Stochastic networks
 Problem set 9

Due date: January 10, 2012

Exercise 1

Let $G=(V, E)$ be a countable graph with maximal vertex degree $2 \leq \Delta<\infty$. Let $v_{0} \in V$ be fixed. Then for $n, m, b \geq 1$ we write $\mathcal{A}_{n m b}$ for the set of connected subgraphs $A \subset G$ such that $v_{0} \in A, A$ is connected, A consists of precisely n vertices and m edges and such that there exist precisely b edges of G that have exactly one end point in A. Furthermore we write $a_{n m b}=\# \mathcal{A}_{n m b}$.
(a) Prove that if $a_{n m b} \neq 0$ then $\max (b, 2 m) \leq \Delta n$.
(b) Consider Bernoulli bond percolation on G with activation probability $p \in(0,1)$. Prove that $\mathbb{P}_{p}\left(\left|C_{v}\right|=n\right)=\sum_{m, b \geq 1} a_{n m b} p^{m}(1-p)^{b}$, where $C_{v_{0}}$ denotes the activated cluster at v_{0}.
(c) Using parts (a) and (b) prove that $\sum_{m, b \geq 1} a_{n m b} \leq\left(p(1-p)^{2}\right)^{-n \Delta / 2}$ holds for all $n \geq 1$.
(d) Prove that the number of subtrees of G that contain v_{0} and consist of n vertices is bounded by $(27 / 4)^{n \Delta / 2}$.

Exercise 2

Let $p \in(0,1)$ and let $\left\{X_{v}\right\}_{v \in \mathbb{Z}^{2}}$ be a collection of iid $\{0,1\}$-valued random variables with $\mathbb{P}\left(X_{v}=1\right)=p$ for all $v \in \mathbb{Z}^{2}$. For each $v \in \mathbb{Z}^{2}$ define $Y_{v}=\min \left\{1, \sum_{\substack{w \in \mathbb{Z}^{2} \\|w-v| \leq 1}} X_{w}\right\}$.
(a) Prove that $\left\{Y_{v}\right\}_{v \in \mathbb{Z}^{2}}$ is 3 -dependent.
(b) Compute $\mathbb{P}\left(Y_{v}=1\right)$.
(c) Prove that the $\left\{Y_{v}\right\}_{v \in \mathbb{Z}^{2}}$ are not independent.

Exercise 3

Consider Bernoulli bond percolation on \mathbb{Z}^{2} with activation probability $p \in(0,1)$.
(a) Show $h_{p}(4 n, n) \geq h_{p}(2 n, n)^{3} h_{p}(n, n)^{2} \geq h_{p}(2 n, n)^{5}$.
(b) Show $h_{p}(4 n, 2 n) \geq 1-\left(1-h_{p}(2 n, n)^{5}\right)^{2}$.
(c) Let ξ be the positive root of $x=1-\left(1-x^{5}\right)^{2}$. Prove that if there exist $n>0$ with $h_{p}(2 n, n)>\xi$, then there exist $\ell>0$ with $h_{p}\left(2^{k+\ell+1} n, 2^{k+\ell} n\right) \geq 1-2^{-k} / 50$ for all $k \geq 0$. Deduce $\theta(p)>0$ under these assumptions.

Hint. For part (a) consider three $(2 n) \times n$-rectangles intersecting in two $n \times n$ squares.

Wir wünschen allen Studenten ein besinnliches Weihnachtsfest und einen guten Rutsch in ein erfolgreiches Jahr 2012!

