Stochastic networks
 Problem set 7

Due date: December 13, 2011

Exercise 1

Consider Bernoulli bond percolation on \mathbb{Z}^{2} with activation probability $p=1 / 2$. Prove that $h\left(m_{1}+m_{2}-2 n, 2 n\right) \geq h\left(m_{1}, 2 n\right) h\left(m_{2}, 2 n\right) / 2$ holds for all $n \geq 1$ and all $m_{1}, m_{2} \geq 2 n$.
Hint. Consider $m_{1} \times 2 n$ and $m_{2} \times 2 n$ rectangles intersecting in a $2 n \times 2 n$-square and use Harris's inequality (see Lemma 2.5).

Exercise 2

Consider Bernoulli bond percolation on \mathbb{Z}^{2} with activation probability $p=1 / 2$. Let $\partial\left(S_{n}\right)=$ $\left([-n, n]^{2} \backslash[-(n-1), n-1]^{2}\right) \cap \mathbb{Z}^{2}$. Prove that there exists a constant $c>0$ satisfying $\mathbb{P}_{1 / 2}(o \rightarrow$ $\left.\partial\left(S_{6 n}\right)\right) \geq c \mathbb{P}_{1 / 2}\left(o \rightarrow \partial\left(S_{2 n}\right)\right)$ for all $n \geq 1$

Hint. Exercise 1 yields a constant $c^{\prime}>0$ such that $h(12 n, 2 n)>c^{\prime}$ for all $n \geq 1$.

Exercise 3

Let $n \geq 1$ and let $\left(\Omega_{n}, \mathcal{A}_{n}, \mathbb{P}_{n}\right)$ be the probability space defined in the lecture. Furthermore define $\mathbf{p}^{\prime}=\left(p_{1}, p_{2}, \ldots, p_{n-1}, p_{n}^{\prime}\right)$, where $p_{n}^{\prime} \geq p_{n}$. For $A \in \mathcal{A}_{n}$ increasing prove that $\mathbb{P}_{\mathbf{p}^{\prime}}(A)-$ $\mathbb{P}_{\mathbf{p}}(A)=\left(p_{n}^{\prime}-p_{n}\right) \beta_{n}(A)$ and use this relation to give an alternative proof of the Margulis-Russo formula, where $\beta_{n}(A)=\mathbb{P}_{\mathbf{p}}\left(\omega_{n}\right.$ is pivotal for $\left.A\right)$.
Hint. Use the coupling construction to compare $\mathbb{P}_{\mathbf{p}^{\prime}}$ and $\mathbb{P}_{\mathbf{p}}$.

Exercise 4

Let $n \geq 1$ and let $\left(\Omega_{n}, \mathcal{A}_{n}, \mathbb{P}_{n}\right)$ be the probability space defined in the lecture and let $A \in \mathcal{A}_{n}$ be increasing. Prove the validity of the steps

$$
\begin{aligned}
\frac{d}{d p} \mathbb{P}_{p}(A) & =\frac{1}{p} \sum_{i=1}^{n} \mathbb{P}_{p}\left(\omega_{i}=1 \text { and } \omega_{i} \text { is pivotal for } A\right) \\
& =\frac{1}{p} \mathbb{E}_{p}(N(A) \mid A) \mathbb{P}_{p}(A)
\end{aligned}
$$

where $N(A)$ is the (random) number of pivotal coordinates for A. Deduce that $\mathbb{P}_{p_{2}}(A) \leq$ $\left(p_{2} / p_{1}\right)^{n} \mathbb{P}_{p_{1}}(A)$ for all $0<p_{1} \leq p_{2}<1$.

