

Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth

WS 2012/2013

Stochastics II Exercise Sheet 4

Due to: Wednesday, 14th of November 2012

Exercise 1 (4 Points)

Show the existence of a stochastic process $X = \{X(t), t \in T\}$ which fullfills simultaneously the following conditions:

- (a) The second moment does not exist
- (b) The variogram $\gamma(s,t)$ is finite for all $s,t\in T$

Exercise 2 (5 Points)

Let $\{T_n\}_{n\in\mathbb{N}}$ be a sequence of i.i.d random variables with $T_1 \sim Exp(\lambda)$. The process $N = \{N(t), t \geq 0\}$ given by

$$N(t) := \sum_{n=1}^{\infty} \mathbb{I}_{\{T_1 + \dots + T_n \le t\}}$$

is called a Poisson-process with intensity λ .

- (a) Prove: N(t) is Poisson distributed for each t > 0.
- (b) Determine the parameter of this Poisson distribution.
- (c) Calculate H(t) = EN(t).

Exercise 3 (4 Points)

Give examples for a stochastic process $X = \{X(t), t \in T\}$ with the following properties (with proof!):

- (a) X has L_2 -differentiable paths which are not a.s. differentiable.
- (b) X has a.s. differentiable paths which are not L_1 -differentiable.

Exercise 4 (3 Points)

Let $X = \{X(t), t \in [0, \infty)\}$ be a real-valued stochastic process with independent increments. Show that X has stationary increments if the distribution of X(t+h)-X(h) does not depend on h for arbitrary $t \in [0, \infty)$.