

ulm university universität

Prof. Dr. Evgeny Spodarev Dipl.-Math. Stefan Roth

Stochastics II Exercise Sheet 9

Due to: Wednesday, 19th of December 2012

Exercise 1 (3 Points)

Let $W = \{W(t), t \ge 0\}$ be the Wiener process. Define

 $Q(a,b) = P(\exists t \ge 0, W(t) > at + b)$

a, b > 0. Q(a, b) is the probability that W crosses the half-line y = at + b. Show the following statements:

(a) Q(a,b) = Q(b,a) and $Q(a,b_1+b_2) = Q(a,b_1)Q(a,b_2)$

(b)
$$Q(a,b) = \exp(-2ab)$$

Exercise 2 (3 Points)

Let X_1, \ldots, X_n be a sequence of i.i.d. infinitely divisible (ID) random variables. Show that the random variable Y given by

$$Y = \sum_{k=1}^{n} a_i X_i$$

is ID as well for arbitrary $a_1, \ldots, a_n \in \mathbb{R}$ if the Lévy measure of X_1 is absolutely continuous w.r.t. the Lebesgue measure on \mathbb{R} . Calculate the Lévy characteristics of Y.

Exercise 3 (6 Points)

Let X be a random variable with characteristic function φ .

(a) Show: If X is ID $\Rightarrow \varphi(z) \neq 0, \forall z \in \mathbb{R}$

Hint: Show that $\lim_{n\to\infty} \varphi_n(z) = 1$ for all $z \in \mathbb{R}$ and $\varphi(z) = (\varphi_n(z))^n$. Use the fact that $|\varphi_n|^2$ is a characteristic function.

(b) Find an example for a random variable which is not ID (with proof).

Exercise 4 (4 Points)

Show that the function $\varphi : \mathbb{R} \to \mathbb{C}$ given by

$$\varphi(z) = \exp(\psi(z)), \quad \psi(z) = 2\sum_{k=-\infty}^{\infty} 2^{-k} (\cos(2^k z) - 1)$$

is the characteristic function of an ID random variable.

Hint: Use the Lévy-Kchinchin representation with Lévy measure $\nu(\{\pm 2^k\}) = 2^{-k}, k \in \mathbb{Z}$

WS 2012/2013