Prof. Dr. V. Schmidt C. Hirsch

Stochastic networks

Problem set 3

Due date: November 15, 2011

Exercise 1

Write a computer program int selfAvoiding(int n) that computes the number of self-avoiding paths of length n starting in the origin

- (a) if the underlying graph is the two-dimensional triagonal lattice
- (b) if the underlying graph is the two-dimensional hexagonal lattice.

Make sure that your implementation does not depend on the floating point arithmetic of the programming language!

Exercise 2

Let $(a_n)_{n\geq 1}$ be a sequence of non-negative real numbers satisfying the condition $a_{m+n} \leq a_m + a_n$ for all $n, m \geq 1$. Prove that $\lim_{n\to\infty} a_n/n$ exists and equals $\inf a_n/n$.

Hint: Let $\gamma = \inf_{n \ge 1} a_n/n$. First prove that $\gamma = \liminf_{n \to \infty} a_n/n$. For $\varepsilon > 0$ now choose $k \ge 1$ satisfying $a_k/k \le \gamma + \varepsilon$. Use the fact that any $m \ge 1$ can be written in the form nk + j to obtain suitable bounds on a_m/m .

Exercise 3

Denote by μ_n the number of self-avoiding walks on \mathbb{Z}^d of length n that start at the origin.

- (a) show that $\mu_{m+n} \leq \mu_m \mu_n$ holds for all $m, n \geq 1$.
- (b) show that $\kappa = \lim_{n \to \infty} (\mu_n)^{1/n}$ exists and satisfies the relation $d \le \kappa \le 2d 1$.

Hint: Use problem 2 to prove the existence of the limit

Exercise 4

Consider Bernoulli bond-percolation on \mathbb{Z}^d . Prove that $\theta(p) \to 1$ as $p \to 1$.