Stochastic networks

Problem set 6

Due date: December 6, 2011

Exercise 1

Let $d \ge 1$ and $a_1, a_2, \ldots, a_d \ge 1$ be positive integers. Write a computer program that first simulates (one realization of) Bernoulli bond percolation with activation probability p on the bounded cuboid $R = [0, a_1] \times \ldots \times [0, a_d] \cap \mathbb{Z}^d$ and then checks whether the output of this simulation contains an activated crossing from the hypersurface $x_1 = 0$ to the hypersurface $x_1 = a_1$. The event of occurrence of this kind of crossing will be denoted by H.

Use this program to obtain Monte-Carlo estimates for the probability $\mathbb{P}_p(H)$ for various values of d, a_1, \ldots, a_d . Specifically make empirical drawings of the function $p \mapsto \mathbb{P}_p(H)$ for $d \in \{2, 3\}$ and $a_1 = \ldots = a_d \in \{10, 20\}$. Give an interpretation of your results.

Hint. Use the coupling construction of bond percolation so that each simulation may be used for all p-values simultaneously.

Exercise 2

Consider Bernoulli bond percolation on \mathbb{Z}^d with activation probability $p \in (0, 1)$ satisfying $\mathbb{P}_p(|C_o| \geq n) \leq 2\exp(-n^{\alpha})$ for some $\alpha > 0$ and all $n \geq 1$. Let $a_1, a_2, \ldots, a_d \geq 1$, write $R_n = [0, a_1n] \times \ldots \times [0, a_dn] \cap \mathbb{Z}^d$ and prove that the probability of existence of an activated crossing inside R_n from the hypersurface $x_1 = 0$ to the hypersurface $x_1 = a_1n$ tends to 0 as $n \to \infty$.

Exercise 3

Let G_1 be the two-dimensional quadratic lattice \mathbb{Z}^2 and let G_2 be the graph with vertex set \mathbb{Z}^2 but edges given by $\{\{z_1, z_2\} \in \mathbb{Z}^2 \times \mathbb{Z}^2 : |z_1 - z_2| \leq \sqrt{2}\}$. For n > 0 denote by $S_n = [0, n] \times [0, n] \cap \mathbb{Z}^2$ a discrete square. Consider Bernoulli *site* percolation on \mathbb{Z}^2 and denote by $H(S_n, G_i)$ the event of obtaining an activated horizontal crossing in S_n using the edges of G_i . Prove that $\mathbb{P}^s_{1/2}(H(S_n, G_1)) = 1 - \mathbb{P}^s_{1/2}(H(S_n, G_2))$.

Hint. Try the same approach as in bond percolation.

Exercise 4

Let $k, \ell \geq 1$ be positive integers and consider Bernoulli bond percolation on \mathbb{Z}^2 with activation probability p = 1/2. Let $A_{k,\ell}$ denote the event of occurrence of an activated crossing (i.e. from the inner boundary to the outer boundary) of the discrete annulus $\mathbb{Z}^2 \cap [-2^{k+\ell}, 2^{k+\ell}] \setminus [-2^k, 2^k]$. Prove that there exists a constant 0 < c < 1 independent of k, ℓ such that $\mathbb{P}_{1/2}(A_{k,\ell}) \leq c^{\ell}$ for all $k, \ell \geq 1$.

Hint. Try the same approach as in the proof of $\theta(1/2) = 0$.