Extremwerttheorie

Übungsblatt 3

Abgabe: 10. November 2011

Aufgabe 1

Es seien F und G zwei Verteilungsfunktionen mit $\lim_{t\to+\infty}\frac{1-F(t)}{1-G(t)}=c$, wobei $0< c<\infty$. Zeigen Sie: liegt F im Max-Anziehungsbereich der Fréchet-Verteilung Φ_{α} , so liegt auch G im Max-Anziehungsbereich von Φ_{α} .

Aufgabe 2

Sei X eine Zufallsvariable mit Dichte f und Verteilungsfunktion F. Zeigen Sie:

(a) Gilt $f(t) \sim Kt^{-\alpha}$, $t \to +\infty$, mit K > 0 und $\alpha > 1$, so folgt

$$\bar{F}(t) \sim \frac{K}{\alpha - 1} t^{1 - \alpha}, \qquad t \to +\infty.$$

(b) Gilt $f(t) \sim Kt^{-\alpha}e^{-t^{\beta}}$, $t \to +\infty$, mit K > 0, $\alpha \in \mathbb{R}$, $\beta > 0$, so folgt

$$\bar{F}(t) \sim \frac{K}{\beta} t^{1-\alpha-\beta} e^{-t^{\beta}}, \qquad t \to +\infty.$$

Aufgabe 3

Sei F eine Verteilungsfunktion mit $\bar{F}(t) \sim K(\log t)^{\alpha} t^{-\beta}$, $t \to +\infty$, wobei K > 0, $\alpha \in \mathbb{R}$, $\beta > 0$. Zeigen Sie, dass F im Max-Anziehungsbereich der Fréchet-Verteilung Φ_{β} liegt. Konstruieren Sie explizit eine Folge b_n von Konstanten mit

$$\lim_{n \to \infty} F^n(b_n t) = e^{-1/t^{\beta}} \text{ für alle } t > 0.$$

Hinweis: Wählen Sie b_n so, dass $\bar{F}(b_n) \sim 1/n$ für $n \to \infty$.

Aufgabe 4

Die Zufallsvariable X sei geometrisch verteilt mit Parameter $p \in (0,1)$, d.h. $\mathbb{P}[X=k]=p(1-p)^{k-1}$ für $k=1,2,\ldots$ Zeigen Sie, dass X in keinem der drei Max-Anziehungsbereiche liegt.