Exercise 1 (5 Points)
Let \(X = \{X(t), t \geq 0\} \) be càdlàg and adapted. Show that

\[
P\left(\sup_{0 \leq s \leq t} |X(s)| > x \right) \leq \frac{E(X(t))^2}{x^2 + E(X(t))^2}
\]

for arbitrary \(x > 0 \) and \(t \geq 0 \) if \(X \) is a submartingale with \(E(X(t)) = 0 \) and \(E(X(t))^2 < \infty \), \(\forall t \geq 0 \).

Exercise 2 (7 Points)

(a) Let \(g : [0, \infty) \to [0, \infty) \) a monotonously increasing function with

\[
\frac{g(x)}{x} \to \infty, \ (x \to \infty).
\]

Show that the sequence \(\{X_n\}_{n \in \mathbb{N}} \) of random variables is uniformly integrable if \(\sup_{n \in \mathbb{N}} E(g(|X_n|)) < \infty \).

(b) Let \(X = \{X_n\}_{n \in \mathbb{N}} \) be a martingale. Show that \(\{X_{T \wedge n}\}_{n \in \mathbb{N}} \) is uniformly integrable for every finite stopping time \(T : \Omega \to \mathbb{N} \), if \(E|X_T| < \infty \) and \(E(|X_n| \mathbb{1}_{\{T>n\}}) \to 0 \) for \(n \to \infty \).

Exercise 3 (4 Points)
Let \(S = \{S_n := a + \sum_{i=1}^{n} X_i, \ n \in \mathbb{N}\} \) be a symmetric random walk with \(a > 0 \) and \(P(X_i = 1) = P(X_i = -1) = \frac{1}{2}, \ i \in \mathbb{N} \). Show that \(\{M_n = \sum_{i=0}^{n} S_i - \frac{1}{2} S_n^2\}_{n \in \mathbb{N}} \) is a martingale (w.r.t. the natural filtration).

Hint: It suffices to show that \(E(M_{n+1}|\mathcal{F}_n) = M_n \), for all \(n \in \mathbb{N} \).