Stochastic networks
 Problem set 4

Due date: November 22, 2011

Exercise 1

Write a computer program int latticeAnimal(int n) that computes the number of connected subgraphs of \mathbb{Z}^{d} containing the origin and consisting of precisely n vertices.

Bonus. Can you optimize your program so that it needs at most a^{n} steps for some $a \geq 1$?

Exercise 2

Let $n \geq 1$ and consider the subgraph $G_{n} \subset \mathbb{Z}^{d}$ induced by the vertex set $V=[0, n]^{d-1} \times \mathbb{Z}$. Prove that $p_{e c}=p_{c}=1$.

Exercise 3

Construct a locally finite, countable and connected graph satisfying
(a) $p_{c}^{s}=1$ and $p_{c}^{b}=0$.
(b) $0<p_{c}^{s}=p_{c}^{b}<1$.

Hint. For problem (a) consider the following modification of the nearest-neighbor graph on \mathbb{N}. Replace each edge of the form $\{n-1, n\}$ by a subgraph consisting of n extra vertices $x_{n, 1}, \ldots, x_{n, n}$ and for each $1 \leq j \leq n$ add edges between $n-1$ and $x_{n, i}$ and between $x_{n, i}$ and n. Observe that this graph does not have a uniform bound on vertex degrees. You may use without proof that for $p_{1}, p_{2}, \ldots \in(0,1)$ we have $\prod_{i \geq 1}\left(1-p_{i}\right)>0$ if $\sum_{i \geq 1} p_{i}<\infty$.

Exercise 4

Let G be the hypercubic lattice \mathbb{Z}^{d}. Prove that there exists $p>0$ and $c>0$ such that $\mathbb{P}_{p}\left(\left|C_{o}^{b}\right|>n\right) \leq 2 \exp \left(-c n^{1 / d}\right)$ holds for all $n \geq 1$.
Bonus. Can you use the bonus part of problem 1 to obtain a bound of the form $2 \exp (-c n)$?

