Stochastic networks

Problem set 8

Due date: December 20, 2011

Exercise 1

Consider Bernoulli bond percolation on \mathbb{Z}^d . Prove that the function $p \mapsto \theta(p)$ is continuous from the left on $(p_c, 1]$. You may use without proof that for $p > p_c$ the number of infinite activated clusters is 1 a.s.

Hint. Use the standard coupling construction. It may be useful to reduce the claim to the statement $\mathbb{P}(|C(p)| = \infty, |C(p')| < \infty$ for all $p' < p_c) = 0$.

Exercise 2

Consider Bernoulli bond percolation on \mathbb{Z}^2 with activation probability $p \in (0, 1)$. For $n \geq 1$ write $\pi(n) = \mathbb{P}(o \to \partial(S_n))$, where $\partial(S_n) = ([-n, n]^2 \setminus [-(n-1), n-1]^2) \cap \mathbb{Z}^2$. Prove that for all $x \in \mathbb{Z}^2$ such that |x| is even (i.e. |x| = 2n for some $n \geq 1$) it holds that $\mathbb{P}_p(o \to x) \leq \pi(|x|/2)^2$, where $|x| = \max(|x_1|, |x_2|)$.

Hint. Check that the event $\{o \to x\}$ implies the existence of an activated path starting from o and leaving S_n as well as the existence of an activated path starting from x and leaving $x + S_n$.

Exercise 3

Consider Bernoulli bond percolation on \mathbb{Z}^2 with activation probability p = 1/2. For $n \ge 1$ write $\pi(n) = \mathbb{P}(o \to \partial(S_n))$. Prove that there exists a constant $c_1 > 0$ such that for all $x \in \mathbb{Z}^2$ we have $\mathbb{P}(o \to x) \ge c_1 \pi(2|x|) \pi(|x|)$.

Hint. Convince yourself that there exists an activated path from o to x if each of the following events occurs

- (a) there exists an activated path from o that leaves $[-2|x|, 2|x|]^2$
- (b) there exists an activated path from x that leaves $x + [-|x|, |x|]^2$
- (c) there exists an activated cycle inside $[-2|x|, 2|x|]^2$ surrounding $[-|x|, |x|]^2$
- (d) there exist activated crossings in both vertical halves and both horizontal halves of $x + [-|x|, |x|]^2$.

Exercise 4

Let $G = (\mathbb{Z}^2, E)$ be the square lattice and let $\{X_e\}_{e \in E}$ be a collection of iid random variables with $X_e \sim U([0, 1])$. Define a sequence of subgraphs $\{G_i\}_{i \geq 0}$ of G recursively as follows. Put $G_0 = (\{o\}, \emptyset)$ and if $G_i = (V_i, E_i)$ is already constructed define $G_{i+1} = (V_{i+1}, E_{i+1})$ by $V_{i+1} = V_i \cup \{x, y\}$ and $E_{i+1} = E_i \cup \{e_i\}$, where $e_i = \{x, y\}$ is chosen to be the edge e with minimal X_e -value among all edges connecting G_i to $\mathbb{Z}^2 \setminus G_i$. Prove that $\limsup_{i \geq 1} X_{e_i} = 1/2$ a.s.

Hint. First prove that in Bernoulli bond percolation with parameter 1/2 there a.s. exist infinitely many n such that $[-n, n]^2$ is surrounded by an activated cycle.