

Prof. Dr. Evgeny Spodarev Dipl.-Math. oec. Wolfgang Karcher WS 2010/2011

Stochastik II Übungsblatt 12

für die Übungen am 26. Januar 2011 von 12:00 bis 14:00 Uhr in H14

Aufgabe 1 (3 Punkte)

Zeige, dass der Subordinator T mit Randdichte

$$f_{T(t)}(s) = \frac{t}{2\sqrt{\pi}} s^{-\frac{3}{2}} e^{-\frac{t^2}{4s}} \mathbf{1}\{s > 0\}$$

ein $\frac{1}{2}$ -stabiler Subordinator ist. (Hinweis: Differenziere die Laplace-Transformierte von T(t) und löse die Differentialgleichung)

Aufgabe 2 (4 Punkte)

Seien X und Y Zufallsvariablen über einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathsf{P})$. Die bedingte Varianz $\mathsf{var}(Y|X)$ ist definiert durch

$$\operatorname{var}(Y|X) = \operatorname{E}((Y - \operatorname{E}(Y|X))^2|X).$$

Zeige, dass

$$\operatorname{var} Y = \operatorname{E}(\operatorname{var}(Y|X)) + \operatorname{var}(\operatorname{E}(Y|X)).$$

Aufgabe 3 (3+3) Punkte)

Für eine Stoppzeit τ definieren wir die gestoppte σ -Algebra \mathcal{F}_{τ} wie folgt:

$$\mathcal{F}_{\tau} = \{ B \in \mathcal{F} : B \cap \{ \tau < t \} \in \mathcal{F}_t \text{ für beliebige } t > 0 \}.$$

Seien nun S und T Stoppzeiten bzgl. der Filtration $\{\mathcal{F}_t, t \geq 0\}$. Zeige:

- (a) $A \cap \{S \leq T\} \in \mathcal{F}_T \ \forall A \in \mathcal{F}_S$
- (b) $\mathcal{F}_{\min\{S,T\}} = \mathcal{F}_S \cap \mathcal{F}_T$

Aufgabe 4 (2+3) Punkte)

- (a) Sei $\{X(t), t \geq 0\}$ ein Martingal. Zeige, dass $\mathsf{E}X(t) = \mathsf{E}X(0)$ für alle $t \geq 0$ gilt.
- (b) Sei $\{X(t), t \geq 0\}$ ein Sub- bzw. Supermartingal. Zeige, dass $\mathsf{E}X(t) \geq \mathsf{E}X(0)$ bzw. $\mathsf{E}X(t) \leq \mathsf{E}X(0)$ für alle $t \geq 0$ gilt.