graph and a (shifted) fitted gamma distribution (black solid line); b) the graph generated by the HH–
algorithm; c) the graph after MCMC–simulation



34 R. Thiedmann, V. Schmidt, I. Manke and W. Lehnert

Fig. 14. Small cutout of a simulated 3D random geometric graph
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Fig. 15. Tortuosity distributions of modified graphs: a) for graphs extracted from real data; b) for
simulated graphs


