Stochastics II
 Exercise Sheet 7

Due to: Wednesday, 5th of December 2012

Exercise 1 (4 Points)

Let $N=\{N(t), t \geq 0\}$ be a Cox process with intensity function $\lambda(t)=Z$, where Z is a discrete random variable with

$$
P\left(Z=\lambda_{1}\right)=P\left(Z=\lambda_{2}\right)=\frac{1}{2}
$$

Calculate the moment generating function, the expectation and the variance of $N(t)$.

Exercise 2 (4 Points)

Let $N^{(1)}=\left\{N^{(1)}(t), t \geq 0\right\}$ and $N^{(2)}=\left\{N^{(2)}(t), t \geq 0\right\}$ be two independent homogeneous Poisson processes with intensities λ_{1} and λ_{2}. Furthermore let X be an arbitrary non-negative random variable which is independent of $N^{(1)}$ and $N^{(2)}$. Show that the process N defined by

$$
N(t)= \begin{cases}N^{(1)}(t) & , t \leq X \\ N^{(1)}(X)+N^{(2)}(t-X) & , t>X\end{cases}
$$

is a Cox process with intensity process $\lambda=\{\lambda(t), t \geq 0\}$ given by

$$
\lambda(t)= \begin{cases}\lambda_{1} & , t \leq X \\ \lambda_{2} & , t>X\end{cases}
$$

Exercise 3 (3 Points)

Give an algorithm of how to simulate the trajectories of a Wiener process $W=\{W(t), t \in[0,1]\}$ by using the independence and the distribution of the increments of W.

Exercise 4 (5 Points)
Let $W=\{W(t), t \in[0,1]\}$ be a Wiener process and $L:=\underset{t \in[0,1]}{\operatorname{argmax}} W(t)$. Show that

$$
P(L \leq x)=\frac{2}{\pi} \arcsin \sqrt{x}, \quad x \in[0,1]
$$

Hint: Use the fact $\max _{r \in[0, t]} W(r) \stackrel{d}{=}|W(t)|$.

