Elementare Wahrscheinlichkeitsrechnung und Statistik

Übungsblatt 11

(Abgabe: Donnerstag, 27.01.2011, vor den Übungen)

Aufgabe 1 (2 + 2 + 1 Punkte)

Der Zufallsvektor (X, Y) besitze die gemeinsame Dichte

$$f(x,y) = \frac{1}{2\pi} \left(1 + xy(x^2 - y^2) \exp\left(-\frac{1}{2}(x^2 + y^2) \right) \right) \cdot \exp\left(-\frac{1}{2}(x^2 + y^2) \right)$$

für $(x, y) \in \mathbb{R}^2$.

- (a) Bestimmen Sie die Randverteilungen von X und Y.
- (b) Berechnen Sie den Korrelationskoeffizienten von X und Y.
- (c) Sind X und Y unabhängig?

Aufgabe 2 (4 Punkte)

Seien X und Y unabhängig und gleichverteilt auf [0,1]. Berechnen Sie die Kovarianzen Cov(X,Y) und Cov(U,V), wobei $U=\min\{X,Y\}$ und $V=\max\{X,Y\}$.

Aufgabe 3 (5 Punkte)

Laut Brockhaus sind 4% der männlichen Bundesbürger Linkshänder. Geben Sie mit Hilfe der Ungleichung von Tschebychev eine Abschätzung nach unten für die Wahrscheinlichkeit an, dass unter 800 Studenten zwischen 24 und 40 Linkshänder sind. Vergleichen Sie das Ergebnis mit dem wahren Wert 0.8761 unter Binomialverteilung beziehungsweise dem Näherungswert unter Normalverteilung (zentraler Grenzwertsatz von DeMoivre-Laplace). Verwenden Sie für die Werte der Verteilungsfunktion der N(0,1)-Verteilung die Quantil-Tabelle auf der Homepage der Vorlesung.

Aufgabe 4 (2 Punkte)

Sei $X:\Omega\to\mathbb{R}$ eine beliebige Zufallsvariable mit $\mathbb{E}\,|X|<\infty$. Zeigen Sie, dass für jedes $t\geq 0$

$$P(X \ge t) \le \inf_{u \ge 0} \left\{ e^{-tu} \operatorname{\mathbb{E}} e^{uX} \right\} \,.$$

Aufgabe 5 (5 Punkte)

Es seien a_1, \ldots, a_n positive Zahlen. Beweisen Sie mittels der Jensen-Ungleichung, dass

$$a_H \le a_G \le a_A$$

wobei $a_A = 1/n \cdot (a_1 + \dots + a_n)$ das arithmetische Mittel, $a_G = (a_1 \cdot \dots \cdot a_n)^{1/n}$ das geometrische Mittel und $a_H = (\frac{1}{n}(1/a_1 + \dots + 1/a_n))^{-1}$ das harmonische Mittel bezeichnet.

Aufgabe 6 (4 Punkte)

Seien X und Y Zufallsvariablen, deren Verteilungen die Dichten

$$f_X(x) = e^{-x} \mathbb{1}_{[0,\infty)}(x), x \in \mathbb{R} \text{ bzw. } f_Y(y) = \frac{5}{3} y^{-\frac{8}{3}} \mathbb{1}_{[1,\infty)}(y), y \in \mathbb{R}$$

besitzen. Verwenden Sie die Hölder-Ungleichung, um zu zeigen, dass $\mathbb{E}(XY) \leq 7.4$ gilt.