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Exercise 1

Let X1, X2, . . . : Ω → R be a sequence of iid random variables defined on a probability space
(Ω,A,P). Furthermore write An = σ(X1, . . . , Xn) and A∞ = σ(X1, X2, . . .) and define M =
{A ∈ A∞ : ∃A1, A2, . . . ∈

⋃∞
n=1An : limn→∞ P(An) = P(A) and limn→∞ P(An ∩ A) = P(A)}.

Prove that M is a monotone class containing the algebra
⋃∞

n=1An.

Hint: Let A1, A2, . . . ∈
⋃∞

n=1An and A =
⋃∞

n=1An. First choose Ai,j ∈
⋃∞

n=1An with
limj→∞ P(Ai,j) = P(Ai) and limj→∞ P(Ai,j ∩ Ai) = P(Ai). Then try to use estimates of the
form

∣∣P(A)− P(Ak,f(k))
∣∣ ≤ |P(A)− P(Ak)|+

∣∣P(Ak)− P(Ak,f(k))
∣∣ for a suitable function f !

Exercise 2

Let k ≥ 3, let G = (V,E) be a k-regular tree and let G′ = (V ′, E ′) be a k−1-branching tree (see
problem 6). Prove that for all p ∈ [0, 1] we have 1 − θ(p,G) = (1 − pθ0(p,G′))k. Furthermore
show that θ0(p,G

′) satisfies the equation 1− θ0(p,G′) = (1− pθ0(p,G′))k−1.

Exercise 3

Denote by Ṽ =
⋃∞

n=0{0, 1}n the set of all finite binary sequences and write V = Ṽ × {a, b}.
Now define the graph G = (V,E) with E = {{(v, a), (v, b)} : v ∈ Ṽ }∪{{(v, b), (c(v, 0), a)} : v ∈
Ṽ } ∪ {{(v, b), (c(v, 1), a)} : v ∈ Ṽ }. Here we write c(v, ε) = (ε1, . . . , εm, ε) for all ε ∈ {0, 1} and

v = (ε1, . . . , εm) ∈ Ṽ . First draw a picture of G and then prove that pc = pec = 1/
√

2.

Hint: Try to adopt the proof of Theorem 2.4!

Exercise 4

Construct a countable, connected and locally finite graph G = (V,E) with pec = 0 and pc = 1.

Hint: Start with the graph Z≥1. Now connect each node n ∈ Z≥1 with a separate complete
graph on 2n2

vertices.

Exercise 5 *

Let G = (V,E) be a countable, locally finite, but not necessarily connected graph. On any such
graph, we may consider Bernoulli bond percolation (i.e. the probability space (Ω,A,P) defined



in the lecture notes, page 6) and define p̃c(G) = inf(p ∈ [0, 1] : Pp(Ξp contains an infinite component >
0)). Prove that for all p ∈ (pc, 1] we have p̃c(Ξp) = p̃c(G)/p a.s. Conclude that there exists a
countable graph G with p̃c(G) = 1/π.

Hint: One part of the problem is to prove that if q > p̃c(G)/p, then for Pp-almost every
ω ∈ {0, 1}E there exists an infinite component in Ξq(Ξp(ω)) with positive probability. Try to
interpret Ξq(Ξp(ω)) as a realization of Ξpq(G) and note that for pq > p̃c(G) the graph Ξpq(G)
contains an infinite component with probability 1. The following construction of Ξp and Ξq

may be useful. Let (Ue)e∈E and (Ũe)e∈E be independent families of iid random variables with

Ue, Ũe ∼ U([0, 1]). Define the family (
˜̃
U e)e∈E as

˜̃
U e =

{
p · Ũe if Ue < p

Ue if Ue > p

Prove that (
˜̃
U e)e∈E are iid and

˜̃
U e ∼ U([0, 1]) and try to work with Ξp = {e ∈ E : Ue < p} and

Ξq(Ξp) = {e ∈ E :
˜̃
U e < pq}.

Exercise 6 *

Let k ≥ 3, let 1/(k − 1) < p < 1 and let G = (V,E) be a k-regular tree. Consider Bernoulli
bond percolation (i.e. the probability space (Ω,A,P) defined in the lecture notes, page 6) on G
and denote by N the number of infinite clusters in Ξp. Prove that N =∞ a.s.

Hint: Proceed by contradiction, so assume that P(N = ∞) < 1. Let ` = inf(n ≥ 0 : P(N =
n) > 0). The first step is to deduce that this would imply ` = 1. As in the proof of pc = 1 for
k-regular trees, it is convenient to consider instead the k-branching tree G′ = (V ′, E ′). Recall
that this can be defined by V ′ =

⋃∞
n=0{0, 1, . . . , k − 1}n and E =

⋃k−1
i=0 {{v, c(v, i)} : v ∈ V ′}.

Here we write c(v, ε) = (ε1, . . . , εm, ε) for all ε ∈ {0, 1, . . . , k−1} and v = (ε1, . . . , εm) ∈ V ′. For
i = 0, 1, . . . , k− 1 define the subsets Vi = {(i, ε1, . . . , εm) : m ≥ 0, ε1, . . . , εm ∈ {0, 1, . . . , k− 1}}
and consider the subgraphs Gi of G generated by Vi. Observe that each Gi is again a k-branching
tree and prove that N ≥ N0 +N1 + . . . Nk−1− (k− 1), where Ni denotes the number of infinite
activated components in Gi. Show that N0 + N1 + . . . + Nk−1 ≥ k · ` with probability 1 and
deduce that ` = 1. Finally derive and use the estimate P(N = 1) ≤ pkP(N = 1)k to obtain a
contradiction.


