Stochastic networks
 Problem set 2

Due date: November 8, 2011

Exercise 1

Let $X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be a sequence of iid random variables defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Furthermore write $\mathcal{A}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ and $\mathcal{A}_{\infty}=\sigma\left(X_{1}, X_{2}, \ldots\right)$ and define $\mathcal{M}=$ $\left\{A \in \mathcal{A}_{\infty}: \exists A_{1}, A_{2}, \ldots \in \bigcup_{n=1}^{\infty} \mathcal{A}_{n}: \lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=\mathbb{P}(A)\right.$ and $\left.\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n} \cap A\right)=\mathbb{P}(A)\right\}$. Prove that \mathcal{M} is a monotone class containing the algebra $\bigcup_{n=1}^{\infty} \mathcal{A}_{n}$.
Hint: Let $A_{1}, A_{2}, \ldots \in \bigcup_{n=1}^{\infty} \mathcal{A}_{n}$ and $A=\bigcup_{n=1}^{\infty} A_{n}$. First choose $A_{i, j} \in \bigcup_{n=1}^{\infty} \mathcal{A}_{n}$ with $\lim _{j \rightarrow \infty} \mathbb{P}\left(A_{i, j}\right)=\mathbb{P}\left(A_{i}\right)$ and $\lim _{j \rightarrow \infty} \mathbb{P}\left(A_{i, j} \cap A_{i}\right)=\mathbb{P}\left(A_{i}\right)$. Then try to use estimates of the form $\left|\mathbb{P}(A)-\mathbb{P}\left(A_{k, f(k)}\right)\right| \leq\left|\mathbb{P}(A)-\mathbb{P}\left(A_{k}\right)\right|+\left|\mathbb{P}\left(A_{k}\right)-\mathbb{P}\left(A_{k, f(k)}\right)\right|$ for a suitable function f !

Exercise 2

Let $k \geq 3$, let $G=(V, E)$ be a k-regular tree and let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a $k-1$-branching tree (see problem 6). Prove that for all $p \in[0,1]$ we have $1-\theta(p, G)=\left(1-p \theta_{0}\left(p, G^{\prime}\right)\right)^{k}$. Furthermore show that $\theta_{0}\left(p, G^{\prime}\right)$ satisfies the equation $1-\theta_{0}\left(p, G^{\prime}\right)=\left(1-p \theta_{0}\left(p, G^{\prime}\right)\right)^{k-1}$.

Exercise 3

Denote by $\widetilde{V}=\bigcup_{n=0}^{\infty}\{0,1\}^{n}$ the set of all finite binary sequences and write $V=\widetilde{V} \times\{a, b\}$. Now define the graph $G=(V, E)$ with $E=\{\{(v, a),(v, b)\}: v \in \widetilde{V}\} \cup\{\{(v, b),(c(v, 0), a)\}: v \in$ $\widetilde{V}\} \cup\{\{(v, b),(c(v, 1), a)\}: v \in \widetilde{V}\}$. Here we write $c(v, \varepsilon)=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}, \varepsilon\right)$ for all $\varepsilon \in\{0,1\}$ and $v=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in \widetilde{V}$. First draw a picture of G and then prove that $p_{c}=p_{e c}=1 / \sqrt{2}$.

Hint: Try to adopt the proof of Theorem 2.4!

Exercise 4

Construct a countable, connected and locally finite graph $G=(V, E)$ with $p_{e c}=0$ and $p_{c}=1$.
Hint: Start with the graph $\mathbb{Z}_{\geq 1}$. Now connect each node $n \in \mathbb{Z}_{\geq 1}$ with a separate complete graph on $2^{n^{2}}$ vertices.

Exercise 5 *

Let $G=(V, E)$ be a countable, locally finite, but not necessarily connected graph. On any such graph, we may consider Bernoulli bond percolation (i.e. the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ defined
in the lecture notes, page 6$)$ and define $\widetilde{p}_{c}(G)=\inf \left(p \in[0,1]: \mathbb{P}_{p}\left(\Xi_{p}\right.\right.$ contains an infinite component $>$ $0)$). Prove that for all $p \in\left(p_{c}, 1\right]$ we have $\widetilde{p}_{c}\left(\Xi_{p}\right)=\widetilde{p}_{c}(G) / p$ a.s. Conclude that there exists a countable graph G with $\widetilde{p}_{c}(G)=1 / \pi$.

Hint: One part of the problem is to prove that if $q>\widetilde{p}_{c}(G) / p$, then for \mathbb{P}_{p}-almost every $\omega \in\{0,1\}^{E}$ there exists an infinite component in $\Xi_{q}\left(\Xi_{p}(\omega)\right)$ with positive probability. Try to interpret $\Xi_{q}\left(\Xi_{p}(\omega)\right)$ as a realization of $\Xi_{p q}(G)$ and note that for $p q>\widetilde{p}_{c}(G)$ the graph $\Xi_{p q}(G)$ contains an infinite component with probability 1 . The following construction of Ξ_{p} and Ξ_{q} may be useful. Let $\left(U_{e}\right)_{e \in E}$ and $\left(\widetilde{U}_{e}\right)_{e \in E}$ be independent families of iid random variables with $U_{e}, \widetilde{U}_{e} \sim U([0,1])$. Define the family $\left(\widetilde{\widetilde{U}}_{e}\right)_{e \in E}$ as

$$
\widetilde{\widetilde{U}}_{e}=\left\{\begin{array}{l}
p \cdot \widetilde{U}_{e} \text { if } U_{e}<p \\
U_{e} \text { if } U_{e}>p
\end{array}\right.
$$

Prove that $\left(\widetilde{\widetilde{U}}_{e}\right)_{e \in E}$ are iid and $\widetilde{\widetilde{U}}_{e} \sim U([0,1])$ and try to work with $\Xi_{p}=\left\{e \in E: U_{e}<p\right\}$ and $\Xi_{q}\left(\Xi_{p}\right)=\left\{e \in E: \widetilde{\widetilde{U}}_{e}<p q\right\}$.

Exercise 6 *

Let $k \geq 3$, let $1 /(k-1)<p<1$ and let $G=(V, E)$ be a k-regular tree. Consider Bernoulli bond percolation (i.e. the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ defined in the lecture notes, page 6) on G and denote by N the number of infinite clusters in Ξ_{p}. Prove that $N=\infty$ a.s.
Hint: Proceed by contradiction, so assume that $\mathbb{P}(N=\infty)<1$. Let $\ell=\inf (n \geq 0: \mathbb{P}(N=$ $n)>0$). The first step is to deduce that this would imply $\ell=1$. As in the proof of $p_{c}=1$ for k-regular trees, it is convenient to consider instead the k-branching tree $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. Recall that this can be defined by $V^{\prime}=\bigcup_{n=0}^{\infty}\{0,1, \ldots, k-1\}^{n}$ and $E=\bigcup_{i=0}^{k-1}\left\{\{v, c(v, i)\}: v \in V^{\prime}\right\}$. Here we write $c(v, \varepsilon)=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}, \varepsilon\right)$ for all $\varepsilon \in\{0,1, \ldots, k-1\}$ and $v=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in V^{\prime}$. For $i=0,1, \ldots, k-1$ define the subsets $V_{i}=\left\{\left(i, \varepsilon_{1}, \ldots, \varepsilon_{m}\right): m \geq 0, \varepsilon_{1}, \ldots, \varepsilon_{m} \in\{0,1, \ldots, k-1\}\right\}$ and consider the subgraphs G_{i} of G generated by V_{i}. Observe that each G_{i} is again a k-branching tree and prove that $N \geq N_{0}+N_{1}+\ldots N_{k-1}-(k-1)$, where N_{i} denotes the number of infinite activated components in G_{i}. Show that $N_{0}+N_{1}+\ldots+N_{k-1} \geq k \cdot \ell$ with probability 1 and deduce that $\ell=1$. Finally derive and use the estimate $\mathbb{P}(N=1) \leq p^{k} \mathbb{P}(N=1)^{k}$ to obtain a contradiction.

