

Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth WS 2012/2013

Stochastics II Exercise Sheet 12

Due to: Wednesday, 23rd of January 2013

Exercise 1 (2 Points)

Let ξ_1, \ldots, ξ_n be a sequence of i.i.d. random variables and $S_n = \sum_{k=1}^n \xi_k$. Calculate $E(\xi_n | S_n)$ $[= E(\xi_n | \sigma(S_n))].$

Exercise 2 (3 Points)

We flip a coin n times and notice $Y_n = \mathbb{1}_{\{\text{the n-th flip is pitch}\}}$. Define

$$S_n = \sum_{k=1}^n Y_k$$

Show that $\{X_n, n \in \mathbb{N}\}$ given by $X_n = 2S_n - n$ is a martingale w.r.t. the natural filtration.

Exercise 3 (4 Points)

Let $\{X_n, n \in \mathbb{N}\}$ be (independent) coin flippings, i.e. $P(X_n = 1) = p \in [0, 1]$, $P(X_n = -1) = 1 - p$. Let a > 0 the seed capital and e_1 the money that we set before the first flip. For $n \geq 2$ define $e_n = C_{n-1}(X_1, \ldots, X_{n-1})$ with some function $C_{n-1} : \{-1, 1\}^{n-1} \to \mathbb{R}_+$. Our financial situation after the n-th flip is modeled by the random variables $S_n = S_{n-1} + X_n \cdot C_{n-1}(X_1, \ldots, X_{n-1})$, $n \geq 2$ and $S_1 = a + X_1 \cdot e_1$. Show that $\{S_n, n \in \mathbb{N}\}$ is a

$$\begin{cases} \text{supermartingale} & \text{if } p < \frac{1}{2} \\ \text{martingale} & \text{if } p = \frac{1}{2} \\ \text{submartingale} & \text{if } p > \frac{1}{2} \end{cases}$$

w.r.t. the natural filtration $\{\sigma(X_1,\ldots,X_n)\}_{n\in\mathbb{N}}$.

Exercise 4 (3 Points)

Let X and Y be arbitrary random variables on some probability space (Ω, \mathcal{F}, P) . Define $E(Y|X) := E(Y|\sigma(X))$, where $\sigma(X) := \sigma(\{X^{-1}(B), B \in \mathcal{B}(\mathbb{R})\})$. The conditional variance of Y given X is defined by

$$Var(Y|X) := E((Y - E(Y|X))^2|X)$$

Show that

Var(Y) = E(Var(Y|X)) + Var(E(Y|X)).

Hint: The conditional expectation is linear!

Exercise 5 (6 Points)

For a stopping time τ we define the stopped σ -algebra \mathcal{F}_{τ} by

 $\mathcal{F}_{\tau} := \{ B \in \mathcal{F} : B \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for arbitrary } t \ge 0 \}.$

Let ρ and γ be stopping times w.r.t. the filtration $\{\mathcal{F}_t, t \geq 0\}$. Show the following statements:

(a) $A \cap \{\rho \leq \gamma\} \in \mathcal{F}_{\gamma}, \forall A \in \mathcal{F}_{\rho}.$

(b) $\mathcal{F}_{\min\{\rho,\gamma\}} = \mathcal{F}_{\rho} \cap \mathcal{F}_{\gamma}.$