Stochastics II Exercise Sheet 13

Due to: Wednesday, 30th of January 2013

Exercise 1 (5 Points)

Let $X=\{X(t), t \geq 0\}$ be càdlàg and adapted. Show that

$$
P\left(\sup _{0 \leq s \leq t}|X(s)|>x\right) \leq \frac{E(X(t))^{2}}{x^{2}+E(X(t))^{2}}
$$

for arbitrary $x>0$ and $t \geq 0$ if X is a submartingale with $E(X(t))=0$ and $E(X(t))^{2}<\infty$, $\forall t \geq 0$.

Exercise 2 (7 Points)

(a) Let $g:[0, \infty) \rightarrow[0, \infty)$ a monotonously increasing function with

$$
\frac{g(x)}{x} \rightarrow \infty, \quad(x \rightarrow \infty)
$$

Show that the sequence $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ of random variables is uniformly integrable if $\sup _{n \in \mathbb{N}} E\left(g\left(\left|X_{n}\right|\right)\right)<\infty$.
(b) Let $X=\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a martingale. Show that $\left\{X_{T \wedge n}\right\}_{n \in \mathbb{N}}$ is uniformly integrable for every finite stopping time $T: \Omega \rightarrow \mathbb{N}$, if $E\left|X_{T}\right|<\infty$ and $E\left(\left|X_{n}\right| \mathbb{I}_{\{T>n\}}\right) \rightarrow 0$ for $n \rightarrow \infty$.

Exercise 3 (4 Points)

Let $S=\left\{S_{n}:=a+\sum_{i=1}^{n} X_{i}, \quad n \in \mathbb{N}\right\}$ be a symmetric random walk with $a>0$ and $P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=\frac{1}{2}, i \in \mathbb{N}$. Show that $\left\{M_{n}=\sum_{i=0}^{n} S_{i}-\frac{1}{3} S_{n}^{3}\right\}_{n \in \mathbb{N}}$ is a martingale (w.r.t. the natural filtration).

Hint: It suffices to show that $E\left(M_{n+1} \mid \mathcal{F}_{n}\right)=M_{n}$, for all $n \in \mathbb{N}$.

