Stochastic networks
 Problem set 3

Due date: November 15, 2011

Exercise 1

Write a computer program int selfAvoiding(int n) that computes the number of self-avoiding paths of length n starting in the origin
(a) if the underlying graph is the two-dimensional triagonal lattice
(b) if the underlying graph is the two-dimensional hexagonal lattice.

Make sure that your implementation does not depend on the floating point arithmetic of the programming language!

Exercise 2

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of non-negative real numbers satisfying the condition $a_{m+n} \leq a_{m}+a_{n}$ for all $n, m \geq 1$. Prove that $\lim _{n \rightarrow \infty} a_{n} / n$ exists and equals $\inf a_{n} / n$.

Hint: Let $\gamma=\inf _{n \geq 1} a_{n} / n$. First prove that $\gamma=\liminf _{n \rightarrow \infty} a_{n} / n$. For $\varepsilon>0$ now choose $k \geq 1$ satisfying $a_{k} / k \leq \gamma+\varepsilon$. Use the fact that any $m \geq 1$ can be written in the form $n k+j$ to obtain suitable bounds on a_{m} / m.

Exercise 3

Denote by μ_{n} the number of self-avoiding walks on \mathbb{Z}^{d} of length n that start at the origin.
(a) show that $\mu_{m+n} \leq \mu_{m} \mu_{n}$ holds for all $m, n \geq 1$.
(b) show that $\kappa=\lim _{n \rightarrow \infty}\left(\mu_{n}\right)^{1 / n}$ exists and satisfies the relation $d \leq \kappa \leq 2 d-1$.

Hint: Use problem 2 to prove the existence of the limit

Exercise 4

Consider Bernoulli bond-percolation on \mathbb{Z}^{d}. Prove that $\theta(p) \rightarrow 1$ as $p \rightarrow 1$.

