Prof. Dr. V. Schmidt C. Hirsch

Stochastic networks

Problem set 12

Due date: February 9, 2012

Exercise 1

Prove the formal correctness of the acceptance-rejection algorithm on page 58f. of the lecture notes.

Exercise 2

Let $X \subset \mathbb{R}^2$ be a homogeneous Poisson process of intensity $\lambda < 1/\pi$ and consider the connected component C_o of o in the graph $G(X \cup \{o\}, 1)$. Formally construct a coupling between C_o and a subcritical Galton-Watson branching process $\{Z_n\}_{n\geq 1}$ whose offspring distribution is given by $\operatorname{Poi}(\lambda \pi)$ that satisfies $|C_o| \leq \sum_{n\geq 1} Z_n$.

Exercise 3

Let $g: [0, \infty) \to [0, 1]$ be a measurable non-increasing function such that $\int_{\mathbb{R}^2} g(|x|) dx < \infty$. Let $X = \{X_n\}_{n \ge 1}$ be a homogeneous Poisson process in \mathbb{R}^2 of intensity $\lambda > 0$ and let $U = \{U_{n,m}\}_{\substack{m,n \ge 1 \\ m < n}}$ be a sequence of iid random variables that are independent of X and such that $U_{m,n} \sim \mathrm{U}([0,1])$. Denote by G(X,g) the geometric graph on the vertex set X and where for m < n the points $X_n, X_m \in X$ are connected by an edge in G(X,g) iff $U_{m,n} < g(|X_n - X_m|)$. Prove that G(X,g) does not percolate if $\lambda \int_{\mathbb{R}^2} g(|x|) dx < 1$.

Hint. Try to adapt the proof from the lecture.

Exercise 4

Let $d \geq 2$ and let $X \subset \mathbb{R}^d$ be a homogeneous Poisson process of intensity λ . For $k \geq 1$ denote by $\widetilde{G}(X, k)$ the directed graph with vertex set X and where an edge is drawn from x to y if y is one of the k nearest neighbors of x in X. Furthermore denote by G(X, k) the (undirected) graph where an edge is drawn between x and y if there exists a directed edge from x to y in $\widetilde{G}(X, k)$ or if there exists a directed edge from y to x in $\widetilde{G}(X, k)$. Compute explicit integral expressions for the following quantities and compute the integrals where possible.

- (a) the expected number of edges pointing to the origin in the graph $\widetilde{G}(X \cup \{o\}, k)$
- (b) the expected degree of o in $G(X \cup \{o\}, k)$
- (c) $\mathbb{E}(\nu_1(G(X,k) \cap [0,1]^d))$

Hint. Try to obtain the following expressions. Here the following notations are used

- ω_d denotes the surface area of the d-1-dimensional unit sphere
- κ_d denotes the volume of the *d*-dimensional unit ball
- $a_d = \nu_d(B_1(0) \cap B_1(e_1))$
- $b_d = \nu_d(B_1(0) \setminus B_1(e_1))$

(where ω_d resp. κ_d denote the surface area of the d-1-dimensional unit sphere resp. the volume of the d-dimensional unit ball)

(a) $\omega_d \int_0^\infty s^{d-1} \exp(-\kappa_d s^d) \sum_{i=0}^{k-1} (\kappa_d s^d)^i / i! ds$ (b)

$$k + \omega_d \int_0^\infty s^{d-1} \exp(-\kappa_d s^d) \sum_{i=0}^{k-1} (\kappa_d s^d)^i / i! ds$$

- $\omega_d \int_0^\infty s^{d-1} \sum_{\ell=0}^{k-1} \exp(-a_d s^d) (a_d s^d)^\ell / \ell! \left(\sum_{m=0}^{k-1-\ell} \exp(-b_d s^d) (b_d s^d)^m / m!\right)^2 ds$

(c)

$$\lambda^{(d-1)/d} \omega_d \int_0^\infty s^{2d-1} \exp(-\kappa_d s^d) \sum_{i=0}^{k-1} (\kappa_d s^d)^i / i! ds$$

$$-\lambda^{(d-1)/d} \omega_d \int_0^\infty s^{2d-1} \sum_{\ell=0}^{k-1} \exp(-a_d s^d) (a_d s^d)^\ell / \ell! \left(\sum_{m=0}^{k-1-\ell} \exp(-b_d s^d) (b_d s^d)^m / m!\right)^2 ds$$