Prof. Dr. V. Schmidt

WS 2011/2012 18.01.2012

G. Gaiselmann

O. Stenzel

Stochastik II Übungsblatt 10

Abgabe der Übungsblätter: Mi. 25.01.2012 vor den Übungen

Aufgabe 1

- (a) Schreibe ein Programm zur Simulation eines Wiener-Prozesses im Intervall [0,1]. Verwende dabei den folgenden Ansatz zur Approximation von X_t : $\widetilde{X}_t^{(n)} = S_{\lfloor nt \rfloor} / \sqrt{n} + (nt \lfloor nt \rfloor) Z_{\lfloor nt \rfloor + 1} / \sqrt{n}$ für $S_i = Z_1 + \ldots + Z_i$, wobei Z_j i.i.d Zufallsvariablen sind mit $P(Z_1 = 1) = P(Z_1 = -1) = 0.5$. (5)
- (b) Bestimme aus 1000 Simulationen mit n=1000 einen Schätzwert für den Erwartungswert und die Varianz des Maximums $M_1=\max_{0\leq t\leq 1}X_t$. Werte dazu die Approximationen an den Stützstellen $t_k=k/m,\ k=0,\ldots,m$ für m=1000 aus. Vergleiche die Schätzwerte mit den theoretischen Größen.

Aufgabe 2

Über einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) sei ein Wiener-Prozess $\{X_t, t \geq 0\}$ gegeben. Für t > 0 (beliebig, aber fest) definieren wir

$$Z_n = \left(\sum_{i=1}^{2^n} \left(X_{it/2^n} - X_{(i-1)t/2^n}\right)^2\right) - t, \quad n \in \mathbb{N}.$$

Zeige, dass die folgenden Aussagen gelten:

(a)
$$\mathbb{E} Z_n = 0$$
 und $\mathbb{E} Z_n^2 = t^2 2^{-n+1}$ für $n \in \mathbb{N}$.

(b)
$$\lim_{n \to \infty} Z_n = 0$$
 fast sicher. (2)

(c) Zeige mit Hilfe von Teilaussage (b), dass für jedes $t \ge 0$ mit Wahrscheinlichkeit 1

$$\lim_{n \to \infty} \sum_{i=1}^{2^n} |X_{it/2^n} - X_{(i-1)t/2^n}| = \infty$$

Aufgabe 3

Seien $\mu = (\mu_1, \dots, \mu_n)^{\top} \in \mathbb{R}^n$ ein beliebiger Vektor und $K = (k_{ij})$ eine symmetrische und positiv definite $n \times n$ -Matrix. Man nennt den absolutstetigen Zufallsvektor $Z = (Z_1, \dots, Z_n)^{\top}$ (regulär) n-dimensional normalverteilt mit Erwartungswertvektor μ und Kovarianzmatrix K (Schreibweise: $Z \sim N(\mu, K)$), falls die gemeinsame Dichte gegeben ist durch

$$f(z) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \frac{1}{\sqrt{\det K}} \exp\left(-\frac{1}{2}(z-\mu)^\top K^{-1}(z-\mu)\right) \ \forall z \in \mathbb{R}^n \ .$$

Dann gilt $\mathbb{E}Z_i = \mu_i$ und $Cov(Z_i, Z_j) = k_{ij} \ \forall i, j = 1, \dots, n$. Die charakteristische Funktion von $Z \sim N(\mu, K)$ ist gegeben durch

$$\varphi(t) = \mathbb{E} \exp(it^{\top} Z) = \exp(it^{\top} \mu - \frac{1}{2} t^{\top} K t) \ \forall t \in \mathbb{R}^n$$

- (a) Zeige: Für $Z \sim N(o,K)$ und eine $m \times n$ -Matrix A mit $rg(A) = m \leq n$ gilt $Y = AZ \sim N(o,AKA^{\top})$ (3)
- (b) Es sei $\{X_t, t \geq 0\}$ ein Wiener-Prozess. Betrachte die folgenden Transformationen des Wiener-Prozesses:
 - Brownsche Brücke $\{B_t, t \in [0,1]\}$ mit $B_t = X_t tX_1$,
 - geometrische Brownsche Bewegung $\{Y_t, t \geq 0\}$ mit $Y_t = e^{X_t}$,
 - Ornstein-Uhlenbeck-Prozess $\{U_t, t \ge 0\}$ mit $U_t = e^{-t/2}X_{e^t}$.

Ein stochastischer Prozess $(X_t)_{t \in T}$ auf einer beliebigen Indexmenge T wird Gauß-Prozess genannt, falls seine endlich-dimensionalen Verteilungen (mehrdimensionale) Normalverteilungen sind. Welche der Prozesse $\{B_t\}, \{Y_t\}$ bzw. $\{U_t\}$ sind Gauss-Prozesse? (4)

(c) Bestimme jeweils die zugehörige Erwartungswertfunktion und Kovarianzfunktion für die Prozesse aus (b). (3)

Hinweis: Die charakteristische Funktion $\varphi : \mathbb{R} \to \mathbb{C}$ einer (eindimensional) $N(\mu, \sigma^2)$ verteilten Zufallsvariable ist gegeben durch $\varphi(s) = e^{is\mu}e^{-\frac{1}{2}\sigma^2s^2}$.