

Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth WS 2012/2013

Stochastics II Exercise Sheet 14 Due to: Wednesday, 6th of February 2013

Exercise 1 (4 Points)

Let $\{X_n\}_{n\in\mathbb{N}}$ be a discrete martingale and T be a discrete stopping time w.r.t. $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$. Show that $\{X_{T\wedge n}\}_{n\in\mathbb{N}}$ is a martingale w.r.t. $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$.

Exercise 2 (7 Points)

Let X_1, X_2, \ldots be i.i.d. with $P(X_1 = 1) = P(X_1 = -1) = 1/2$ and

$$S_n = \sum_{k=1}^n X_k, \ n \in \mathbb{N}.$$

Define $T = \inf\{n : |S_n| > \sqrt{n}\}$ and $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$, $n \in \mathbb{N}$.

- (a) Show that T is a stopping time w.r.t. $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$.
- (b) Show that $\{G_n\}_{n\in\mathbb{N}}$ with $G_n = S_{T\wedge n}^2 T \wedge n$ is a martingale w.r.t. $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$. Hint: See Exercise 1.
- (c) Show that $|G_n| \le 4T$ for all $n \in \mathbb{N}$. **Hint:** It holds $|G_n| \le |S_{T \wedge n}^2| + |T \wedge n| \le S_{T \wedge n}^2 + T$.

Exercise 3 (5 Points)

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with $E|X_1| < \infty$ and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, $n \in \mathbb{N}$. Furthermore let T be a stopping time w.r.t. $\{\mathcal{F}_n\}_{n \in \mathbb{N}}$ with $E(T) < \infty$.

- (a) Let T be independent of X_1, X_2, \ldots Give a formula for the characteristic function of $S_T = \sum_{k=1}^T X_k$. Use this formula to prove the identity of Wald, i.e. $E(S_T) = E(T)E(X_1)$.
- (b) Now set $E(X_1) = 0$ and $T = \inf\{n : S_n < 0\}$. Show that $E(T) = \infty$. Hint: Assume that $E(T) < \infty$ and find a contradiction.

Exercise 4 (8 Points, additional exercise)

One can show that for an arbitrary r.v. Y and an integrable r.v. X on a common probability space (Ω, \mathcal{F}, P) there exists a measurable function $\varphi : \mathbb{R} \to \mathbb{R}$ such that $E(X|Y) \stackrel{a.s.}{=} \varphi(Y)$. We set $E(X|Y = y) := \varphi(y)$.

(a) Now let Y be discrete with values in $\{y_n, n \in \mathbb{N}\}$. Show that

$$\varphi(y) = \begin{cases} \int X(\omega) \frac{P(d\omega)}{P(Y=y_k)} & \text{, if } y = y_k \text{ for some } k \\ \{\omega: Y(\omega) = y_k\} & 0 & \text{, otherwise.} \end{cases}$$

(b) Let X and Y be absolutely continuous with common density $f_{X,Y}$. Show that

 $\varphi(y) = \begin{cases} \int \limits_{\mathbb{R}} t \frac{f_{X,Y}(t,y)}{f_Y(y)} dt & , \forall y \text{ with } f_Y(y) > 0 \\ 0 & , \text{ otherwise.} \end{cases}$

Hint (a) and (b): It suffices to show that $\int_{Y^{-1}(B)} X(\omega)P(d\omega) = \int_{B} \varphi(y)P_Y(dy), \ \forall B \in \mathcal{B}(\mathbb{R})$

(c) Let X and Y be independent and $X \sim Poi(\lambda), Y \sim Poi(\mu), \lambda, \mu > 0$. Calculate E(X|Z=z), with Z=X+Y.