

Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth WS 2012/2013

Stochastics II Exercise Sheet 10

Due to: Wednesday, 9th of January 2013

Exercise 1 (4 Points)

Let $\{X(t), t \ge 0\}$ be a gamma process with parameters b, p > 0, i.e. $X(t) \sim \Gamma(b, pt)$. Show that $\{X(t), t \ge 0\}$ is a subordinator with Laplace exponent

$$\xi(u) = \int_{0}^{\infty} (1 - \exp(-uy))\nu(dy)$$

where $\nu(dy) = py^{-1}\exp(-by)dy$, y > 0. Note that the Laplace exponent of $\{X(t), t \ge 0\}$ is defined as the function $\xi : [0, \infty) \to [0, \infty)$ with $E \exp(-uX(t)) = \exp(-t\xi(u))$ for arbitrary $t, u \ge 0$.

Exercise 2 (4 Points)

Let $\{X(t), t \ge 0\}$ be a compound Poisson process with Lévy measure

$$\nu(dx) = \frac{\lambda\sqrt{2}}{\sigma\sqrt{\pi}}\exp(-\frac{x^2}{2\sigma^2})dx, \quad x \in \mathbb{R}$$

where $\lambda, \sigma > 0$. Show that the process $\{\sigma W(N(t)), t \ge 0\}$ has the same finite dimensional distributions as X. Here $\{N(t), t \ge 0\}$ is a Poisson process with intensity 2λ and W a Wiener process independent of N.

$$\textbf{Hint:} \int_{-\infty}^{\infty} \cos(sy) \exp(-\frac{y^2}{2a}) dy = \sqrt{2\pi a} \exp(-\frac{as^2}{2}), \text{ for } a > 0 \text{ and } s \in \mathbb{R}.$$

Exercise 3 (8 Points)

Let X be a random variable on some probability space (Ω, \mathcal{F}, P) and let $\mathcal{B} \subseteq \mathcal{F}$ be a σ -algebra. If $E|X| < \infty$ the conditional expectation of X w.r.t. \mathcal{B} is defined as the \mathcal{B} -measurable random variable Y with the following property

$$\int_{B} Y(w)P(dw) = \int_{B} X(w)P(dw), \quad \forall B \in \mathcal{B}.$$

Instead of Y we use the notation $E(X|\mathcal{B})$. Such a random variable exists and is a.s. uniquely determined. Show the following properties of $E(X|\mathcal{B})$:

(a) $E(X|\{\emptyset, \Omega\}) = EX$ and $E(X|\mathcal{F}) = X$ a.s.

(b) If $X \leq Z$ a.s. then $E(X|\mathcal{B}) \leq E(Z|\mathcal{B})$ a.s.

(c) If X is \mathcal{B} -measurable it holds $E(XZ|\mathcal{B}) = X \cdot E(Z|\mathcal{B})$ a.s.

(d) $E(c|\mathcal{B}) = c$ a.s. for every constant $c \in \mathbb{R}$.

(e) If $\mathcal{B}_1 \subseteq \mathcal{B}_2 \subseteq \mathcal{F}$ it holds

 $E(E(X|\mathcal{B}_2)|\mathcal{B}_1) = E(E(X|\mathcal{B}_1)|\mathcal{B}_2) = E(X|\mathcal{B}_1) \quad a.s.$

(f) If the σ -algebras $X^{-1}(\mathcal{B}_{\mathbb{R}})$ and \mathcal{B} are independent then it holds $E(X|\mathcal{B}) = EX$ a.s.