Stochastic networks
 Problem set 6

Due date: December 6, 2011

Exercise 1

Let $d \geq 1$ and $a_{1}, a_{2}, \ldots, a_{d} \geq 1$ be positive integers. Write a computer program that first simulates (one realization of) Bernoulli bond percolation with activation probability p on the bounded cuboid $R=\left[0, a_{1}\right] \times \ldots \times\left[0, a_{d}\right] \cap \mathbb{Z}^{d}$ and then checks whether the output of this simulation contains an activated crossing from the hypersurface $x_{1}=0$ to the hypersurface $x_{1}=a_{1}$. The event of occurrence of this kind of crossing will be denoted by H.

Use this program to obtain Monte-Carlo estimates for the probability $\mathbb{P}_{p}(H)$ for various values of d, a_{1}, \ldots, a_{d}. Specifically make empirical drawings of the function $p \mapsto \mathbb{P}_{p}(H)$ for $d \in\{2,3\}$ and $a_{1}=\ldots=a_{d} \in\{10,20\}$. Give an interpretation of your results.

Hint. Use the coupling construction of bond percolation so that each simulation may be used for all p-values simultaneously.

Exercise 2

Consider Bernoulli bond percolation on \mathbb{Z}^{d} with activation probability $p \in(0,1)$ satisfying $\mathbb{P}_{p}\left(\left|C_{o}\right| \geq n\right) \leq 2 \exp \left(-n^{\alpha}\right)$ for some $\alpha>0$ and all $n \geq 1$. Let $a_{1}, a_{2}, \ldots, a_{d} \geq 1$, write $R_{n}=\left[0, a_{1} n\right] \times \ldots, \times\left[0, a_{d} n\right] \cap \mathbb{Z}^{d}$ and prove that the probability of existence of an activated crossing inside R_{n} from the hypersurface $x_{1}=0$ to the hypersurface $x_{1}=a_{1} n$ tends to 0 as $n \rightarrow \infty$.

Exercise 3

Let G_{1} be the two-dimensional quadratic lattice \mathbb{Z}^{2} and let G_{2} be the graph with vertex set \mathbb{Z}^{2} but edges given by $\left\{\left\{z_{1}, z_{2}\right\} \in \mathbb{Z}^{2} \times \mathbb{Z}^{2}:\left|z_{1}-z_{2}\right| \leq \sqrt{2}\right\}$. For $n>0$ denote by $S_{n}=$ $[0, n] \times[0, n] \cap \mathbb{Z}^{2}$ a discrete square. Consider Bernoulli site percolation on \mathbb{Z}^{2} and denote by $H\left(S_{n}, G_{i}\right)$ the event of obtaining an activated horizontal crossing in S_{n} using the edges of G_{i}. Prove that $\mathbb{P}_{1 / 2}^{s}\left(H\left(S_{n}, G_{1}\right)\right)=1-\mathbb{P}_{1 / 2}^{s}\left(H\left(S_{n}, G_{2}\right)\right)$.
Hint. Try the same approach as in bond percolation.

Exercise 4

Let $k, \ell \geq 1$ be positive integers and consider Bernoulli bond percolation on \mathbb{Z}^{2} with activation probability $p=1 / 2$. Let $A_{k, \ell}$ denote the event of occurrence of an activated crossing (i.e. from
the inner boundary to the outer boundary) of the discrete annulus $\mathbb{Z}^{2} \cap\left[-2^{k+\ell}, 2^{k+\ell}\right] \backslash\left[-2^{k}, 2^{k}\right]$. Prove that there exists a constant $0<c<1$ independent of k, ℓ such that $\mathbb{P}_{1 / 2}\left(A_{k, \ell}\right) \leq c^{\ell}$ for all $k, \ell \geq 1$.

Hint. Try the same approach as in the proof of $\theta(1 / 2)=0$.

