Stochastic networks
 Problem set 1

Due date: October 25, 2011

In all problems you may assume that $V \subset \mathbb{R}^{d}$ is countable.

Exercise 1

Let $G=(V, E)$ be a locally finite graph (not necessarily connected). Let $\pi=\left\langle v_{1}, v_{2}, \ldots\right\rangle$ be a sequence of vertices in G such that v_{i} and v_{i+1} are connected by an edge for all $i \geq 1$ and that has the property that the set $\left\{v_{1}, v_{2}, \ldots\right\}$ is infinite, but any vertex v_{i} is only visited a finite number of times. Show that G contains an infinite self-avoiding path (i.e. a path where no vertex is visited more than once). Also show that this statement is no longer true, if we remove the local finiteness assumption and the assumption that any vertex v_{i} is only visited a finite number of times.

Exercise 2

Let $G=(V, E)$ be a connected and locally finite graph and let $p \in[0,1]$. Prove that
(a) $\exists x \in V: \theta_{x}(p)>0 \Longleftrightarrow \forall x \in V: \theta_{x}(p)>0$
(b) $\exists x \in V: \chi_{x}(p)<\infty \Longleftrightarrow \forall x \in V: \chi_{x}(p)<\infty$

Exercise 3

Let $V=\{(x, 0): x \in \mathbb{Z}\} \cup\{(0, y): y \in \mathbb{Z}\}$ and $E=\{\{(x, 0),(x+1,0)\}: x \in \mathbb{Z}\} \cup\{\{(0, y),(0, y+$ $1)\}: y \in \mathbb{Z}\}$. Prove that for $G=(V, E)$ we have $p_{c}=p_{e c}=1$.

Exercise 4 *

Let $G=(V, E)$ be a connected and locally-finite graph. In the lecture we discussed bondpercolation, i.e. we studied the probability space $\left(\{0,1\}^{E},\left(2^{\{0,1\}}\right)^{\otimes E}, \mathbb{P}_{\mathbf{p}}^{b}\right)$, for $\mathbf{p} \in[0,1]^{E}$. Here $\mathbb{P}_{\mathbf{p}}^{b}$ is the probability measure introduced in the lecture which is determined by

$$
\mathbb{P}_{\mathbf{p}}^{b}(C(F, z))=\prod_{f \in F: z_{f}=1} p_{f} \prod_{f \in F: z_{f}=0}\left(1-p_{f}\right),
$$

for every finite set $F \subset E$ and every $z \in\{0,1\}^{F}$. In site-percolation one does not study probability measures on configurations of edges, but on configurations of vertices. To be more precise: a site percolation model is a probability space $\left(\{0,1\}^{V},\left(2^{\{0,1\}}\right)^{\otimes V}, \mathbb{P}_{\mathbf{p}}^{s}\right)$ for $\mathbf{p} \in[0,1]^{V}$. In fact site percolation is in a sense more general than bond percolation:

Denote by $\widetilde{G}=(\widetilde{V}, \widetilde{E})$ the line graph of G. That is, $\widetilde{V}=E$ and $e, f \in \widetilde{V}$ are connected by an edge in \widetilde{G} if and only if there exists a vertex $v \in V$ that is adjacent both to e and to f. Note that any vector of probabilities $\mathbf{p} \in[0,1]^{E}$ defines a site percolation model $\left(\{0,1\}^{\widetilde{V}},\left(2^{\{0,1\}}\right)^{\otimes \widetilde{V}}, \widetilde{\mathbb{P}}_{\mathbf{p}}^{s}\right)$. Prove that

$$
\mathbb{P}_{\mathbf{p}}^{b}(\exists \text { infinite activated component in } G)=\widetilde{\mathbb{P}}_{\mathbf{p}}^{s}(\exists \text { infinite activated component in } \widetilde{G}) .
$$

Also make a drawing of the line graph of \mathbb{Z}^{2} !

