Prof. Dr. V. Schmidt C. Hirsch

Stochastic networks

Problem set 7

Due date: December 13, 2011

Exercise 1

Consider Bernoulli bond percolation on \mathbb{Z}^2 with activation probability p = 1/2. Prove that $h(m_1 + m_2 - 2n, 2n) \ge h(m_1, 2n)h(m_2, 2n)/2$ holds for all $n \ge 1$ and all $m_1, m_2 \ge 2n$.

Hint. Consider $m_1 \times 2n$ and $m_2 \times 2n$ rectangles intersecting in a $2n \times 2n$ -square and use Harris's inequality (see Lemma 2.5).

Exercise 2

Consider Bernoulli bond percolation on \mathbb{Z}^2 with activation probability p = 1/2. Let $\partial(S_n) = ([-n,n]^2 \setminus [-(n-1), n-1]^2) \cap \mathbb{Z}^2$. Prove that there exists a constant c > 0 satisfying $\mathbb{P}_{1/2}(o \to \partial(S_{6n})) \ge c\mathbb{P}_{1/2}(o \to \partial(S_{2n}))$ for all $n \ge 1$

Hint. Exercise 1 yields a constant c' > 0 such that h(12n, 2n) > c' for all $n \ge 1$.

Exercise 3

Let $n \geq 1$ and let $(\Omega_n, \mathcal{A}_n, \mathbb{P}_n)$ be the probability space defined in the lecture. Furthermore define $\mathbf{p}' = (p_1, p_2, \dots, p_{n-1}, p'_n)$, where $p'_n \geq p_n$. For $A \in \mathcal{A}_n$ increasing prove that $\mathbb{P}_{\mathbf{p}'}(A) - \mathbb{P}_{\mathbf{p}}(A) = (p'_n - p_n)\beta_n(A)$ and use this relation to give an alternative proof of the Margulis-Russo formula, where $\beta_n(A) = \mathbb{P}_{\mathbf{p}}(\omega_n$ is pivotal for A).

Hint. Use the coupling construction to compare $\mathbb{P}_{\mathbf{p}'}$ and $\mathbb{P}_{\mathbf{p}}$.

Exercise 4

Let $n \geq 1$ and let $(\Omega_n, \mathcal{A}_n, \mathbb{P}_n)$ be the probability space defined in the lecture and let $A \in \mathcal{A}_n$ be increasing. Prove the validity of the steps

$$\frac{d}{dp}\mathbb{P}_p(A) = \frac{1}{p}\sum_{i=1}^n \mathbb{P}_p(\omega_i = 1 \text{ and } \omega_i \text{ is pivotal for } A)$$
$$= \frac{1}{p}\mathbb{E}_p(N(A)|A)\mathbb{P}_p(A),$$

where N(A) is the (random) number of pivotal coordinates for A. Deduce that $\mathbb{P}_{p_2}(A) \leq (p_2/p_1)^n \mathbb{P}_{p_1}(A)$ for all $0 < p_1 \leq p_2 < 1$.