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1 General theory of random functions

1.1 Random functions
Let (Ω,A,P) be a probability space and (S,B) a measurable space, Ω,S 6= ∅.
Definition 1.1.1
A random element X : Ω→ S is a A|B-measurable mapping (Notation: X ∈ A|B), i.e.,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A, B ∈ B.

If X is a random element, then X(ω) is a realization of X for arbitrary ω ∈ Ω.
The σ-algebra B of subsets of S is induced by the set system M (Elements of M are also

subsets of S), if
B =

⋂
F⊃M

F-σ-algebra on S

F

(Notation: B = σ(M)).
If S is a toplological or metric space, then most of the times M is chosen as class of all open

sets of S and σ(M) is called Borel σ-algebra (Notation: B = B(S)).
Example 1.1.1 1. If S = R, B = B(R), then a random element X is called a random

variable.

2. If S = Rm, B = B(Rm), m > 1, then X is called random vector. Random variables and
random vectors are considered in the lectures „Elementare Wahrscheinlichkeitsrechnung
und Statistik“ and „Stochastik I“.

3. Let S be the class of all closed sets of Rm. Let

M = {{A ∈ S : A ∩B 6= ∅} , B – arbitrary compactum of Rm} .

Then X : Ω→ S is a random closed set.
As an example we consider n independent equally distributed points Y1, . . . , Yn ∈ [0, 1]m and

R1, . . . , Rn > 0 almost surely independent random variables, which are defined on the same
probability space (Ω,A,P) as Y1, . . . , Yn. Consider X = ∪ni=1BRi(Yi). Obviously, this is a
random set. An example of a realization is provided in Figure 1.1.
Exercise 1.1.1
Let (Ω,A) and (S,B) be measurable spaces, B = σ(M), where M is a class of subsets of S.
Proof that X : Ω→ S is A|B-measurable, if and only if X−1(C) ∈ A, C ∈M.
Definition 1.1.2
Let T be an arbitrary index set and (St,Bt)t∈T a family of measurable spaces. A family
X = {X(t), t ∈ T} of random elementsX(t) : Ω→ St defined on (Ω,A,P) and A|Bt-measurable
for all t ∈ T is called random function (associated with (St,Bt)t∈T ).

1



2 1 General theory of random functions

Abb. 1.1: Example of a random set X = ∪6
i=1BRi(Yi)

Therefore it holds X : Ω × T → (St, t ∈ T ), i.e. X(ω, t) ∈ St for all ω ∈ Ω, t ∈ T and
X(·, t) ∈ A|Bt, t ∈ T . A lot of times ω is discarded in the notation and we write X(t) instead
of X(ω, t). In most of the cases (St,Bt) does not depend on t ∈ T as well: (St,Bt) = (S,B) for
all t ∈ T .

Special cases of random functions:

1. T ⊆ Z : X is called random sequence or stochastic process in discrete time.
Example: T = Z, N.

2. T ⊆ R : X is called stochastic process in continuous time.
Example: T = R+, [a, b], −∞ < a < b <∞, R.

3. T ⊆ Rd, d ≥ 2 : X is called random field.
Example: T = Zd, Rd+, Rd, [a, b]d.

4. T ⊆ B(Rd) : X is called set-induced process.
If X(t) is almost surely non-negative and σ-additive on the σ-algebra T , then X is called
random measure.

The tradion of denoting the index set with T , arises from the interpretation of t ∈ T for the
cases 1 and 2 as time parameter.
For every ω ∈ Ω, {X(ω, t), t ∈ T} is called a trajectory or path of the random function X.
We want to proof that the random function X = {X(t), t ∈ T} is a random element within

the corresponding function space, which is equipped with a σ-algebra that now is specified.
Let ST =

∏
t∈T St be the cartesian product of St, t ∈ T , i.e., X ∈ ST if X(t) ∈ St, t ∈ T .

The elementary cylindric set in ST is defined as

CT (Bt) = {X ∈ St : X(t) ∈ Bt} ,

where t ∈ T is a selected point from T and Bt ∈ Bt a subset in Bt. CT (Bt) therefore contains
all trajectories X, which go through the „gate“ Bt, see Figure 1.2.
Definition 1.1.3
The cylindric σ-algebra BT is introduced as a σ-algebra induced in ST by the family of all
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Abb. 1.2: Trajectories, which pass a „gate“ Bt.

elementary cylinders. They are labeled by BT = ⊗t∈TBt. If Bt = B for all t ∈ T , then BT is
written istead of BT .
Lemma 1.1.1
The family {X = X(t), t ∈ T} is a random function on (Ω,A,P) with phase spaces (St,Bt)t∈T
if and only if for every ω ∈ Ω the mapping ω 7→ X(ω, ·) is A|BT -measurable.
Exercise 1.1.2
Proof lemma 1.1.1.
Definition 1.1.4
Let X be a random element: X : Ω→ S, i.e. X be A|B-measurable. The distribution of X is
the probability measure PX on (S,B), such that PX(B) = P(X−1(B)), B ∈ B.
Lemma 1.1.2
An arbitrary probability measure µ on (S,B) can be considered as the distribution of a random
element X.

Proof Take Ω = S, A = B, P = µ and X(ω) = ω, ω ∈ Ω.

When does a random function with given properties exist? A random function, which consists
of independent random elements always exists. This assertion is known.
Theorem 1.1.1 (Lomnicki, Ulam):
Let (St,Bt, µt)t∈T be a sequence of probability spaces. It exists a random sequence X =
{X(t), t ∈ T} on a probability space (Ω,A,P) (associated with (St,Bt)t∈T ), such that

1. X(t), t ∈ T are independent random elements.

2. PX(t) = µt on (St,Bt), t ∈ T .

A lot of important random processes are built on the basis of independent random elements;
cf. examples in section 1.2.
Definition 1.1.5
Let X = {X(t), t ∈ T} be a random function on (Ω,A,P) with phase space (St,Bt)t∈T . The
finite-dimensional distributions of X are defined as the distribution law Pt1,...,tn of (X(t1), . . . , X(tn))T
on (St1,...,tn ,Bt1,...,tn), for arbitrary n ∈ N, t1, . . . , tn ∈ T , where St1,...,tn = St1 × . . . × Stn and
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Bt1,...,tn = Bt1⊗ . . .⊗Btn is the σ-algebra in St1,...,tn , which is induced by all sets Bt1× . . .×Btn ,
Bti ∈ Bti , i = 1, . . . , n, i.e., Pt1,...,tn(C) = P((X(t1), . . . , X(tn))T ∈ C), C ∈ Bt1,...,tn . In
particular for C = B1 × . . .×Bn, Bk ∈ Btk :

Pt1,...,tn(B1 × . . .×Bn) = P(X(t1) ∈ B1, . . . , X(tn) ∈ Bn).

Exercise 1.1.3
Proof that Xt1,...,tn = (X(t1), . . . , X(tn))T is a A|Bt1,...,tn-measurable random element.

Definition 1.1.6
Let St = R for all t ∈ T . The random function X = {X(t), t ∈ T} is called symmetric, if all
of its finite-dimensional distributions are symmetric probability measures, i.e., Pt1,...,tn(A) =
Pt1,...,tn(−A) forA ∈ Bt1,...,tn and all n ∈ N, t1, . . . , tn ∈ T , whereby Pt1,...,tn(−A) = P((−X(t1), . . . ,−X(tn))T ∈
A).

Exercise 1.1.4
Proof that the finite-dimensional distributions of a random function X have the following
properties: for arbitrary n ∈ N, n ≥ 2, {t1, . . . , tn} ⊂ T , Bk ∈ Stk , k = 1, . . . , n and an
arbitrary permutation (i1, . . . , in) of (1, . . . , n) it holds:

1. Symmetry: Pt1,...,tn(B1 × . . .×Bn) = Pti1 ,...,tin (Bi1 × . . .×Bin)

2. Consistency: Pt1,...,tn(B1 × . . .×Bn−1 × Stn) = Pt1,...,tn−1(B1 × . . .×Bn−1)

The following theorem evidences that these properties are sufficient to proof the existence of
a random function X with given finite-dimensional distributions.

Theorem 1.1.2 (Kolmogorov):
Let {Pt1,...,tn , n ∈ N, {t1, . . . , tn} ⊂ T} be a family of probability measures on (Rm × . . . ×
Rm,B(Rm)⊗ . . .⊗B(Rm)), which fulfill conditions 1 and 2 of exercise 1.1.4. Then there exists
a random function X = {X(t), t ∈ T} defined on a probability space (Ω,A,P) with finite-
dimensional distributions Pt1,...,tn .

Proof See [13], section II.9.

This theorem also holds on more general (however not arbitrary!) spaces than Rm, on so-
called Borel spaces, which in a sense are isomorphic to ([0, 1] ,B [0, 1]) or a subspace of that.

Definition 1.1.7
Let X = {X(t), t ∈ T} be a random function with values in (S,B), i.e., X(t) ∈ S almost
surely for arbitrary t ∈ T . X is called measurable if the mapping X : (ω, t) 7→ X(ω, t) ∈ S,
(ω, t) ∈ Ω× T , is A⊗ C|B-measurable.

Thus, definition 1.1.7 not only provides the measurability of X with respect to ω ∈ Ω:
X(·, t) ∈ A|B for all t ∈ T , but X(·, ·) ∈ A⊗ C|B as a function of (ω, t). The measurability of
X is of significance if X(ω, t) is considered at random moments τ : Ω → T : X(ω, τ(ω)). This
in particular is the case in the theory of martingals if τ is a so-called stop time for X. Since
the distribution of X(ω, τ(ω)) might differ considerably from the distribution of X(ω, t), t ∈ T .
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1.2 Elementary examples
The theorem of Kolmogorov can be used directly for the explicit construction only in few cases,
since for a lot of random function their finite-dimensional distributions are not given explicitly.
In this cases a new random function X = {X(t), t ∈ T} is built as X(t) = g(t, Y1, Y2, . . .),
t ∈ T , where g is a measurable function and {Yn} a sequence of random elements (also random
functions), whose existence has already been ensured. For that we give several examples.
Let X = {X(t), t ∈ T} be a real-valued random function with a probability space (Ω,A,P).

1. White noise:
Definition 1.2.1
The random function X = {X(t), t ∈ T} is called white noise, if all X(t), t ∈ T , are
independent and identically distributed (i.i.d.) random variables.

White noise exists according to the theorem 1.1.1. It is used to depict the noise in
(electromagnetic or acoustical) signals. If X(t) ∼ Ber(p), p ∈ (0, 1), t ∈ T , one means
Salt-and-pepper noise, the binary noise, which occurs at the transfer of binary data in
computer-networks. If X(t) ∼ N (0, σ2), σ2 > 0, t ∈ T , then X is called Gaussian white
noise. It occures e.g. in acoustical signals.

2. Gaussian random function:
Definition 1.2.2
The random function X = {X(t), t ∈ T} is called Gaussian, if all of its finite-dimensional
distributions are Gaussian, i.e. for all n ∈ N, t1, . . . , tn ⊂ T it holds

Xt1,...,tn = ((X(t1), . . . , X(tn))> ∼ N (µt1,...,tn ,
∑

t1,...,tn

),

where the mean is given by µt1,...,tn = (EX(t1), . . . ,EX(tn))> and the covariance matrix
is given by

∑
t1,...,tn = ((cov(X(ti), X(tj))ni,j=1.

Exercise 1.2.1
Proof that the distribution of an Gaussian random function X is uniquely determined by
its mean value function µ(t)=EX(t), t ∈ T , and covariance function C(s, t)=E[X(s)X(t)],
s, t ∈ T , respectively.

An example for a Gaussian process is the so-called Wiener process (or Brownian motion)
X = {X(t), t ≥ 0}, which has the expected value zero (µ(t) ≡ 0, t ≥ 0) and the covariance
function C(s, t) = min {s, t}, s, t ≥ 0. Usually it is required addionally that the paths of
X are continuous functions.
We will investigate the regularity properties of the paths of random functions in more
detail in section 1.3. Now we can say that such a process exists with probability one
(with almost surely continuous trajectories.
Exercise 1.2.2
Proof that the Gaussian white noise is a Gaussian random function.

3. Lognormal- and χ2-functions:
The random function X = {X(t), t ∈ T} is called lognormal, if X(t) = eY (t), where Y =
{Y (t), t ∈ T} is a Gaussian random function. X is called χ2-function, if X(t) = ‖Y (t)‖2,
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where Y = {Y (t), t ∈ T} is a Gaussian random function with values in Rn, for which
Y (t) ∼ N (0, I), t ∈ T ; here I is the (n × n)-unit matrix. Then it holds that X(t) ∼ χ2

n,
t ∈ T .

4. Cosine wave:
X = {X(t), t ∈ R} is defined by X(t) =

√
2 cos(2πY + tZ), where Y ∼ U([0, 1]) and Z is

a random variable, which is independent of Y .
Exercise 1.2.3
Let X1, X2, . . . be i.i.d. cosine waves. Determine the weak limit of the finite-dimensional
distributions of the random function

{
1√
n

∑n
k=1Xk(t), t ∈ R

}
for n→∞.

5. Poisson process:
Let {Yn}n∈N be a sequence of i.i.d. random variables Yn ∼ Exp(λ), λ > 0. The stochastic
process X = {X(t), t ≥ 0} defined as X(t) = max {n ∈ N :

∑n
k=1 Yk ≤ t} is called Poisson

process with intensity λ > 0. X(t) counts the number of certain events until the time
t > 0, where the typical interval between two of these events is Exp(λ)-distributed. These
events can be a notification of claim, the record of an elementary particle in the Geiger
counter, etc. Then X(t) represents the number of damages or particles within the time
interval [0, t].

1.3 Regularity properties of trajectories
The theorem of Kolmogorov provides the existence of the distribution of a random function
with given finite-dimensional distributions. However, it does not provide a statement about
the properties of the paths of X. This is understandable since all random objects are defined
in the almost surely sense(a.s.) in probability theory, with the exception of a set A ⊂ Ω with
P(A) = 0.
Example 1.3.1
Let (Ω,A,P) = ([0, 1] ,B([0, 1]), ν1), where ν1 is the Lebesgue measure on [0, 1]. We define
{X = X(t), t ∈ [0, 1]} by X(t) ≡ 0, t ∈ [0, 1] and Y = {Y (t), t ∈ [0, 1]} by

Y (t) =
{

1, t = U,
0, sonst,

where U(ω) = ω, ω ∈ [0, 1], is a U([0, 1])-distributed random variable defined on (Ω,A,P).
Since P(Y (t) = 0) = 1, t ∈ T , since P(U = t) = 0, t ∈ T , it is clear that X d= Y . Nevertheless,
X and Y have different path properties since X has continuous and Y has volatile trajectories,
and P(X(t) = 0, ∀t ∈ T ) = 1, where P(Y (t) = 0, ∀t ∈ T ) = 0.
It may be that the „set of exceptions“ A (see above) is very different for X(t) for every

t ∈ T . Therefore, we require that all X(t), t ∈ T , are defined simultaneously on a subset
Ω0 ⊆ N with P(Ω0) = 1. The defined random function X̃ : Ω0 × T → R is called modification
of X : Ω × T → R. X and X̃ differ on a set Ω/Ω0 with probability zero. Therefore we
indicate later when stating that „random function X possesses a property C “ that it exists a
modification of X with this property C.
Definition 1.3.1
The random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} defined on the same proba-
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bility space (Ω,A,P) are called (stochastically) equivalent, if

Bt = {ω ∈ Ω : X(ω, t) 6= Y (ω, t)} ∈ A, t ∈ T,

and P(Bt) = 0, t ∈ T .

We also can say, that X and Y are versions of one and the same random function. It is clear,
that all modifications (or versions) of X are equivalent to Y .

Exercise 1.3.1
Proof that the random functions X and Y in example 1.3.1 are stochastically equivalent.

Definition 1.3.2
The random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} (not necessarily defined
on the same probability space) are called equivalent in distribution, if PX = PY on (St,Bt).
Notation: X d= Y .

According to the theorem 1.1.2 it is sufficient for the equivalence in distribution of X and Y ,
if they possess the same finite-dimensional distributions. It is clear that stochastic equivalence
implies equivalence in distribution, but not the other way around.

Definition 1.3.3
The random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} defined on the same prob-
ability space (Ω,A,P) associated with (St,Bt)t∈T have equivalent trajectories (or are called
stochastically indistinguishable), if

A = {ω ∈ Ω : X(ω, t) 6= Y (ω, t) for a t ∈ T} ∈ A

and P(A) = 0.

This term implies that X and Y have paths, which coincide with probability one. If the
space (Ω,A,P) is complete (i.e. the implication of A ∈ A : P(A) = 0 is for all B ⊂ A: B ∈ A
(and then P(B) = 0)), then the indistinguishable processes are stochastically equivalent.
Now, let T and S be Banach spaces with norms | · |T and | · |S , respectively. The random

function X = {X(t), t ∈ T} is now defined on (Ω,A,P) with values in (S,B).

Definition 1.3.4
The random function X = {X(t), t ∈ T} is called

a) stochastically continuous on T , if X(s) P−−→
s→t

X(t), for arbitrary t ∈ T , i.e.

P(|X(s)−X(t)|S > ε) −−→
s→t

0, for all ε > 0.

b) Lp-continuous on T , p ≥ 1, if X(s) Lp−−→
s→t

X(t), t ∈ T , i.e. E|X(s) − X(t)|p −−→
s→t

0. For
p = 2 the specific notation „continuity in the squared mean “is used.

c) a.s. continuous on T , if X(s) f.s.−−→
s→t

X(t), t ∈ T , i.e., P(X(s) −−→
s→t

X(t)) = 1, t ∈ T .

d) continuous, if all trajectories of X are continuous functions.
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In applications one is interested in the cases c) and d), although the weakest form of continuity
is the stochastic continuity.

Lp-continuity =⇒ stochastic continuity ⇐= a.s. continuity ⇐= continuity of all paths

Why are cases c) and d) important? Let’s consider an example.

Example 1.3.2
Let T = [0, 1] and (Ω,A,P) be an canonical probability space with Ω = R[0,1], i.e. Ω =∏
t∈[0,1] R. Let X = {X(t), t ∈ [0, 1]} be a stochastic process on (Ω,A,P). Not all events are

elements of A, like e.g. A = {ω ∈ Ω : X(ω, t) = 0 for all t ∈ [0, 1]} = ∩t∈[0,1] {X(ω, t) = 0},
since this is an intersection of measurable events from A in uncountable number. If how-
ever X is continuous, then all of its paths are continuous functions and one can depict A =
∩t∈D {X(ω, t) = 0}, where D is a dense countable subset of [0, 1], e.g., D = Q ∩ [0, 1]. Then it
holds that A ∈ A.

However, in many applications (like e.g. in financial mathematics) it is not realistic to
consider stochastic processes with continuous paths as models for real phenomena. Therefore,
a bigger class of possible trajectories of X is allowed: the so-called càdlàg-class (càdlàg =
continue à droite, limitée à gonche (fr.)).

Definition 1.3.5
A stochastic process X = {X(t), t ∈ R} is called càdlàg, if all of its trajectories are right-sided
continuous functions, which have left-sided limits.

Now, we want to consider the properties of the notations of continuity introduced above
in more detail. One can note e.g., that the stochastic continuity is a property of the two-
dimensional distribution Ps,t of X. This is shown by the following lemma.

Lemma 1.3.1
LetX = {X(t), t ∈ T} be a random function associated with (S,B), where S and T are Banach
spaces. The following statements are equivalent:

a) X(s) P−−−→
s→t0

Y ,

b) Ps,t
d−−−−→

s,t→t0
P(Y,Y ),

where t0 ∈ T and Y is a B-random element. For the stochastic continuity of X, one should
choose t0 ∈ T arbitrarily and Y = X(t0).

Proof a)⇒ b)
X(s) P−−−→

s→t0
Y means (X(s), X(t))> P−−−−→

s,t→t0
(Y, Y )>. This results in Ps,t

d→ P(Y,Y ), since
P→-

convergence is stricter than d→-convergence.
b)⇒ a)

For arbitrary ε > 0 we consider a continuous function gε : R→ [0, 1] with gε(0) = 0, gε(x) = 1,
x /∈ Bε(0). It holds for all s, t ∈ T that

Egε(|X(s)−X(t)|S) = P(|X(s)−X(t)|S > ε) + E(gε(|X(s)−X(t)|S)E(|X(s)−X(t)|S ≤ ε)),
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hence P(|X(s) − X(t)|S > ε) ≤ Egε(|X(s) − X(t)|S) =
∫
S
∫
S gε(|x − y|S)Ps,t(d(x, y)) −−−→

s→t0
t→t0∫

S
∫
S gε(|x − y|S)P(Y,Y )(d(x, y)) = 0, since P(Y,Y ) is concentrated on

{
(x, y) ∈ S2 : x = y

}
and

gε(0) = 0. Thus {X(s)}s→t0 is a fundamental sequence (in probability), therefore X(s) P−−−→
s→t0

Y.

It may be that X is continuous, although all of the paths of X have jumps, i.e. X cannot
possess any a.s. continuous modification. The descriptive explanation for that is that such X
may have a jump for concrete t ∈ T with probability zero. Therefore jumps of the paths of X
always occur at different locations.
Exercise 1.3.2
Proof that the Poisson process is stochastically continuous, although it does not possess any
a.s. continuous modifications.
Exercise 1.3.3
Let T be compact. Proof that if X is stochastically continuous on T , then it also is uniformly
stochastically continuous, i.e., for all ε, η > 0 ∃δ > 0, such that for all s, t ∈ T with |s− t|T < δ
it holds that P(|X(s)−X(t)|S > ε) < η.
Now let S = R, EX2(t) < ∞, t ∈ T , EX(t) = 0, t ∈ T . Let C(s, t) = E [X(s)X(t)] be the

covariance function of X.
Lemma 1.3.2
For all t0 ∈ T and a random variable Y with EY 2 <∞ the following assertions are equivalent:

a) X(s) L2
−−−→
s→t0

Y

b) C(s, t) −−−−→
s,t→t0

EY 2

Proof a)⇒ b)
The assertion results from the Cauchy-Schwarz inequality:

|C(s, t)− EY 2| = |E(X(s)X(t))− EY 2)| = |E [(X(s)− Y + Y )(X(t)− Y + Y )]− EY 2|
≤ E|(X(s)− Y )(X(t)− Y )|+ E|(X(s)− Y )Y |+ E|(X(t)− Y )Y |

≤
√√√√ E(X(s)− Y )2︸ ︷︷ ︸
||X(s)−Y ||2

L2 ·||X(t)−Y ||2
L2

E(X(t)− Y )2

+
√√√√EY 2 E(X(s)− Y )2︸ ︷︷ ︸

||X(s)−Y ||2
L2

+
√√√√EY 2 E(X(t)− Y )2︸ ︷︷ ︸

||X(t)−Y ||2
L2

−−−−→
s,t→t0

0

with assumption a).
b)⇒ a)

E(X(s)−X(t))2 = E(X(s))2 − 2E[X(s)X(t)] + E(X(t))2

= C(s, s) + C(t, t)− 2C(s, t) −−−−→
s,t→t0

2EY 2 − 2EY 2 = 0.

Thus, {X(s), s→ t0} is a fundamental sequence in the L2-sense, and we get X(s) L2
−−−→
s→t0

Y .
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A random function X, which is continuous in the mean-squared sense, may still have uncon-
tinuous trajectories. In most of the cases which are practically relevant, X however has an a.s.
continuous modification. Later on this will become more precise by stating a theorem.
Conclusion 1.3.1
The random function X, which satisfies the conditions of the lamma 1.3.2, is continuous on T
in the mean-squared sense if and only if its covariance function C : T 2 → R is continuous on
the diagonal diag T 2 =

{
(s, t) ∈ T 2 : s = t

}
, i.e., lims,t→t0 C(s, t) = C(t) for all t0 ∈ T.

Proof Choose Y = X(t0) in lemma 1.3.2.

Remark 1.3.1
If X is not centered, then the continuity of µ(·) together with the continuity of C on diag T 2 is
required to ensure the L2-continuity of X on T .
Exercise 1.3.4
Give an example of a stochastic process with a.s. uncontinuous trajectories, which is L2-
continuous.
Now we consider the property of (a.s.) continuity in more detail. Like mentioned before,

we merely can talk about continuous modification or version of a process. The possibility to
possess such a version also depends on the properties of the two-dimensional distributions of
the process. This is proven by the following theorem (originally proven by A. Kolmogorov).
Theorem 1.3.1
Let X = {X(t), t ∈ [a, b]}, −∞ < a < b ≤ +∞. A real-valued stochastic process X has a
continuous version, if there exist constants α, c, δ > 0 such that

E|X(t+ h)−X(t)|α < c|h|1+δ, t ∈ (a, b), (1.3.1)

for sufficiently small |h|.

Proof See, e.g. [7], theorem 2.23.

Now we turn to processes with càdlàg-trajectories. Let (Ω,A,P) be a complete probability
space.
Theorem 1.3.2
Let X = {X(t), t ≥ 0} be a real-valued stochastic process and D a countable dense subset of
[0,∞). If

a) X is stochastically right-sided continuous, i.e., X(t+ h) P−−−−→
h→+0

X(t), t ∈ [0,+∞),

b) the trajectories ofX for every t ∈ D have finite right- and left-sided limits, i.e., ∃ limh→±0X(t+
h), t ∈ D a.s.,

then X has a version with a.s. càdlàg-paths.
Without proof.

Lemma 1.3.3
Let X = {X(t), t ≥ 0} and {Y = Y (t), t ≥ 0} be two versions of a random function, both
defined on the probability space (Ω,A,P), with property that X and Y have a.s. right-sided
continuous trajectories. Then X and Y are indistinguishable.
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Proof Let ΩX ,ΩY be „sets of exception“, for which the trajectories of X and Y , respec-
tively are not right-sided continuous. It holds that P(ΩX) = P(ΩY ) = 0. Consider At =
{ω ∈ Ω : X(ω, t) 6= Y (ω, t)}, t ∈ [0,+∞) and A = ∪t∈Q+At, where Q+ = Q∩ [0,+∞). Since X
and Y are stochastically equivalent, it holds that P(A) = 0 and therefore P (Ã) = P(A ∪ ΩX ∪
ΩY ) ≤ P(A)+P(ΩX)+P(ΩY ) = 0, where Ã = A∪ΩX ∪ΩY . Therefore X(ω, t) = Y (ω, t) holds
for t ∈ Q+ and ω ∈ Ω \ Ã. Now, we proof this for all t ≥ 0. For arbitrary t ≥ 0 a sequence
{tn} ⊂ Q+ exists, such that tn ↓ t. Since X(ω, tn) = Y (ω, tn) for all n ∈ N and ω ∈ Ω \ Ã,
it holds that X(ω, t) = limn→∞X(ω, tn) = limn→∞ Y ( omega, tn) = Y (ω, t) for t ≥ 0 and
ω ∈ Ω \ Ã. Therefore X and Y are indistinguishable.

Conclusion 1.3.2
If càdlàg-processes X = {X(t), t ≥ 0} and Y = {Y (t), t ≥ 0} are versions of a random func-
tion, then they are indistinguishable.

1.4 Differentiability of trajectories
Let T be a linear normed space.
Definition 1.4.1
A real-valued random function X = {X(t), t ∈ T} is differentiable on T in direction h ∈ T
stochastically, in the Lp-sense, p ≥ 1, or a.s., if

lim
l→0

X(t+ hl)−X(t)
l

= X
′
h(t), t ∈ T

exists in the corresponding sense, namely stochastically, in the Lp-space or a.s..
The lemmata 1.3.2 - 1.3.3 show, that the stochastic differentiability is a property that is deter-

mined by three-dimensional distributions ofX (because the common distribution of X(t+hl)−X(t)
l

and X(t+hl′ )−X(t)
l′

should converge weakly), whereas the differentiability in the mean-squared
sense is determined by the smoothness of the covariance function C(s, t).
Exercise 1.4.1
Show that

1. the Wiener process is not stochastically differentiable on [0,∞).

2. the Poisson process is stochastically differentiable on [0,∞), however not in the Lp-mean,
p ≥ 1.

Lemma 1.4.1
A centered random function X = {X(t), t ∈ T} (i.e., EX(t) ≡ 0, t ∈ T ) is L2-differentiable in
t ∈ T in direction h ∈ T if its covariance function C is differentiable twice in (t, t) in direction
h, i.e., if C ′′hh(t, t) = ∂2C(s,t)

∂sh∂th

∣∣∣
s=t

. X
′
h(t) is L2-continuous in t ∈ T if C ′′hh(s, t) = ∂2C(s,t)

∂sh∂th
is

continuous in s = t. Therefore C ′′hh(s, t) is the covariance function of X ′h = {X ′h(t), t ∈ T}.

Proof According to 1.3.3 it is enough to show that

I = lim
l,l′→0

E
(
X(t+ lh)−X(t)

l
· X(s+ l

′
h)−X(s)
l′

)
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exists for s = t. Indeed we recieve

I = 1
ll′
(
C(t+ lh, s+ l

′
h)− C(t+ lh, s)− C(t, s+ l

′
h) + C(t, s)

)
= 1

l

(
C(t+ lh, s+ l

′
h)− C(t+ lh, s)
l′

− C(t, s+ l
′
h)− C(t, s)
l′

)
−−−−→
l,l′→0

C
′′
hh (s, t) .

All other statements of the lemma result from this relation.

Remark 1.4.1
The properties of the L2-differentiability and a.s. differentiability of random functions are
defined in the following sense: there are stochastic processes that have L2-differentiable paths,
although they are a.s. uncontinuous, and vice versa, processes with a.s. differentiable paths
are not always L2-differentiable, since e.g. the first derivation of their covariance function is
not continuous.
Exercise 1.4.2
Give appropriate examples!

1.5 Moments und covariance
Let X = {X(t), t ∈ T} be a random function that is real-valued, and let T be an arbitrary
index space.
Definition 1.5.1
The mixed moment µ(j1,...,jn)(t1, . . . , tn) of X of order (j1, . . . , jn) ∈ Nn, t1, . . . , tn ∈ T is given
by µ(j1,...,jn)(t1, . . . , tn) = E

[
Xj1(t1) · . . . ·Xjn(tn)

]
, where it is required that the expected value

exists and that it is finite. Then it is sufficient to assume that E|X(t)|j <∞ for all t ∈ T and
j = j1 + . . .+ jn.
Important special cases:

1. µ (t) = µ(1)(t) = EX(t), t ∈ T – mean value function of X.

2. µ(1,1) (s, t) = E [X(s)X(t)] = C(s, t) – (non-centered) covariance function of X. Whereas
the centered covariance function is: K(s, t) = cov((X(s), X(t)) = µ(1,1)(s, t) − µ(s)µ(t),
s, t ∈ T .

Exercise 1.5.1
Show that the centered covariance function of a real-valued random function X

1. is symmetric, i.e., K(s, t) = K(t, s), s, t ∈ T .

2. is positive semidefinite, i.e., for n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ R it holds that
n∑

i,j=1
K(ti, tj)zizj ≥ 0.

3. satisfies K(t, t) = varX(t), t ∈ T .

Property 2) also holds for the non-centered covariance function C(s, t).
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The mean value function µ(t) shows a (non random) tendency. If µ(t) is known, the random
function X can be centered by considering a random function Y = {Y (t), t ∈ T} with Y (t) =
X(t)− µ(t), t ∈ T .
The covariance function K(s, t) and C(s, t), respectively contains informations about the

dependence structer X. Sometimes the correlation function R(s, t) = K(s,t)√
K(s,s)K(t,t)

for all
s, t ∈ T : K(s, s) = varX(s) > 0, K(t, t) = varX(t) > 0 is used instead ofK and C, respectively.
Because of the Cauchy-Schwarz inequality it holds that |R(s, t)| ≤ 1, s, t ∈ T . The set of all
mixed moments in general does not (uniquely) determine the distribution of a random function.
Exercise 1.5.2
Give an example of different random functions X = {X(t), t ∈ T} und Y = {Y (t), t ∈ T}, for
which holds that EX(t) = EY (t), t ∈ T and E(X(s)X(t)) = E(Y (s)Y (t)), s, t ∈ T .
Exercise 1.5.3
Let µ : T → R be a random function and K : T × T → R be a positive semidefinite sym-
metric function. Proof that a random function X = {X(t), t ∈ T} exists with EX(t) = µ(t),
cov(X(s), X(t)) = C(s, t), s, t ∈ T .
Lent now X = {X(t), t ∈ T} be a real-valued random function with E |X(t)|k < ∞, t ∈ T ,

for a k ∈ N.
Definition 1.5.2
The mean increment of order k of X is given by γk(s, t) = E(X(s)−X(t))k, s, t ∈ T .
Special attention is paid to the function γ(s, t) = 1

2γ2(s, t) = 1
2E(X(s) − X(t))2, s, t ∈ T ,

which is called variogram of X. In geostatistics the variogram is often used instead of the
covariance function. A lot of times we discard the condition EX2(t) < ∞, t ∈ T , instead we
assume that γ(s, t) <∞ for all s, t ∈ T .
Exercise 1.5.4
Proof that there exist random functions without finite second moments with γ(s, t) < ∞,
s, t ∈ T gibt.
Exercise 1.5.5
Show that for a random functionX = {X(t), t ∈ T} with mean value function µ and covariance
function K it holds that:

γ(s, t) = K(s, s) +K(t, t)
2 −K(s, t) + 1

2(µ(s)− µ(t))2, s, t ∈ T.

If the random function X is complex-valued, i.e., X : Ω× T → C, with E |X(t)|2 <∞, t ∈ T ,
then the covariance function of X is introduced as K(s, t) = E(X(s)− EX(s))(X(t)− EX(t)),
s, t ∈ T , where z is the complex conjugate of z ∈ C. Then it holds that K(s, t) = K(t, s),
s, t ∈ T , and K is positive semidefinite, i.e, for all n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ C it holds
that

∑n
i,j=1K(ti, tj)zizj ≥ 0.

1.6 Stationarity and Independence
T be a subset of the linear vector space with operations +, − over space R.
Definition 1.6.1
The random function X = {X(t), t ∈ T} is called stationary (strict sense stationary) if for all
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n ∈ N, h, t1, . . . , tn ∈ T with t1 + h, . . . , tn + h ∈ T it holds that:

P(X(t1),...,X(tn)) = P(X(t1+h),...,X(tn+h)),

i.e., all finite-dimensional distributions of X are invariant against translations in T .
Definition 1.6.2
A (complex-valued) random function X = {X(t), t ∈ T} is called second-order stationary (or
wide sense stationary) if E|X(t)|2 < ∞, t ∈ T , and µ(t) ≡ EX(t) ≡ µ, t ∈ T , K(s, t) =
cov(X(s), X(t)) = K(s+ h, t+ h) for all h, s, t ∈ T : s+ h, t+ h ∈ T .
If X is second-order stationary, it is beneficial to introduce a function K(t) := K(0, t), t ∈ T

whereby 0 ∈ T .
Strict sense stationarity and wide sense stationarity do not result from each other. However

it is clear that if a complex-valued function is strict sense stationary and possesses finite second-
order moments, then the function also is second-order stationary.
Definition 1.6.3
A real-valued random function X = {X(t), t ∈ T} is intrinsic second-order stationary if
γk(s, t), s, t ∈ T exist for k ≤ 2, and for all s, t, h ∈ T , s+h, t+h ∈ T it holds that γ1(s, t) = 0,
γ2(s, t) = γ2(s+ h, t+ h).
For real-valued random functions, intrinsic second-order stationarity is more general than

second-order stationarity since the existence of E|X(t)|2, t ∈ T is not required.
The analogue of the stationarity of increments of X also exists in strict sense.

Definition 1.6.4
Let X = {X(t), t ∈ T} be a real-valued stochastic process, T ⊂ R. It is said that X

1. possesses stationary increments if for all n ∈ N, h, t0, t1, t2, . . . , tn ∈ T , with t0 < t1 <
t2 < . . . < tn, ti+h ∈ T , i = 0, . . . , n the distribution of (X(t1+h)−X(t0+h), . . . , X(tn+
h)−X(tn−1 + h))> does not depend on h.

2. possesses independent increments if for all n ∈ N, t0, t1, . . . , tn ∈ T with t0 < t1 < . . . < tn
the random variables X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1) are pairwise independent.

Let (S1,B1) and (S2,B2) be measurable spaces. In general it is said that two random elements
X : Ω → S1 and X : Ω → S2 are independent on the same probability space (Ω,A,P) if
P(X ∈ A1, Y ∈ A2) = P(X ∈ A1)P(Y ∈ A2) for all A1 ∈ B1, A2 ∈ B2.
This definition can be applied to the independence of random functions X and Y with phase

space (ST ,BT ), since they can be considered as random elements with S1 = S2 = ST , B1 = B2 =
BT (cf. lemma 1.1.1). The same holds for the independence of a random element (or a random
function) X and of a sub-σ-algebra G ∈ A: this is the case if P({X ∈ A}∩G) = P(X ∈ A)P(G),
for all A ∈ B1, G ∈ G (or A ∈ BT , G ∈ G).

1.7 Processes with independent increments
In this section we want to talk about the properties and existence of processes with independent
increments.
Let {ϕs,t, s, t ≥ 0} be a family of characteristic functions of probability measures Qs,t, s, t ≥

0 on B(R), i.e., for z ∈ R, s, t ≥ 0 it holds that ϕs,t(z) =
∫
R e

izxQs,t(dx).
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Theorem 1.7.1
It exists a stochastic processX = {X(t), t ≥ 0} with independent increments with the property
that for all s, t ≥ 0 the characteristic function of X(t)−X(s) is equal to ϕs,t if and only if

ϕs,t = ϕs,uϕu,t (1.7.1)

for all 0 ≤ s < u < t <∞. Thereby the distribution of X(0) can be chosen arbitrarily.

Proof The necessity of the condition 1.7.1 is clear since for all s ∈ (0,∞) : s < u < t it
holds that: X(t)−X(s) = X(t)−X(u)︸ ︷︷ ︸

Y1

+X(u)−X(s)︸ ︷︷ ︸
Y2

and X(t)−X(u) and X(u)−X(s) are

pairwise independent. Then it holds ϕs,t = ϕY1+Y2 = ϕY1ϕY2 = ϕs,uϕu,t.
Now we proof the sufficiency.
If the existence of a process X with independent increments and property ϕX(t)−X(s) = ϕs,t
on a probability space (Ω,A,P) had already been proven, one could declare the characteristic
functions of all of its finite-dimensional distributions by {ϕs,t}.
Let n ∈ N, 0 = t0 < t1 < . . . < tn <∞ and Y = (X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1))>.
The independence of increments results in

ϕY (z0, z1, . . . , zn︸ ︷︷ ︸
z

) = Eei〈z,Y 〉 = ϕX(t0)(z0)ϕt0,t1(z1) . . . ϕtn−1,tn(zn), z ∈ Rn+1,

where the distribution of X(t0) is an arbitrary probability measure Q0 on B(R). For Xt0,...,tn =
(X(t0), X(t1), . . . , X(tn))> however it holds that Xt0,...,tn = AY , where

A =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
. . . . . . . . . . . . . . .
1 1 1 . . . 1

 .

Then ϕXt0,...,tn (z) = ϕAY (z) = Eei〈z,AY 〉 = Eei〈A>z,Y 〉 = ϕY (A>z) holds. Therefore the
finite-dimensional distriution of Xt0,...,tn possesses the characteristic function ϕXt0,...,tn (z) =
ϕQ0(l0)ϕt0,t1(l1) . . . ϕtn−1,tn(ln), where l = (l1, l1, . . . , ln)> = A>z, thus

l0 = z0 + . . .+ zn
l1 = z1 + . . .+ zn

...
ln = zn

Thereby ϕX(t0) = ϕQ0 and ϕXt1,...,tn (z1, . . . , zn) = ϕXt0,...,tn (0, z1, . . . , zn) holds for all zi ∈ R.
Now we proof the existence of such a process X.
For that we construct the family of characteristic functions

{ϕt0 , ϕt0,t1,...,tn , ϕt1,...,tn , 0 = t0 < t1 < . . . < tn <∞, n ∈ N}

from ϕQ0 and {ϕs,t, 0 ≤ s < t} as above, thus

ϕt0 = ϕQ0 , ϕt1,...,tn(0, z1, . . . , zn) = ϕt0,t1,...,tn(0, z1, . . . , zn), zi ∈ R,
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ϕt0,...,tn(z) = ϕt0(z1 + . . .+ zn)ϕt0,t1(z1 + . . .+ zn) . . . ϕtn−1,tn(zn).

Now we have to check whether the corresponding probability measures of these characteristic
functions fulfill the conditions of theorem 1.1.2. We will do that in equivalent form since
according to exercise ... of exercise sheet ... the conditions of symmetry and consistency in
theorem 1.1.2 are equivalent to:

a) ϕti0 ,...,tin (zi0 , . . . , zin) = ϕt0,...,tn(z0, . . . , zn) for an arbitrary permutation (0, 1, . . . , n) 7→
(i0, i1, . . . , in),

b) ϕt0,...,tm−1,tm+1,...,tn(z0, . . . , zm−1, zm+1, . . . , zn) = ϕt0,...,tn(z0, . . . , 0, . . . , zn), for all
z0, . . . , zn ∈ R, m ∈ {1, . . . , n}.

The first condition a) is obvious. Conditon b) holds since

ϕtm−1,tm(0 + zm+1 + . . .+ zn)ϕtm,tm+1(zm+1 + . . .+ zn) = ϕtm−1,tm+1(zm+1, . . . , zn)

for all m ∈ {1, . . . , n}. Thus, the existence of X is proven.

Example 1.7.1 1. If T = N0 = N ∪ {0}, then X = {X(t), t ∈ N0} has independent incre-
ments if and only if X(n) d=

∑n
i=0 Yi, where {Yi} are independent random variables and

Yn
d= X(n) −X(n − 1), n ∈ N. Such a process X is called random walk. It also may be

defined for Yi with values in Rm.

2. The Poisson process with intensity λ has independent increments (we will show that
later).

3. The Wiener process possesses independent increments.
Exercise 1.7.1
Proof that!
Exercise 1.7.2
Let X = {X(t), t ≥ 0} be a process with independent increments and g : [0,∞) → R an
arbitrary (deterministic) function. Show that the process Y = {Y (t), t ≥ 0} with Y (t) =
X(t) + g(t), t ≥ 0, also possesses independent increments.

1.8 Additional exercises
Exercise 1.8.1
Proof the following assertion: The family of probability measures Pt1,...,tn on (Rn,B(Rn)), n ≥ 1,
t = (t1, . . . , tn)> ∈ Tn fulfills the conditions of the theorem of Kolmogorov if and only if n ≥ 2
and for all s = (s1, . . . , sn)> ∈ Rn the following conditions are fulfilled:

a) ϕPt1,...,tn ((s1, . . . , sn)>) = ϕPtπ(1),...,tπ(n)
((sπ(1), . . . , sπ(n))>) for all π ∈ Sn.

b) ϕPt1,...,tn−1
((s1, . . . , sn−1)>) = ϕPt1,...,tn ((s1, . . . , sn−1, 0)>).

Remark: ϕ(·) denotes the characteristic function of the corresponding measure. Sn denotes the
group of all permutations π : {1, . . . , n} → {1, . . . , n}.



1 General theory of random functions 17

Exercise 1.8.2
Show the existence of a random function whose finite-dimensional distributions are multivariate-
normally distributed and explicitly give the measurable spaces (Et1,...,tn , Et1,...,tn).
Exercise 1.8.3
Give an example of a family of probability measures Pt1,...,tn , which do not fulfill the conditions
of the theorem of Kolmogorov.
Exercise 1.8.4
Let X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} be two stochastic processes which are defined on
the same complete probability space (Ω,F ,P) and which take values in the measurable space
(S,B).

a) Proof that: X and Y are stochastically equivalent =⇒ PX = PY .

b) Give an example of two processes X and Y for which holds: PX = PY , but X and Y are
not stochastically equivalent.

c) Proof that: X and Y are stochastically indistinguishable =⇒ X and Y are stochastically
equivalent.

d) Proof in the case of countability of T : X and Y are stochastically equivalent =⇒ X and
Y are stochastically indistinguishable.

e) Give in the case of uncountability of T an example of two processes X and Y for which
holds: X and Y are stochastically equivalent but not stochastically indistinguishable.

Exercise 1.8.5
Let W = {W (t), t ∈ R} be a Wiener Process. Which of the following processes are Wiener
processes as well?

a) W1 = {W1(t) := −W (t), t ∈ R},

b) W2 = {W2(t) :=
√
tW (1), t ∈ R},

c) W3 = {W3(t) := W (2t)−W (t), t ∈ R}.

Exercise 1.8.6
Given a stochastic process X = {X(t), t ∈ [0, 1]} which consists of idependent and identically
distributed random variables with density f(x), x ∈ R. Show that such a process can not be
continuous in t ∈ [0, 1].
Exercise 1.8.7
Give an example of a stochastic process X = {X(t), t ∈ T} which is stochastically continuous
on T , and proof why this is the case.
Exercise 1.8.8
In connection with the continuity of stochastic processes the so-called criterion of Kolmogorov
plays a central role. (see also theorem 1.3.1 in the lecture notes): Let X = {X(t), t ∈ [a, b]} be
a real-valued stochastic process. If constants α, ε > 0 and C := C(α, ε) > 0 exist such that

E|X(t+ h)−X(t)|α ≤ C|h|1+ε (1.8.1)

for sufficient small h, then the process X possesses a continuous modification. Show that:
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a) If you fix the variable ε = 0 in condition (1.8.1), then in general the condition is not
sufficient for the existence of a continuous modification. Hint: Consider the Poisson
process.

b) The Wiener process W = {W (t), t ∈ [0,∞)} possesses a continuous modification. Hint:
Consider the case α = 4.

Exercise 1.8.9
Show that the Wiener process W is not stochastically differentiable at any point t ∈ [0,∞).
Exercise 1.8.10
Show that the covariance function C(s, t) of a complex-valued stochastic processX = {X(t), t ∈
T}

a) is symmetric, i.e. C(s, t) = C(t, s), s, t ∈ T ,

b) fulfills the identity C(t, t) = varX(t), t ∈ T ,

c) is positive semidefinite, i.e. for all n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ C it holds that:

n∑
i=1

n∑
j=1

C(ti, tj)ziz̄j ≥ 0.

Exercise 1.8.11
Show that it exists a random function X = {X(t), t ∈ T} which simultaneously fulfills the
conditions:

• The second moment EX2 does not exist.

• The variogram γ(s, t) is finite for all s, t ∈ T .

Exercise 1.8.12
Give an example of a stochastic process X = {X(t), t ∈ T} whose paths are simultaneously
L2-differentiable but not almost surely differentiable, and proof why this is the case.
Exercise 1.8.13
Give an example of a stochastic process X = {X(t), t ∈ T} whose paths are simultaneously
almost surely differentiable but not L1-differentiable, and proof why this is the case.
Exercise 1.8.14
Proof that the Wiener process possesses independent increments.
Exercise 1.8.15
Proof: A (real-valued) stochastic process X = {X(t), t ∈ [0,∞)} with independent increments
already has stationary increments if the distibution of the random variable X(t+ h)−X(h) is
independent of h.



2 Counting processes

In this chapter we consider several examples of stochastic processes which model the counting
of events and thus possess piecewise constant paths.
Let (Ω,A,P) be a probability space and {Sn}n∈N a non-decreasing sequence of a.s. non-

negative random variables, i.e. 0 ≤ S1 ≤ S2 ≤ . . . ≤ Sn ≤ . . ..
Definition 2.0.1
The stochastic process N = {N(t), t ≥ 0} is called counting process if

N(t) =
∞∑
n=1

1(Sn ≤ t),

where 1(A) is the indicator function of the event A ∈ A.
N(t) counts the events which occur at Sn until time t. Sn e.g. may be the time of occurence

of

1. the n-th elementary particle in the Geiger counter, or

2. a damage in the insurance of material damage, or

3. a data paket at a server within a computer network, etc.

A special case of the counting processes are the so-called renewal processes.

2.1 Renewal processes
Definition 2.1.1
Let {Tn}n∈N be a sequence of i.i.d. non-negative random variables with P(T1 > 0) > 0. A
counting process N = {N(t), t ≥ 0} with N(0) = 0 a.s., Sn =

∑n
k=1 Tk, n ∈ N, is called

renewal process. Thereby Sn is called the time of the n-th renewal, n ∈ N.
The name „renewal process“ is given by the following interpretation. The „interarrival times“

Tn are interpreted as the lifetime of a technical spare part or mechanism within a system, thus
Sn is the time of the n-th break down of the system. The defective part is immediately replaced
by a new part (comparable with the exchange of a lightbulb). Thus, N(t) is the number of
repairs (the so-called „renewals“) of the system until time t.
Remark 2.1.1 1. It is N(t) =∞ if Sn ≤ t for all n ∈ N.

2. Often it is assumed that only T2, T3, . . . are identically distributed with ETn < ∞. The
distribution of T1 is freely selectable. Such a process N = {N(t), t ≥ 0} is called delayed
renewal process (with delay T1).

3. Sometimes the requirement Tn ≥ 0 is omitted.

19
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Abb. 2.1: Konstruktion und Trajektorien eines Erneuerungsprozesses

4. It is clear that {Sn}n∈N0 with S0 = 0 a.s., Sn =
∑n
k=1 Tk, n ∈ N is a random walk.

5. If one requires that the n-th exchange of a defective part in the system takes a time T ′n,
then by T̃n = Tn + T ′n, n ∈ N a different renewal process is given. Its stochastic property
does not differ from the process which is given in definition 2.1.1.

In the following we assume that µ = ETn ∈ (0,∞), n ∈ N.

Theorem 2.1.1 (Individual ergodic theorem):
Let N = {N(t), t ≥ 0} be a renewal process. Then it holds that:

lim
t→∞

N(t)
t

= 1
µ

a.s..

Proof For all t ≥ 0 and n ∈ N it holds that {N(t) = n} = {Sn ≤ t < Sn+1}, therefore
SN(t) ≤ t < SN(t)+1 and

SN(t)
N(t) ≤

t

N(t) ≤
SN(t)+1
N(t) + 1 ·

N(t) + 1
N(t) .

If we can show that SN(t)
N(t)

a.s−−−→
t→∞

µ and N(t) a.s.−−−→
t→∞

∞, then t
N(t)

a.s−−−→
t→∞

µ holds and therefore
the assertion of the theorem.
According to the strong law of large numbers of Kolmogorov (cf. lecture notes „Wahrschein-
lichkeitsrechnung“ (WR), theorem 7.4) it holds that Snn

a.s.−−−→
n→∞

µ, thus Sn
a.s.−−−→
n→∞

∞ and therefore
P(N(t) < ∞) = 1 since P(N(t) = ∞) = P( Sn ≤ t,∀n) = 1 − P(∃n : ∀m ∈ N0 Sn+m > t)︸ ︷︷ ︸

=1, if Sn
a.s−−−→
n→∞

∞

=

1− 1 = 0. Then N(t), t ≥ 0, is a real random variable.
We show that N(t) a.s.−−−→

t→∞
∞. All trajectories of N(t) are monotonously non-decreasing in
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t ≥ 0, thus ∃ limt→∞N(ω, t) for all ω ∈ Ω. Moreover it holds that

P( lim
t→∞

N(t) <∞) = lim
n→∞

P( lim
t→∞

N(t) < n) (∗)= lim
n→∞

lim
t→∞

P(N(t) < n)

= lim
n→∞

lim
t→∞

P(Sn > t) = lim
n→∞

lim
t→∞

P(
n∑
k=1

Tk > t)

≤ lim
n→∞

lim
t→∞

n∑
k=1

P(Tk >
t

n
)︸ ︷︷ ︸

−−−→
t→∞

0

= 0.

The equality (∗) holds since {limt→∞N(t) < n} = {∃t0 ∈ Q+ : ∀t ≥ t0 N(t) < n} =
∪t0∈Q+ ∩t∈Q+

t≥t0
{N(t) < n} = lim inft∈Q+

t→∞
{N(t) < n}, then the continuity of the probability

measure is used, where Q+ = Q ∩ R+ = {q ∈ Q : q ≥ 0}. Since for every ω ∈ Ω it holds that
limn→∞

Sn
n = limt→∞

SN(t)
N(t) (the codomain of a realization of N(·) is a subsequence of N), it

holds that limt→∞
SN(t)
N(t)

a.s= µ.

Remark 2.1.2
One can generalize the ergodic theorem to the case of non-identically distributed Tn. Thereby
we require that µn = ETn, {Tn − µn}n∈N are uniformly integrable and 1

n

∑n
k=1 µk −−−→n→∞

µ > 0.

Then we can proof that N(t)
t

P−−−→
t→∞

1
µ (cf. [2], page 276).

Theorem 2.1.2 (Central limit theorem):
If µ ∈ (0,∞), σ2 = var T1 ∈ (0,∞), it holds that

µ
3
2 ·

N(t)− t
µ

σ
√
t

d−−−→
t→∞

Y,

where Y ∼ N (0, 1).

Proof According to the central limit theorem for sums of i.i.d. random variables (cf. theorem
7.5, WR) it holds that

Sn − nµ√
nσ2

d−−−→
n→∞

Y. (2.1.1)

Let [x] be the whole part of x ∈ R. It holds for a = σ2

µ3 that

P
(
N(t)− t

µ√
at

≤ x
)

= P
(
N(t) ≤ x

√
at+ t

µ

)
= P

(
Sm(t) > t

)
,

where m(t) =
[
x
√
at+ t

µ

]
+ 1, t ≥ 0, and limt→∞m(t) =∞. Therefore we get that

∣∣∣∣∣P
(
N(t)− t

µ√
at

≤ x
)
− ϕ(x)

∣∣∣∣∣ =
∣∣∣P (Sm(t) > t

)
− ϕ(x)

∣∣∣
=

∣∣∣∣∣P
(
Sm(t) − µm(t)
σ
√
m(t)

>
t− µm(t)
σ
√
m(t)

)
− ϕ(x)

∣∣∣∣∣ := It(x)
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for arbitrary t ≥ 0 and x ∈ R, where ϕ is the distribution function of the N (0, 1)-distribution.
For fixed x ∈ R we introduce Zt = − t−µm(t)

σ
√
m(t)
− x, t ≥ 0. Then it holds that

It(x) =
∣∣∣∣∣P
(
Sm(t) − µm(t)
σ
√
m(t)

+ Zt > −x
)
− ϕ(x)

∣∣∣∣∣ .
If we can proof that Zt −−−→

t→∞
0, then applying (2.1.1) and the theorem of Slutsky (theorem

6.4.1, WR) would result in Sm(t)−µm(t)
σ
√
m(t)

+ Zt
d−−−→

t→∞
Y ∼ N (0, 1) since Zt −−−→

t→∞
0 a.s. results in

Zt
d−−−→

t→∞
0. Therefore we could write It(x) −−−→

t→∞
|ϕ̄(−x)− ϕ(x)| = |ϕ(x)− ϕ(x)| = 0, where

ϕ̄(x) = 1− ϕ(x) is the tail function of the N (0, 1)-distribution, and the property of symmetry
of N (0, 1) : ϕ̄(−x) = ϕ(x), x ∈ R was used.
Now we show that Zt −−−→

t→∞
0, thus t−µm(t)

σ
√
m(t)
−−−→
t→∞

−x. It holds that m(t) = x
√
at+ t

µ + ε(t),
where ε(t) ∈ [0, 1). Then it holds that

t− µm(t)
σ
√
m(t)

= t− µx
√
at− t− µε(t)
σ
√
m(t)

= −x
√
at− µ

σ
√
x
√
at+ t

µ + ε(t)
− µε(t)
σ
√
m(t)

= − xµ

σ

√
x√
at

+ 1
µa + ε(t)

at

− µ− ε(t)
σ
√
m(t)

= −
xµσ√

µ2

σ2 + x√
at

+ ε(t)
at︸ ︷︷ ︸

−−−→
t→∞

−x

− µε(t)
σ
√
m(t)︸ ︷︷ ︸

−−−→
t→∞

0

−−−→
t→∞

−x.

Remark 2.1.3
In Lineberg form, the central limit theorem can also be proven for non-identically distributed
Tn, cf. [2], pages 276 - 277.
Definition 2.1.2
The functionH(t) = EN(t), t ≥ 0 is called renewal function of the process N (or of the sequence
{Sn}n∈N).
Let FT (x) = P(T1 ≤ x), x ∈ R be the distribution function of T1. For arbitrary distribution

functions F,G : R→ [0, 1] the convolution F ∗G is defined as F ∗G(x) =
∫ x
−∞ F (x− y)dG(y).

The k-fold convolution F ∗k of the distribution F with itself, k ∈ N0, is defined inductive:

F ∗0(x) = 1(x ∈ [0,∞)), x ∈ R,
F ∗1(x) = F (x), x ∈ R,

F ∗(k+1)(x) = F ∗k ∗ F (x), x ∈ R.

Lemma 2.1.1
The renewal function H of a renewal process N is monotonously non-decreasing and right-sided
continuous on R+. Moreover it holds that

H(t) =
∞∑
n=1

P(Sn ≤ t) =
∞∑
n=1

F ∗nT (t), t ≥ 0. (2.1.2)
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Proof The monotony and right-sided continuity of H are consequences from the almost surely
monotony and right-sided continuity of the trajectories of N . Now we proof (2.1.2):

H(t) = EN(t) = E
∞∑
n=1

1(Sn ≤ t)
(∗)=

∞∑
n=1

E1(Sn ≤ t) =
∞∑
n=1

P(Sn ≤ t) =
∞∑
n=1

F ∗nT (t),

since P(Sn ≤ t) = P(T1 + . . . + Tn ≤ t) = F ∗nT (t), t ≥ 0. The equality (∗) holds for all partial
sums on both sides, therefore in the limit as well.

Except for exceptional cases it is impossible to calculate the renewal function H by the
formula (2.1.2) analytically. Therefore the Laplace transform of H is often used in calulations.
For a monotonously (e.g. monotonously non-decreasing) right-sided continuous function G :
[0,∞)→ R the Laplace transform is defined as l̂G(s) =

∫∞
0 e−sxdG(x), s ≥ 0. Here the integral

is to be understood as the Lebesgue-Stieltjes integral, thus as a Lebesgue integral with respect
to the measure µG on BR+ defined by µG((x, y]) = G(y) − G(x), 0 ≤ x < y < ∞, if G is
monotonously non-decreasing.
Just to remind you: the Laplace transform l̂X of a random variable X ≥ 0 is defined by
l̂X(s) =

∫∞
0 e−sxdFX(x), s ≥ 0.

Lemma 2.1.2
For s > 0 it holds that:

l̂H(s) = l̂T1(s)
1− l̂T1(s)

.

Proof It holds that:

l̂H(s) =
∫ ∞

0
e−sxdH(x) (2.1.2)=

∫ ∞
0

e−sxd

( ∞∑
n=1

F ∗nT (x)
)

=
∞∑
n=1

∫ ∞
0

e−sxdF ∗n(x)

=
∞∑
n=1

l̂T1+...+Tn(s) =
∞∑
n=1

(
l̂T1(s)

)n
= l̂T1(s)

1− l̂T1(s)
,

where for s > 0 it holds that l̂T1(s) < 1 and thus the geometric series
∑∞
n=1

(
l̂T1(s)

)n
converges.

Remark 2.1.4
If N = {N(t), t ≥ 0} is a delayed renewal process (with delay T1), the statements of lemmas
2.1.1 - 2.1.2 hold in the following form:

1.
H(t) =

∞∑
n=0

(FT1 ∗ F ∗nT2 )(t), t ≥ 0,

where FT1 and FT2 , respectively are the distribution functions of T1 and Tn, n ≥ 2,
respectively.

2.
l̂H(s) = l̂T1(s)

1− l̂T2(s)
, s ≥ 0, (2.1.3)

where l̂T1 and l̂T2 are the Laplace transforms of the distribution of T1 and Tn, n ≥ 2.



24 2 Counting processes

For further observations we need a theorem (from Wald) about the expected value of a sum
(with random number) of independent random variables.
Definition 2.1.3
Let ν be a N-valued random variable and be {Xn}n∈N a sequence of random variables defined
on the same probability space. ν is called independent of the future, if for all n ∈ N the event
{ν ≤ n} does not depend on the σ-algebra σ({Xk, k > n}).
Theorem 2.1.3 (Wald’s identity):
Let {Xn}n∈N be a sequence of random variables with sup E|Xn| <∞, EXn = a, n ∈ N and be
ν a N-valued random variable which is independent of the future, with Eν <∞. Then it holds
that

E(
ν∑

n=1
Xn) = a · Eν.

Proof Calculate Sn =
∑n
k=1Xk, n ∈ N. Since Eν =

∑∞
n=1 P(ν ≥ n), the theorem follows from

lemma 2.1.3.

Lemma 2.1.3 (Kolmogorov-Prokhorov):
Let ν be a N-valued random variable which is independent of the future and it holds that

∞∑
n=1

P(ν ≥ n)E|Xn| <∞. (2.1.4)

Then ESν =
∑∞
n=1 P(ν ≥ n)EXn holds. If Xn ≥ 0 a.s., then condition (2.1.4) is not required.

Proof It holds that Sν =
∑ν
n=1Xn =

∑∞
n=1Xn1(ν ≥ n). We introduce the notation Sν,n =∑n

k=1Xk1(ν ≥ k), n ∈ N. First, we proof the lemma for Xn ≥ 0 f.s., n ∈ N. It holds Sν,n ↑ Sν ,
n → ∞ for every ω ∈ Ω, and thus according to the monotone convergence theorem it holds
that: ESν = limn→∞ ESν,n = lim

∑n
k=1 E(Xk1(ν ≥ k)). Since {ν ≥ k} = {ν ≤ k − 1}c does not

depend on σ(Xk) ⊂ σ({Xn, n ≥ k}) it holds that E(Xk1(ν ≥ k)) = EXkP(ν ≥ k), k ∈ N, and
thus ESν =

∑∞
n=1 P(ν ≥ n)EXn.

Now, let Xn be arbitrary. Take Yn = |Xn|, Zn =
∑n
n=1 Yn, Zν,n =

∑n
k=1 Yk1(ν ≥ k), n ∈ N.

Since Yn ≥ 0, n ∈ N, it holds that EZν =
∑∞
n=1 E(Xn | P(ν ≥ k)) < ∞ from (2.1.4). Since

|Sν,n| ≤ Zν,n ≤ Zν , n ∈ N, according to the dominated convergence theorem of Lebesgue it
holds that ESν = limn→∞ ESν,n =

∑∞
n=1 EXnP(ν ≥ n), where this series converges absolutely.

Conclusion 2.1.1 1. For an arbitrary Borel measurable function g : R+ → R+ and the
renewal process N = {N(t), t ≥ 0} with interarrival times {Tn}, Tn i.i.d., µ = ETn ∈
(0,∞) it holds that

E

N(t)+1∑
k=1

g(Tn)

 = (1 +H(t))Eg(T1), t ≥ 0.

2. H(t) <∞, t ≥ 0.

Proof 1. For every t ≥ 0 it is obvious that ν = 1 +H(t) does not depend on the future of
{Tn}n∈N, the rest follows from theorem 2.1.3 with Xn = g(Tn), n ∈ N.
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2. For s > 0 consider T (s)
n = min{Tn, s}, n ∈ N. Choose s > 0 such that for freely selected

(but fixed) ε > 0 : µ(s) = ET (s)
1 ≥ µ − ε > 0. Let N (s) be the renewal process which is

based on the sequence {T (s)
n }n∈N of interarrival times: N (s)(t) =

∑∞
n=1 1(T (s)

n ≤ t), t ≥ 0.
It holds N(t) ≤ N (s)(t), t ≥ 0, a.s., according to conclusion 2.1.1:

(µ− ε)(EN (s)(t) + 1) ≤ µ(s)(EN (s)(t) + 1) = ES(s)
N(s)(t)+1 = E(S(s)

N(s)(t)︸ ︷︷ ︸
≤t

+T
(s)
N(s)(t)+1︸ ︷︷ ︸
≤s

) ≤ t+ s,

t ≥ 0, where S(s)
n = T

(s)
1 + . . . + T

(s)
n , n ∈ N. Thus H(t) = EN(t) ≤ EN (s)(t) ≤ t+s

µ−ε ,
t ≥ 0. Since ε > 0 is arbitrary, it holds that lim supt→∞

H(t)
t ≤

1
µ , and also our assertion

H(t) <∞, t ≥ 0.

Conclusion 2.1.2 (Elementary renewal theorem):
For a renewal process N as defined in conclusion 2.1.1, 1) it holds:

lim
t→∞

H(t)
t

= 1
µ
.

Proof In conclusion 2.1.1, part 2) we already proved that lim supt→∞
H(t)
t ≤ 1

µ . If we show
lim inft→∞ H(t)

t ≥
1
µ , our assertion would be proven. According to theorem 2.1.1 it holds that

N(t)
t −−−→t→∞

1
µ a.s., therefore according to Fatou’s lemma

1
µ

= E lim inf
t→∞

N(t)
t
≤ lim inf

t→∞

EN(t)
t

= lim inf
t→∞

H(t)
t

.

Remark 2.1.5 1. We can prove that in the case of the finite second moment of Tn (µ2 =
ET 2

1 <∞) we can derive a more exact asymptotics for H(t), t→∞:

H(t) = t

µ
+ µ2

2µ2 + o(1), t→∞.

2. The elementary renewal theorem also holds for delayed renewal processes, where µ = ET2.
We define the renewal measure H on B(R+) by H(B) =

∑∞
n=1

∫
B dF

∗n
T (x), B ∈ B(R+).

It holds H((−∞, t]) = H(t), H((s, t]) = H(t)−H(s), s, t ≥ 0, if H is the renewal function
as well as the renewal measure.

Theorem 2.1.4 (Fundamental theorem of the renewal theory):
Let N = {N(t), t ≥ 0} be a (delayed) renewal process associated with the sequence {Tn}n∈N,
where Tn, n ∈ N are independent, {Tn, n ≥ 2} identically distributed, and the distribution
of T2 is not arithmetic, thus not concentrated on a regular lattice with probability 1. The
distribution of T1 is arbitrary. Let ET2 = µ ∈ (0,∞). Then it holds that∫ t

0
g(t− x)dH(x) −−−→

t→∞

1
µ

∫ ∞
0

g(x)dx,

where g : R+ → R is Riemann integrable [0, n], for all n ∈ N, and
∑∞
n=0 maxn≤x≤n+1 |g(x)| <∞.
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Without proof.

In particular H((t − u, t]) −−−→
t→∞

u
µ holds for an arbitrary u ∈ R+, thus H asymptotically

(for t→∞) behaves as the Lebesgue measure.

Abb. 2.2:

Definition 2.1.4
The random variable χ(t) = SN(t)+1 − t is called excess of N at time t ≥ 0.

Obviously χ(0) = T1 holds. We now give an example of a renewal process with stationary
increments.
Let N = {N(t), t ≥ 0} be a delayed renewal process associated with the sequence of interarrival
times {Tn}n∈N. Let FT1 and FT2 be the distribution functions of the delays T1 and Tn, n ≥ 2.
We assume that µ = ET2 ∈ (0,∞), FT2(0) = 0, thus T2 > 0 a.s. and

FT1(x) = 1
µ

∫ x

0
F̄T2(y)dy, x ≥ 0. (2.1.5)

In this case FT1 is called the integrated tail distribution function of T2.

Theorem 2.1.5
Under the conditions we mentioned above, N is a process with stationary increments.

Abb. 2.3:

Proof Let n ∈ N, 0 ≤ t0 < t1 < . . . < tn <∞. Because N does not depend on Tn, n ∈ N the
common distribution of (N(t1 + t)−N(t0 + t), . . . , N(tn + t)−N(tn−1 + t))> does not depend
on t, if the distribution of χ(t) does not depend on t, thus χ(t) d= χ(0) = T1, t ≥ 0, see Figure
....
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We show that FT1 = FX(t), t ≥ 0.

Fχ(t)(x) = P(χ(t) ≤ x) =
∞∑
n=0

P(Sn ≤ t, t < Sn+1 ≤ t+ x)

= P(S0 = 0 ≤ t, t < S1 = T1 ≤ t+ x)

+
∞∑
n=1

E(E(1(Sn ≤ t, t < Sn + Tn+1 ≤ t+ x) | Sn))

= FT1(t+ x)− FT1(t) +
∞∑
n=1

∫ t

0
P(t− y < Tn+1 ≤ t+ x− y)dFSn(y)

= FT1(t+ x)− FT1(t) +
∫ t

0
P(t− y < T2 ≤ t+ x− y)d(

∞∑
n=1

FSn(y)︸ ︷︷ ︸
H(y)

).

If we can proof that H(y) = y
µ , y ≥ 0, then we would get

Fχ(t)(x) = FT1(t+ x)− FT1(t) + 1
µ

∫ 0

t
(FT2(z + x)− 1 + 1− FT2(z))d(−z)

= FT1(t+ x)− FT1(t) + 1
µ

∫ t

0
(F̄T2(z)− F̄T2(z + x))dz

= FT1(t+ x)− FT1(t) + FT1(t)− 1
µ

∫ t+x

x
F̄T2(y)dy

= FT1(t+ x)− FT1(t+ x) + FT1(x) = FT1(x), x ≥ 0,

according to the form (2.1.5) of the distribution of T1.
Now we like to show that H(t) = t

µ , t ≥ 0. For that we use the formula (2.1.4): it holds that

l̂T1(s) = 1
µ

∫ ∞
0

e−st(1− FT2(t))dt = 1
µ

∫ ∞
0

e−stdt︸ ︷︷ ︸
1
s

− 1
µ

∫ ∞
0

e−stFT2(t)dt

= 1
µs

(
1 +

∫ ∞
0

FT2(t)de−st
)

= 1
µs

(1 + e−stFT2(t)︸ ︷︷ ︸
−FT2 (0)=0

∣∣∞
0 −

∫ ∞
0

e−stdFT2(t))︸ ︷︷ ︸
l̂T2 (s)

= 1
µs

(1− l̂T2(s)), s ≥ 0.

Using the formula (2.1.4) we get

l̂H(s) = l̂T1(s)
1− l̂T2(s)

= 1
µs

= 1
µ

∫ ∞
0

e−stdt = l̂ t
µ

(s), s ≥ 0.

Since the Laplace transform of a function uniquely determines this function, it holds that
H(t) = t

µ , t ≥ 0.

Remark 2.1.6
In the proof of theorem 2.1.5 we showed that for the renewal process with delay which possesses
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the distribution (2.1.5), H(t) ∼ t
µ not only asymptotical for t → ∞ (as in the elementary

renewal theorem) but it holds H(t) = t
µ , for all t ≥ 0. This means, per unit of the time interval

we get an average of 1
µ renewals. For that reason such a process N is called homogeneous

renewal process.
We can proof the following theorem:

Theorem 2.1.6
If N = {N(t), t ≥ 0} is a delayed renewal process with arbitrary delay T1 and non-arithmetic
distribution of Tn, n ≥ 2, µ = ET2 ∈ (0,∞), then it holds that

lim
t→∞

Fχ(t)(x) = 1
µ

∫ x

0
F̄T2(y)dy, x ≥ 0.

This means, the limit distribution of excess χ(t), t→∞ is taken as the distribution of T1 when
defining a homogeneous renewal process.

2.2 Poisson-ish processes

2.2.1 Poisson processes

In this section we generalize the definition of a homogeneous Poisson process (see section 1.2,
example 5)
Definition 2.2.1
The counting process N = {N(t), t ≥ 0} is called Poisson process with intensity measure Λ if

1. N(0) = 0 a.s.

2. Λ is a locally finite measure R+,i.e., Λ : B(R+) → R+ possesses the property Λ(B) < ∞
for every bounded set B ∈ B(R+).

3. N possesses independent increments.

4. N(t)−N(s) ∼ Pois(Λ((s, t])) for all 0 ≤ s < t <∞.

Sometimes the Poisson process N = {N(t), t ≥ 0} is defined by the corresponding random
Poisson counting measure N = {N(B), B ∈ B(R+)}, i.e., N = ([0, t]), t ≥ 0, where a counting
measure is a locally finite measure with values in N0.
Definition 2.2.2
A random counting measure N = {N(B), B ∈ B(R+)} is called Poissonsh with locally finite
intensity measure Λ if

1. For arbitrary n ∈ N and for arbitrary pairwise disjoint bounded sets B1, B2, . . . , Bn ∈
B(R+) the random variables N(B1), N(B2), . . . , N(Bn) are independent.

2. N(B) ∼ Pois(Λ(B)), B ∈ B(R+), B-bounded.

It is obvious that properties 3 and 4 of definition 2.2.1 follow from properties 1 and 2 of
definition 2.2.2. Property 1 of definition 2.2.1 however is an autonomous assumption. N(B),
B ∈ B(R+) is interpreted as the number of points of N within the set B.
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Remark 2.2.1
As stated in definition 2.2.2, a Poisson counting measure can also be defined on an arbitrary
topological space E equipped with the Borel-σ-algebra B(E). Very often E = Rd, d ≥ 1 is
chosen in applications.

Lemma 2.2.1
For every locally finite measure Λ on R+ there exists a Poisson process with intensity measure
Λ.

Proof If such a Poisson process had existed, the characteristic function ϕN(t)−N(s)(·) of the
increment N(t) −N(s), 0 ≤ s < t < ∞ would have been equal to ϕs,t(z) = ϕPois(Λ((s,t]))(z) =
eΛ((s,t])(eiz−1), z ∈ R according to property 4 of definition 2.2.1. We show that the family of
characteristic functions {ϕs,t, 0 ≤ s < t < ∞} possesses property 1.7.1: for all n : 0 ≤ s <

u < t, ϕs,u(z)ϕu,t(z) = eΛ((s,u])(eiz−1)eΛ((u,t])(eiz−1) = e(Λ((s,u])+Λ((u,t]))(eiz−1) = eΛ((s,t])(eiz−1) =
ϕs,t(z), z ∈ R since the measure Λ is additive. Thus, the existence of the Poisson process N
follows from theorem 1.7.1.

Remark 2.2.2
The existence of a Poisson counting measure can be proven with the help of the theorem of
Kolmogorov, yet in a more general form than in theorem 1.1.2.

From the properties of the Poisson distribution it follows that EN(B) = varN(B) = Λ(B),
B ∈ B(R+). Thus Λ(B) is interpreted as the mean number of points of N within the set B,
B ∈ B(R+).
We get an important special case if Λ(dx) = λdx for λ ∈ (0,∞), i.e., Λ is proportional to the
Lebesgue measure ν1 on R+. Then we call λ = EN(1) the intensity of N .
Soon we will proof that in this case N is a homogeneous Poisson process with intensity λ. To
remind you: In section 1.2 the homogeneous Poisson process was defined as a renewal process
with interarrival times TN ∼ Exp(λ): N(t) = sup{n ∈ N Sn ≤ t}, Sn = T1 + . . . + Tn, n ∈ N,
t ≥ 0.

Exercise 2.2.1
Show that the homogeneous Poisson process is a homogeneous renewal process with T1

d= T2 ∼
Exp(λ). Hint: you have to show that for an arbitrary exponential distributed random variable
X the integrated tail distribution function of X is equal to FX .

Theorem 2.2.1
Let N = {N(t), t ≥ 0} be a counting process. The following statements are equivalent.

1. N is a homogeneous Poisson process with intensity λ > 0.

2. a) N(t) ∼ Pois(λt), t ≥ 0
b) for an arbitrary n ∈ N, t ≥ 0, it holds that the random vector (S1, . . . , Sn) under

condition {N(t) = n} possesses the same distribution as the order statistics of i.i.d.
random variables Ui ∈ U([0, t]), i = 1, . . . , n.

3. a) N has independent increments,
b) EN(1) = λ, and
c) property 2b) holds.
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4. a) N has stationary and independent increments, and
b) P(N(t) = 0) = 1− λt+ o(t), P(N(t) = 1) = λt+ o(t), t ↓ 0 holds.

5. a) N hast stationary and independent increments,
b) property 2a) holds.

Remark 2.2.3 1. It is obvious that definition 2.2.1 with Λ(dx) = λdx, λ ∈ (0,∞) is an
equivalent definition of the homogeneous Poisson process according to theorem 2.2.1.

2. The homogeneous Poisson process N was introduced in the beginning of the 20th century
from the physicists A. Einstein and M. Smoluchovsky to be able to model the counting
process of elementary particle in the Geiger counter.

3. From 4b) it follows P(N(t) > 1) = o(t), t ↓ 0.

4. The intensity of N has the following interpretation: λ = EN(1) = 1
ETn , thus the mean

number of renewals of N within a time interval with length 1.

5. The renewal function of the homogeneous Poisson process is H(t) = λt, t ≥ 0. Thereby
H(t) = Λ([0, t]), t > 0 holds.

Proof Structure of the proof: 1)⇒ 2)⇒ 3)⇒ 4)⇒ 5)⇒ 1)
1)⇒ 2):
From 1) follows Sn =

∑n
k=1 Tk ∼ Erl(n, λ) since Tk ∼ Pois(λ), n ∈ N, thus P(N(t) = 0) =

P(T1 > t) = e−λt, t ≥ 0, and for n ∈ N

P(N(t) = n) = P({N(t) ≥ n} \ {N(t) ≥ n+ 1}) = P(N(t) ≥ n)− P(N(t) ≥ n+ 1)

= P(Sn ≤ t)− P(Sn+1 ≤ t) =
∫ t

0

λnxn−1

(n− 1)!e
−λxdx−

∫ t

0

λn+1xn

n! e−λxdx

=
∫ t

0

d

dx

((λx)n

n! e−λx
)
dx = (λt)n

n! e−λt, t ≥ 0.

Thus 2a) is proven.
Now let’s proof 2b). According to the transformation theorem of random variables (cf. theorem
3.6.1, WR), it follows from 

S1 = T1
S2 = T1 + T2

...
Sn+1 = T1 + . . .+ Tn+1

that the density f(S1,...,Sn) of (S1, . . . , Sn+1)> can be expressed by the density of (T1, . . . , Tn+1)>,
Ti ∼ Exp(λ), i.i.d.:

f(S1,...,Sn+1)(t1, . . . , tn+1) =
n+1∏
k=1

fTk(tk − tk−1) =
n+1∏
k=1

λe−λ(tk−tk−1) = λn+1e−λtn+1

for arbitrary 0 ≤ t1 ≤ . . . ≤ tn+1, t0 = 0.
For all other t1, . . . , tn+1 it holds f(S1,...,Sn+1)(t1, . . . , tn+1) = 0.
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Therefore

f(S1,...,Sn)(t1, . . . , tn|N(t) = n) = f(S1,...,Sn)(t1, . . . , tn|Sk ≤ t, k ≤ n, Sn+1 > t)

=
∫∞
t f(S1,...,Sn+1)(t1, . . . , tn+1)dtn+1∫ t

0
∫ t
t1
. . .
∫ t
tn−1

∫∞
t f(S1,...,Sn+1)(t1, . . . , tn+1)dtn+1dtn . . . dt1

=
∫∞
t λn+1e−λtn+1dtn+1∫ t

0
∫ t
t1
. . .
∫ t
tn−1

∫∞
t λn+1e−λtn+1dtn+1dtn . . . dt1

×

×I(0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t)

= n!
tn

I(0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t).

This is exactly the density of n i.i.d. U([0, t])-random variables.
Exercise 2.2.2
Proof this.

2)⇒ 3)
From 2a) obviously follows 3b). Now we just have to proof the independence of the increments
of N . For an arbitrary n ∈ N, x1, . . . , xn ∈ N, t0 = 0 < t1 < . . . < tn for x = x1 + . . . + xn it
holds that

P(∩nk=1{N(tk)−N(tk−1) = xk}) = P(∩nk=1{N(tk)−N(tk−1) = xk}|N(tk) = x)︸ ︷︷ ︸
x!

x1!...xn!
∏n

k=1

(
tk−tk−1

tn

)xk according to 2c)

×

× P(N(tk) = x)︸ ︷︷ ︸
e−λtn

(λtn)x
x! according to 2a)

=
n∏
k=1

(λ(tk − tk−1))xk
xk!

e−λ(tk−tk−1),

since the probability of (∗) belongs to the polynomial distribution with parameters n,
{
tk−tk−1

tn

}n
k=1

.
Because the event (∗)is that at the independent uniformly distributed toss of x points on [0, t],
exactly xk points occur within the basket of length tk − tk−1, k = 1, . . . , n:

Abb. 2.4:

Thus 3a) is proven since P(∩nk=1{N(tk)−N(tk−1) = xk}) =
∏n
k=1 P({N(tk)−N(tk−1) = xk}).
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3)⇒ 4)
We proof that N possesses stationary increments. For an arbitrary n ∈ N0, x1, . . . , xn ∈ N,
t0 = 0 < t1 < . . . < tn and h > 0 we consider I(h) = P(∩nk=1{N(tk + h)−N(tk−1 + h) = xk})
and show that I(h) does not depend on h ∈ R. According to the formula of the total probability
it holds that

I(h) =
∞∑
m=0

P(∩nk=1{N(tk + h)−N(tk−1 + h) = xk} | N(tn + h) = m) · P(N(tn + h) = m)

=
∞∑
m=0

m!
x1! . . . xn!

n∏
k=1

(
tk + h− tn−1 − h

tn + h− h

)xk
e−λ(tn+h) (λ(tn + h))

m!

=
∞∑
m=0

P(∩nk=1{N(tk)−N(tk−1) = xk | N(tn + h) = m)× P(N(tn + h) = m) = I(0).

We now show property 4b) for h ∈ (0, 1):

P(N(h) = 0) =
∞∑
k=0

P(N(h) = 0, N(1) = k) =
∞∑
k=0

P(N(h) = 0, N(1)−N(h) = k)

=
∞∑
k=0

P(N(1)−N(h) = k,N(1) = k)

=
∞∑
k=0

P(N(1) = k)P(N(1)−N(h) = k | N(1) = k)

=
∞∑
k=0

P(N(1) = k)(1− h)k.

We have to show that P(N(h) = 0) = 1 − λh + o(h), i.e., limh→∞
1
h(1 − P(N(h) = 0)) = λ.

Indeed it holds that

1
h

(1− P(N(h) = 0)) = 1
h

(
1−

∞∑
k=0

P(N(1) = k)(1− h)k
)

=
∞∑
k=1

P(N(1) = k) · 1− (1− h)k

h

−−−→
h→0

∞∑
k=1

P(N(1) = k) lim
h→0

1− (1− h)k

h︸ ︷︷ ︸
k

=
∞∑
k=0

P(N(1) = k)k = EN(1) = λ,

since the series uniformly converges in h because it is dominated by
∑∞
k=0 P(N(1) = k)k = λ <

∞ because of the inequality (1− h)k ≥ 1− kh, h ∈ (0, 1), k ∈ N.
Similarly one can show that limh→0

P(N(h)=1)
h = limh→0

∑∞
k=1 P(N(1) = k)k(1 − h)k−1 = λ.

4)⇒ 5)
We have to show that for an arbitrary n ∈ N and t ≥ 0

pn(t) = P(N(t) = n) = e−λt
(λt)n

n! (2.2.1)

holds. We will proof that by induction with respect to n. First we show that p0(t) = e−λt,
h = 0. For that we consider p0(t + h) = P(N(t + h) = 0) = P(N(t) = 0, N(t + h) − N(t) =
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0) = p0(t)p0(h) = p0(t)(1 − λh + o(h)), h → 0. Similarly one can show that p0(t) = p0(t −
h)(1 − λh + o(h)), h → 0. Thus p′0(t) = limh→0

p0(t+h)−p0(t)
h = −λp0(t), t > 0 holds. Since

p0(0) = P(N(0) = 0) = 1, it follows from{
p′0(t) = −λp0(t)
p0(0) = 0,

that it exists an unique solution p0(t) = e−λt, t ≥ 0. Now for n the formular (2.2.1) be approved.
Let’s proof it for n+ 1.

pn+1(t+ h) = P(N(t+ h) = n+ 1)
= P(N(t) = n,N(t+ h)−N(t) = 1) + P(N(t) = n+ 1, N(t+ h)−N(t) = 0)
= pn(t)− p1(h) + pn+1(t)− p0(h)
= pn(t)(λh+ o(h)) + pn+1(t)(1− λh+ o(h)), h→ 0, h > 0.

Thus {
p′n+1(t) = −λpn+1(t) + λpn(t), t > 0
pn+1(0) = 0 (2.2.2)

Since pn(t) = e−λt (λt)n
n! , we obtain pn+1(t) = e−λt (λt)n+1

(n+1)! as solution of (2.2.2). (Indeed
pn+1(t) = C(t)e−λt ⇒ C ′(t)e−λt = λC(t)e−λt...........+ λpn(t)
C ′(t) = λn+1tn

n! ⇒ C(t) = λn+1tn+1

(n+1)! , C(0) = 0)
5)⇒ 1)
Let N be a counting process N(t) = max{n : Sn ≤ t}, t ≥ 0, which fulfills conditions 5a)
and 5b). We show that Sn =

∑n
k=1 Tk, where Tk i.i.d. with Tk ∼ Exp(λ), k ∈ N. Since

Tk = Sk − Sk−1, k ∈ N, S0 = 0, we consider for b0 = 0 ≤ a1 < b1 ≤ . . . ≤ an < bn

P (∩nk=1{ak < Sk ≤ bk})
= P(∩n−1

k=1{N(ak)−N(bk−1) = 0, N(bk)−N(ak) = 1}
∩{N(an)−N(bn−1) = 0, N(bn)−N(an) ≥ 1})

=
n−1∏
k=1

(P(N(ak − bk−1) = 0)︸ ︷︷ ︸
e−λ(ak−bk−1)

P(N(bk − ak) = 1)︸ ︷︷ ︸
λ(bk−ak)e−λ(bk−ak)

)×

P(N(an − bn−1) = 0)︸ ︷︷ ︸
e−λ(an−bn−1)

P(N(bn − an) ≥ 1)︸ ︷︷ ︸
(1−e−λ(bn−an))

= e−λ(an−bn−1)(1− e−λ(bn−an))
n−1∏
k=1

λ(bk − ak)e−λ(bk−bk−1)

= λn−1(e−λan − e−λbn)
n−1∏
k=1

(bk − ak) =
∫ b1

a1
. . .

∫ bn

an
λne−λyndyn . . . y1.

The common density of (S1, . . . , Sn)> therefore is given by λne−λyn1(y1 ≤ y2 ≤ . . . ≤ yn).

2.2.2 Compound Poisson process
Definition 2.2.3
Let N = {N(t), t ≥ 0} be a homogeneous Poisson process with intensity λ > 0, build by
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means of the sequence {Tn}n∈N of interarrival times. Let {Un}n∈N be a sequence of i.i.d.
random variables, independent of {Tn}n∈N. Let FU be the distribution function of U1. For
an arbitrary t ≥ 0 let X(t) =

∑N(t)
k=1 Uk. The stochastic process X = {X(t), t ≥ 0} is called

compound Poisson process with parameters λ, FU . The distribution of X(t) thereby is called
compound Poisson distribution with parameters λt, FU .
The compound Poisson process X(t), t ≥ 0 can be interpreted as the sum of „marks“ Un of

a homogeneous marked Poisson process (N,U) until time t.
In queueing theory X(t) is interpreted as the overall workload of a server until time t if the
requests to the service occur at times Sn =

∑n
k=1 Tk, n ∈ N and represent the amount of work

Un, n ∈ N.
In actuarial mathematics X(t), t ≥ 0 is the total damage in a portfolio until time t ≥ 0 with
number of damages N(t) and amount of loss Un, n ∈ N.
Theorem 2.2.2
Let X = {X(t), t ≥ 0} be a compound Poisson process with parameters λ, FU . The following
properties hold:

1. X has independent increments.

2. If m̂U (s) = EesU1 , s ∈ R, is the moment generating function of U1, such that m̂U (s) <∞,
s ∈ R, then it holds that

m̂X(t)(s) = eλt(m̂U (s)−1), s ∈ R, t ≥ 0, EX(t) = λtEU1, varX(t) = λtEU2
1 , t ≥ 0.

Proof 1. We have to show that for arbitrary n ∈ N, 0 ≤ t0 < t1 < . . . < tn and h

P

 N(t1+h)∑
i1=N(t0+h)+1

Ui1 ≤ x1, . . . ,

N(tn+h)∑
in=N(tn−1+h)+1

Uin ≤ xn

 =
n∏
k=1

P

 N(tk)∑
ik=N(tk−1)+1

Uik ≤ xk


for arbitrary x1, . . . , xn ∈ R. Indeed it holds that

P

 N(t1+h)∑
i1=N(t0+h)+1

Ui1 ≤ x1, . . . ,

N(tn+h)∑
in=N(tn−1+h)+1

Uin ≤ xn


=

∞∑
k1,...,kn=0

 n∏
j=1

F
∗kj
n (xj)

P (∩nm=1 {N(tm + h)−N(tm−1 + h) = km})

=
∞∑

k1,...,kn=0

 n∏
j=1

F
∗kj
n (xj)

( n∏
m=1

P(N(tm)−N(tm−1) = km)
)

=
n∏

m=1

∞∑
km=0

F ∗kmn (xm)P(N(tm)−N(tm−1) = km)

=
n∏

m=1
P

 N(tm)∑
km=N(tm−1)+1

≤ xm


2.

Exercise 2.2.3
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2.2.3 Cox process

A Cox process is a (in general inhomogeneous) Poisson process with intensity measure Λ which
as such is a random measure. The induitive idea is stated in the following definition.
Definition 2.2.4
Let Λ = {Λ(B), B ∈ B(R+)} be a random a.s. locally finite measure. The random counting
measure N = {N(B), B ∈ B(R+)} is called Cox counting measure (or doubly stochastic
Poisson measure) with random intensity measure Λ if for arbitrary n ∈ N, k1, . . . , kn ∈ N0
and 0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn it holds that P(∩ni=1{N((ai, bi]) = ki}) =
E
(∏n

i=1 e
−λ((ai,bi]) Λki ((ai,bi])

ki!

)
. The process {N(t), t ≥ 0} with N(t) = N((0, t]) is called Cox

process (or doubly stochastic Poisson process) with random intensity measure Λ.
Example 2.2.1 1. If the random measure Λ is a.s. absolutly continuous with respect to the

Lebesgue measure, i.e., Λ(B) =
∫
B λ(t)dt, B - bounded, B ∈ B(R+), where {λ(t), t ≥ 0}

is a stochastic process with a.s. Borel-measurable Borel-integrable trajectories, then
λ(t) ≥ 0 a.s. for all t ≥ 0 is called the intensity process of N .

2. In particular, it can be that λ(t) ≡ Y where Y is a non negative random variable. Then
it holds that Λ(B) = Y ν1(B), thus N has a random intensity Y . Such Cox processes are
called mixed Poisson processes.

A Cox process N = {N(t), t ≥ 0} with intensity process {λ(t), t ≥ 0} can be build explicitly
as the following. Let Ñ = {Ñ(t), t ≥ 0} be a homogeneous Poisson process with intensity 1,
which is independent of {λ(t), t ≥ 0}. Then N d= N1, where the process N1 = {N1(t), t ≥ 0}
is given by N1(t) = Ñ(

∫ t
0 λ(y)dy), t ≥ 0. The assumption N d= N1 of course has to be proven.

However, we will assume it without proof. It also is the basis for the simulation of the Cox
process N .

2.3 Additional exercises
Exercise 2.3.1
Let {Nt}t≥0 be a renewal process with interarrival times Ti, which are exponentially distributed,
i.e. Ti ∼ Exp(λ).

a) Proof that: Nt is Poisson distributed for every t > 0.

b) Determine the parameter of this Poisson distribution.

c) Determine the renewal function H(t) = ENt.

Exercise 2.3.2
Proof that: A (real-valued) stochastic process X = {X(t), t ∈ [0,∞)} with independent incre-
ments already has stationary increments if the distribution of the random variable X(t+ h)−
X(h) does not depend on h.
Exercise 2.3.3
Let N = {N(t), t ∈ [0,∞)} be a Poisson process with intensity λ. Calculate the probabilities
that within the interval [0, s] exactly i events occur under the condition that within the interval
[0, t] exactly n events occur, i.e. P(N(s) = i | N(t) = n) for s < t, i = 0, 1, . . . , n.
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Exercise 2.3.4
Let N (1) = {N (1)(t), t ∈ [0,∞)} and N (2) = {N (2)(t), t ∈ [0,∞)} be independent Poisson
processes with intensities λ1 and λ2. In this case the independence indicates that the sequences
T

(1)
1 , T

(1)
2 , . . . and T (2)

1 , T
(2)
2 , . . . are independent. Show that N = {N(t) := N (1)(t)+N (2)(t), t ∈

[0,∞)} is a Poisson process with intensity λ1 + λ2.
Exercise 2.3.5 (Queuing paradox):
Let N = {N(t), t ∈ [0,∞)} be a renewal process. Then T (t) = SN(t)+1− t is called the time of
excess, C(t) = t − SN(t) the current lifetime and D(t) = T (t)+C(t) = TN(t)+1 the lifetime at
time t > 0. Now let N = {N(t), t ∈ [0,∞)} be a Poisson process with intensity λ.

a) Calculate the distribution of the time of excess T (t).

b) Show that the distribution of the current lifetime is given by P(C(t) = t) = e−λt and the
density is given by fC(t)|N(t)>0(s) = λe−λs1{s ≤ t}.

c) Show that P(D(t) ≤ x) = (1− (1 + λmin{t, x})e−λx)1{x ≥ 0}.

d) To determine ET (t), one could argue like this: On average t lies in the middle of the
surrounding interval of interarriving time (SN(t), SN(t)+1), i.e. ET (t) = 1

2E(SN(t)+1 −
SN(t)) = 1

2ETN(t)+1 = 1
2λ . Considering the result from part (a) this reason is false.

Where is the mistake in the reasoning?

Exercise 2.3.6
Gegeben sei ein zusammengesetzter Poisson-Prozess X = {X(t) :=

∑N(t)
i=1 Ui, t ≥ 0}. Sei

MN(t)(s) = EsN(t), s ∈ (0, 1), die erzeugende Funktion des Poisson-Prozesses N(t), L{U}(s) =
E exp{−sU} die Laplace-Transformierte von Ui, i ∈ N, und L{X(t)}(s) die Laplace-Transformierte
von X(t). Beweisen Sie, dass

L{X(t)}(s) = MN(t)(L{U}(s)), s ≥ 0

gilt.
Exercise 2.3.7
Given is a compound Poisson process X = {X(t), t ∈ [0,∞)} with Ui i.i.d., U1 ∼ Exp(γ),
where the intensity of N(t) is given by λ. Show that for the Laplace transform L{X(t)}(s) of
X(t) it holds:

L{X(t)}(s) = exp
{
− λts

γ + s

}
.

Exercise 2.3.8
Write a function in R (alternatively: Java) to which we pass the parameters time t, intensity
λ and a value γ. The return of the function is a random value of a compound Poisson process
with characteristics (λ,Exp(γ)) at time t. Note: the results have to be printed in commented,
structured and readable form.
Exercise 2.3.9
The stochastic process N = {N(t), t ∈ [0,∞)} be a Cox process with intensity function λ(t) =
Z, where Z is a discrete random variable which takes values λ1 and λ2 with probability 1/2.
Determine the moment generating function as well as the expected value and the variance of
N(t).
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Exercise 2.3.10
Given are two independent homogeneous Poisson processes N (1) = {N (1)(t), t ∈ [0,∞)} and
N (2) = {N (2)(t), t ≥ 0} with intensities λ1 and λ2. Moreover, X ≥ 0 be an arbitrary non
negative random variable which is independent of N (1) and N (2). Show that the process N =
{N(t), t ≥ 0} with

N(t) =
{
N (1)(t), t ≤ X,
N (1)(X) +N (2)(t−X), t > X

is a Cox process whose intensity processe λ = {λ(t), t ≥ 0} is given by

λ(t) =
{
λ1, t ≤ X,
λ2, t > X.



3 Wiener process

3.1 Elementary properties

In example 2) of section 1.2 we defined the Brownian motion (or Wiener process) W =
{W (t), t ≥ 0} as an Gaussian process with EW (t) = 0 and cov(W (s),W (t)) = min{s, t},
s, t ≥ 0. We now give a new (equivalent) definition.

Definition 3.1.1
A stochastic process W = {W (t), t ≥ 0} is called Wiener process (or Brownian motion) if

1. W (0) = 0 a.s.

2. W possesses independent increments

3. W (t)−W (s) ∼ N (0, t− s), 0 ≤ s < t

The existence of W according to definition 3.1.1 follows from theorem 1.7.1 since ϕs,t(z) =

Eeiz(W (t)−W (s)) = e−
(t−s)z2

2 , z ∈ R, and e−
(t−u)z2

2 e−
(u−s)z2

2 = e−
(t−s)z2

2 for 0 ≤ s < u < t, thus
ϕs,u(z)ϕu,t(z) = ϕs,t(z), z ∈ R. From theorem 1.3.1 the existence of a version with continuous
trajectories follows.

Exercise 3.1.1
Show that the theorem holds for α = 3, σ = 1

2 .

The Wiener process is called after the mathematician Norbert Wiener (1894 - 1964). Why
does the Brownian motion exist? According to theorem of Kolmogorov (theorem 1.1.2) it exists
a real-valued Gaussian process X = {X(t), t ≥ 0} with mean value EX(t) = µ(t), t ≥ 0, and
covariance function cov(X(s), X(t)) = C(s, t), s, t ≥ 0 for every function µ : R+ → R and every
positive semidefinite function C : R+×R+ → R. We just have to show that C(s, t) = min{s, t},
s, t ≥ 0 is positive semidefinite.

Exercise 3.1.2
Proof this!

Therefore, often it is assumed that the Wiener process possesses continuous paths (just take
its corresponding version)

Theorem 3.1.1
Both definitions of the Wiener process are equivalent.

Proof 1. From definition in section 1.2 follows definition 3.1.1.
W (0) = 0 a.s. follows from var(W (0)) = min{0, 0} = 0. Now we proof that the increments
of W are independent. If Y ∼ N (µ,K) is a n-dimensional Gaussian random vector and
A a (n× n)-matrix, then AY ∼ N (Aµ,AKA>) holds, this follows from the explicit form
of the characteristic function of Y . Now let n ∈ N, 0 = t0 ≤ t1 < . . . < tn, Y =

38
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(W (t0),W (t1), . . . ,W (tn))>. For Z = (W (t0),W (t1)−W (t0), . . . ,W (tn)−W (tn−1))> it
holds that Z = AY , where

A =


1 0 0 . . . . . . 0
−1 1 0 . . . . . . 0

0 −1 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1

 .

Thus Z is also Gaussian with a covariance matrix which is diagonal. Indeed it holds
cov(W (ti+1)−W (ti),W (tj+1)−W (tj)) = min{ti+1, tj+1}−min{ti+1, tj}−min{ti, tj+1}+
min{ti, tj} = 0 for i 6= j. Thus the coordinates of Z are uncorrelated, which means
independence in case of a multivariate Gaussian distribution. Thus the increments of
W are independent. Moreover, for arbitrary 0 ≤ s < t it holds that W (t) − W (s) ∼
N (0, t − s). The normal distribution follows since Z = AY is Gaussian, obviously it
holds that EW (t)−EW (s) = 0 and var(W (t)−W (s)) = var(W (t))−2 cov(W (s),W (t)) +
var(W (s)) = t− 2 min{s, t}+ s = t− s.

2. From definition 3.1.1 the definition in section 1.2 follows.
SinceW (t)−W (s) ∼ N (0, t−s) for 0 ≤ s < t, it holds cov(W (s),W (t)) = E[W (s)(W (t)−
W (s)+W (s))] = EW (s)E(W (t)−W (s))+varW (s) = s, thus it holds cov(W (s),W (t)) =
min{s, t}. From W (t)−W (s) ∼ N (0, t−s) and W (0) = 0 it also follows that EW (t) = 0,
t ≥ 0. Since W is a Gaussian process, point 1) of the proof follows from the relation
Y = A−1Z.

Definition 3.1.2
The process {W (t), t ≥ 0}, W (t) = (W1(t), . . . ,Wd(t))>, t ≥ 0, is called d-dimensional Brow-
nian motion if Wi = {Wi(t), t ≥ 0} are independent Wiener processes, i = 1, . . . , d.
The definitions above and exercise 3.1.1 ensure the existence of a Wiener process with con-

tinuous paths. How do we find an explicit way of building these paths? We will talk about
that in the proximate section.

3.2 Explicit construction of a Wiener process
First we construct the Wiener process on the interval [0, 1]. The main idea of the construction
is to introduce a stochastic process X = {X(t), t ∈ [0, 1]} which is defined on a subprobability
space of (Ω,A,P) with X d= W , where X(t) =

∑∞
n=1 cn(t)Yn, t ∈ [0, 1], {Yn}n∈N is a sequence

of i.i.d. N (0, 1)-random variables and cn(t) =
∫ t

0 Hn(s)ds, t ∈ [0, 1], n ∈ N. Here, {Hn}n∈N is
the orthonormed hair basis in L2([0, 1]) which is introduced shortly now.

3.2.1 Hair- and Schauder-functions

Definition 3.2.1
The functions Hn : [0, 1] → R, n ∈ N, are called hair functions if H1(t) = 1, t ∈ [0, 1],
H2(t) = 1[0, 1

2 ](t) − 1( 1
2 ,1](t), Hk(t) = 2

n
2 (1In,k(t) − 1Jn,k(t)), t ∈ [0, 1], 2n < k ≤ 2n+1, where

In,k = [an,k, an,k + 2−n−1], Jn,k = (an,k + 2−n−1, an,k + 2−n], an,k = 2−n(k − 2n − 1), n ∈ N.
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Abb. 3.1: Hair functions

Lemma 3.2.1
The function system {Hn}n∈N is an orthonormed basis in L2([0, 1]) with scalar product
< f, g >=

∫ 1
0 f(t)g(t)dt, f, g ∈ L2([0, 1]).

Proof The orthonormality of the system < Hk, Hn >= δkn, k, n ∈ N directly follows from
definition 3.2.1. Now we proof the completeness of {Hn}n∈N. It is sufficient to show that for
arbitrary function g ∈ L2([0, 1]) with < g,Hn >= 0, n ∈ N, it holds g = 0 almost everywhere
on [0, 1]. In fact, we always can write the indicator function of an interval 1[an,k,an,k+2−n−1] as
a linear combination of Hn, n ∈ N.

1[0, 1
2 ] = (H1 +H2)

2 ,

1( 1
2 ,1] = (H1 −H2)

2 ,

1[0, 1
4 ] =

(1[0, 1
2 ] + 1√

2H2)
2 ,

1( 1
4 ,

1
2 ] =

(1[0, 1
2 ] −

1√
2H2)

2 ,

...

1[an,k,an,k+2−n−1] =
(1an,k,an,k+2−n + 2−

n
2Hk)

2 , 2n < k ≤ 2n+1.

Therefore it holds
∫ (k+1)

2n
k

2n
g(t)dt = 0, n ∈ N0, k = 1, . . . , 2n − 1, and thus G(t) =

∫ t
0 g(s)ds = 0

for t = k
2n , n ∈ N0, k = 1, . . . , 2n − 1. Since G is continuous on [0, 1], it follows G(t) = 0,

t ∈ [0, 1], and thus g(s) = 0 for almost every s ∈ [0, 1].

From lemma 3.2.1 it follows that two arbitrary functions f, g ∈ L2([0, 1]) have notations
f =

∑∞
n=1 < f,Hn > Hn and g =

∑∞
n=1 < g,Hn > Hn (these series converge in L2([0, 1])) and

< f, g >=
∑∞
n=1 < f,Hn >< g,Hn > (Parseval identity).

Definition 3.2.2
The functions Sn(t) =

∫ t
0 Hn(s)ds =< 1[0,t], Hn >, t ∈ [0, 1], n ∈ N are called Schauder

functions.
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Abb. 3.2: Schauder functions

Lemma 3.2.2
It holds:

1. Sn(t) ≥ 0, t ∈ [0, 1], n ∈ N,

2.
∑2n
k=1 S2n+k(t) ≤ 1

22−
n
2 , t ∈ [0, 1], n ∈ N,

3. Let {an}n∈N be a sequence of real numbers with an = O(nε), ε < 1
2 , n → ∞. Then

the series
∑∞
n=1 anSn(t) converges absolutly and uniformly in t ∈ [0, 1] and therefore is a

continuous function on [0, 1].

Proof 1. follows directly from definition 3.2.2.

2. follows since functions S2n+k for k = 1, . . . , 2n have disjoint supports and S2n+k(t) ≤
S2n+k(2k−1

2n−1 ) = 2−
n
2−1, t ∈ [0, 1].

3. It is sufficien to show that Rm = supt∈[0,1]
∑
k>2n |ak|Sk(t) −−−→n→∞

0. For every k ∈ N and
c > 0 it holds |ak| ≤ ckε. Therefore it holds for all t ∈ [0, 1], n ∈ N∑

2n<k≤2n+1

|ak|Sk(t) ≤ c · 2(n+1)ε ·
∑

2n<k≤2n+1

Sk(t) ≤ c · 2(n+1)ε · 2−
n
2−1 ≤ c · 2ε−n( 1

2−ε).

Since ε < 1
2 , it holds Rm ≤ c · 2

ε∑
n≥m 2−n( 1

2−ε) −−−−→
m→∞

0.

Lemma 3.2.3
Let {Yn}n∈N be a sequence of (not necessarily independent) random variables defined on
(Ω,A,P), Yn ∼ N (0, 1), n ∈ N. Then it holds |Yn| = O((logn)

1
2 ), n→∞.

Proof We have to show that for c >
√

2 and almost all ω ∈ Ω it exists a n0 = n0(ω, c) ∈ N
such that |Yn| ≤ c(logn)

1
2 for n ≥ n0. If Y ∼ N (0, 1), x > 0, it holds

P(Y > x) = 1√
2π

∫ ∞
x

e−
y2
2 dy = 1√

2π

∫ ∞
x

(
−1
y

)
d

(
e−

y2
2

)
= 1√

2π

(1
x
e−

y2
2 −

∫ ∞
x

e−
y2
2

1
y2dy

)
≤ 1√

2π
1
x
e−

x2
2 .
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(We also can show that Φ̄(x) ∼ 1√
2π

1
xe
−x

2
2 , x→∞.) Thus for c >

√
2 it holds

∑
n≥2

P(|Yn| > c(logn)
1
2 ) ≤ c−1 2√

2π
∑
n≥2

(logn)−
1
2 e−

c2
2 logn = c−1√2√

π

∑
n≥2

(logn)−
1
2n−

c2
2 <∞.

According to the lemma of Borel-Cantelli (cf. WR, lemma 2.2.1) it holds P(∩n ∪k≥nAk) = 0 if∑
k P(Ak) <∞ with Ak = {|Yk| > e · (log k)

1
2 }, k ∈ N. Thus Ak occurs in infinite number only

with probability 0, with |Yn| ≤ c(logn)
1
2 for n ≥ n0.

3.2.2 Wiener process with a.s. continuous paths

Lemma 3.2.4
Let {Yn}n∈N be a sequence of independent N (0, 1)-distributed random variables. Let {an}n∈N
and {bn}n∈N be sequences of numbers with

∑2m
k=1 |a2m+k| ≤ 2−

m
2 ,
∑2m
k=1 |b2m+k| ≤ 2−

m
2 , m ∈ N.

Then the limits U =
∑∞
n=1 anYn and V =

∑∞
n=1 bnYn, U ∼ N (0,

∑∞
n=1 a

2
n), V ∼ N (0,

∑∞
n=1 b

2
n)

exist a.s., where cov(U, V ) =
∑∞
n=1 anbn. U and V are independent if and only if cov(U, V ) = 0.

Proof Lemma 3.2.2 and 3.2.3 reveal the a.s. existence of the limits U and V (replace an by
Yn and Sn by e.g. bn in lemma 3.2.2). From the stability under convolution of the normal
distribution it follows for U (m) =

∑m
n=1 anYn, V (m) =

∑m
n=1 bnYn, that U (m) ∼ N (0,

∑m
n=1 a

2
n),

V (m) ∼ N (0,
∑m
n=1 b

2
n). Since U (m) d−→ U , V (m) d−→ V it follows U ∼ N (0,

∑∞
n=1 a

2
n), V ∼

N (0,
∑∞
n=1 b

2
n). Moreover, it holds

cov(U, V ) = lim
m→∞

cov(U (m), V (m))

= lim
m→∞

m∑
i,j=1

aibj cov(Yi, Yj)

= lim
m→∞

m∑
i=1

aibi =
∞∑
i=1

aibi,

according to the dominated convergence theorem of Lebesgue, since according to lemma 3.2.3
it holds |Yn| ≤ c (logn)

1
2︸ ︷︷ ︸

≤cnε, ε< 1
2

, for n ≥ N0, and the dominated series converges according to lemma

3.2.2:

2m+1∑
n,k=2m

anbkYnYk
f.s.
≤

2m+1∑
n,k=2m

anbkc
2nεkε ≤ 22ε(m+1) · 2−

m
2 · 2−

m
2 = 2−(1−2ε)m, 1− 2ε > 0.

For sufficient large m it holds
∑∞
n,k=m anbkYnYk ≤

∑∞
j=m 2−(1−2ε)j < ∞, and this series con-

verges a.s.
Now we show

cov(U, V ) = 0 ⇐⇒ U and V are independent

Independence always results in the uncorrelation of random variables. We proof the other
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direction. From (U (m), V (m)) d−−−−→
m→∞

(U, V ) it follows ϕ(U(m),V (m)) −−−−→m→∞
ϕ(U,V ), thus

ϕ(U(m),V (m))(s, t) = lim
m→∞

E exp{i(t
m∑
k=1

akYk + s
m∑
n=1

bnYn)}

= lim
m→∞

E exp{i
m∑
k=1

(tak + sbk)Yk} = lim
m→∞

m∏
k=1

E exp{i(tak + sbk)Yk}

= lim
m→∞

m∏
k=1

exp{−(tak + sbk)2

2 } = exp{−
∞∑
k=1

(tak + sbk)2

2 }

= exp{− t
2

2

∞∑
k=1

a2
k} exp{ts

∞∑
k=1

akbk︸ ︷︷ ︸
cov(U,V )=0

} exp{−s
2

2

∞∑
k=1

b2k} = ϕU (t)ϕV (s),

s, t ∈ R. Thus, U and V are independent if cov(U, V ) = 0.

Theorem 3.2.1
Let {Yn, n ∈ N} be a sequence of i.i.d. random variables that are N (0, 1)-distributed, defined
on a probability space (Ω,A,P). Then it exists a subprobability space (Ω0,A0,P) of (Ω,A,P)
and a stochastic process X = {X(t), t ∈ [0, 1]} on it such that X(t) =

∑∞
n=1 YnSn(t), t ∈ [0, 1],

and X d= W . Here, {Sn}n∈N is the family of Schauder functions.

Proof According to lemma 3.2.2, 2) the coefficients Sn(t) fulfill the conditions of lemma 3.2.4
for every t ∈ [0, 1]. In addition to that it exists according to lemma 3.2.3 a subset Ω0 ⊂ Ω,
Ω0 ∈ A with P(Ω0) = 1, such that for every ω ∈ Ω0 the relation |Yn(ω)| = O(

√
logn), n→∞,

holds. Let A0 = A ∩ Ω0. We restrict the probability space to (Ω0,A0,P). Then condition
an = Yn(ω) = O(nε), ε < 1

2 , is fulfilled since
√

logn < nε for sufficient large n, and according
to lemma 3.2.2, 3) the series

∑∞
n=1 Yn(ω)Sn(t) converges absolutly and uniformly in t ∈ [0, 1]

to the function X(ω, t), ω ∈ Ω0, which is a continuous function in t for every ω ∈ Ω0. X(·, t)
is a random variable since in lemma 3.2.4 the convergence of this series holds almost surely.
Moreover it holds X(t) ∼ N (0,

∑∞
n=1 S

2
n(t)), t ∈ [0, 1].

We show that this stochastic process, defined on (Ω0,A0,P), is a Wiener process. For that we
check the conditions of definition 3.1.1. We consider arbitrary times 0 ≤ t1 < t2, t3 < t4 ≤ 1



44 3 Wiener process

and evaluate

cov(X(t2)−X(t1), X(t4)−X(t3)) = cov(
∞∑
n=1

Yn(Sn(t2)− Sn(t1)),
∞∑
n=1

Yn(Sn(t4)− Sn(t3)))

=
∞∑
n=1

(Sn(t2)− Sn(t1))(Sn(t4)− Sn(t3))

=
∞∑
n=1

(< Hn, 1[0,t2] > − < Hn, 1[0,t1] >)×

(< Hn, 1[0,t4] > − < Hn, 1[0,t3] >)

=
∞∑
n=1

< Hn, 1[0,t2] − 1[0,t1] >< Hn, 1[0,t4] − 1[0,t3] >

= < 1[0,t2] − 1[0,t1], 1[0,t4] − 1[0,t3] >

= < 1[0,t2], 1[0,t4] > − < 1[0,t1], 1[0,t4] >

− < 1[0,t2], 1[0,t3] > + < 1[0,t1], 1[0,t3] >

= min{t2, t4} −min{t1, t4} −min{t2, t3}+ min{t1, t3},

since < 1[0,s], 1[0,t] >=
∫min{s,t}

0 du = min{s, t}, s, t ∈ [0, 1]. If 0 ≤ t1 < t2 ≤ t3 < t4 < 1, it holds
cov(X(t2)−X(t1), X(t4)−X(t3)) = t2 − t1 − t2 + t1 = 0, thus the increments of X (according
to lemma 3.2.4) are uncorrelated. Moreover it holds X(0) ∼ N (0,

∑∞
n=1 S

2
n(0)) = N (0, 0),

therefore X(0) f.s.= 0. From that for t1 = 0, t2 = t, t3 = 0, t4 = t it follows that var(X(t)) = t,
t ∈ [0, 1], and for t1 = t3 = s, t2 = t4 = t, that var(X(t) − X(s)) = t − s − s + s = t − s,
0 ≤ s < t ≤ 1. Thus it holds X(t) − X(s) ∼ N (0, t − s), and according to definition 3.1.1 it
holds X d= W .

Remark 3.2.1 1. Theorem 3.2.1 is the basis for an approximative simulation of the paths
of a Brownian motion through the partial sums X(n)(t) =

∑n
k=1 YkSk(t), t ∈ [0, 1], for

sufficient large n ∈ N.

2. The construction in theorem 3.2.1 can be used to induce the Wiener process with con-
tinuous paths on the interval [0, t0] for arbitrary t0 > 0. If W = {W (t), t ∈ [0, 1]} is a
Wiener process on [0, 1] then Y = {Y (t), t ∈ [0, t0]} with Y (t) =

√
t0W ( tt0 ), t ∈ [0, t0], is

a Wiener process on [0, t0].
Exercise 3.2.1
Proof that.

3. The Wiener process W with continuous paths on R+ can be constructed as the following.
Let W (n) = {W (n)(t), t ∈ [0, 1]} be independent copies of the Wiener process as in
theorem 3.2.1. Define W (t) =

∑∞
n=1 1(t ∈ [n− 1, n])[

∑n−1
k=1 W

(k)(1)−W (n)(t− (n− 1))],
t ≥ 0, thus,

W (t) =


W (1)(t), t ∈ [0, 1],
W (1)(1) +W (2)(t− 1), t ∈ [1, 2],
W (1)(1) +W (2)(1) +W (3)(t− 2), t ∈ [2, 3],
etc.

Exercise 3.2.2
Show that the introduced stochastic process W = {W (t), t ≥ 0} is a Wiener process on R+.
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Abb. 3.3:

3.3 Distribution- and path properties of Wiener processes

3.3.1 Distribution of the maximum

Theorem 3.3.1
Let W = {W (t), t ∈ [0, 1]} be a Wiener process defined on a probability space (Ω,F ,P). Then
it holds:

P
(

max
t∈[0,1]

W (t) > x

)
≤
√

2
π

∫ ∞
x

e−
y2
2 dy, (3.3.1)

for all x ≥ 0.

The mapping maxt∈[0,1]W (t) : Ω → [0,∞) given in 3.3.1 is a well-defined random variable
since it holds: maxt∈[0,1]W (t, ω) = limn→∞maxi=1,...,kW ( ik , ω) for all ω ∈ Ω since the trajec-
tories of {W (t), t ∈ [0, 1]} are continuous. From 3.3.1 it follows that maxt∈[0,1]W (t) has an
exponential bounded tail: thus maxt∈[0,1]W (t) has finite k-th moments.
Useful ideas for the proof of theorem 3.3.1

Let {W (t), t ∈ [0, 1]} be a Wiener process and Z1, Z2, . . . a sequence of independent random
variables with P(Zi = 1) = P(Zi = −1) = 1

2 for all i ≥ 1. For every n ∈ N we define
{W̃n(t), t ∈ [0, 1]} by W̃n(t) = Sbntc√

n
+ (nt − bntc)Zbntc+1√

n
, where Si = Z1 + . . . + Zi, i ≥ 1,

S0 = 0.

Lemma 3.3.1
For every k ≥ 1 and arbitrary t1, . . . , tk ∈ [0, 1] it holds:

(
W̃ (n)(t1), . . . , W̃ (n)(tk)

)> d→ (W (t1), . . . ,W (tk))> .

Proof Special case k = 2 (for k > 2 the proof is analogous). Let t1 < t2. For all s1, s2 ∈ R it
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holds:

s1W̃
(n)(t1) + s2W̃

(n)(t2) = (s1 + s2)
Sbnt1c√

n
+ s2

(Sbnt2c − Sbnt1c+1)
√
n

+Zbnt1c+1((nt1 − bnt1c)
s1√
n

+ s2√
n

)

+Zbnt2c+1(nt2 − bnt2c)
s2√
n
.

lim
n→∞

Eei(s1W̃ (n)(t1)+s2W̃ (n)(t2)) = lim
n→∞

Eei
s1+s2√

n
Sbnt1cEei

s2√
n

(Sbnt2c−Sbnt1c+1)

=
∣∣∣∣∣Eei s1+s2√

n
sbnt1c = ϕSbnt1c

(
s1 + s2√

n

)
=
(
ϕZ1

(
s1 + s2√

n

))bnt1c∣∣∣∣∣
= lim

n→∞

(
ϕZ1

(
s1 + s2√

n

))bnt1c (
ϕZ1

(
s2√
n

))bnt2c−bnt1c−1

=
∣∣∣∣ lim
n→∞

ϕn
(
s√
n

)
= e−

s2
2

∣∣∣∣
= e−

(s2
1t1+2s1s2 min{t1,t2}+s

2
2t2)

2

= ϕ(W (t1),W (t2))(s1, s2),

where ϕ(W (t1),W (t2)) is the characteristic function of (W (t1),W (t2)).

Lemma 3.3.2
Let W̃ (n) = maxt∈[0,1] W̃

(n)(t). Then it holds:

W̃ (n) = 1√
n

max
k=1,...,n

Sk, for all n = 1, 2, . . .

and
lim
n→∞

P(W̃ (n) ≤ x) =
√

2
π

∫ x

0
e−

y2
2 dy, for all x ≥ 0.

Without proof

Proof of theorem 3.3.1
From lemma 3.3.1 it follows for x ≥ 0, k ≥ 1 and t1, . . . , tn ∈ [0, 1]

lim
n→∞

P
(

max
t∈{t1,...,tk}

W̃ (n)(t) > x

)
= P

(
max

t∈{t1,...,tk}
W (t) > x

)

⇒ P
(

max
t∈[0,1]

W̃ (n)(t) > x

)
≥ P

(
max

t∈{t1,...,tk}
W (t) > x

)
.

With (t1, . . . , tk)> =
(

1
k , . . . ,

k
k

)>
and maxt∈[0,1]W (t, ω) = limk→∞maxi=1,...,kW

(
1
k , ω

)
it

holds
lim
n→∞

P
(

max
t∈[0,1]

W̃ (n)(t) > x

)
≥ P

(
max
t∈[0,1]

W (t) > x

)
.

The assertion follows from lemma 3.3.2.
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Corollary 3.3.1
Let {W (t), t ∈ [0, 1]} be a Wiener process. Then it holds:

P
(

lim
t→∞

W (t)
t

= 0
)

= 1.

Proof ∣∣∣∣W (t)
t
− W (n)

n

∣∣∣∣ ≤ ∣∣∣∣W (t)
t
− W (n)

t

∣∣∣∣+ ∣∣∣∣W (n)
t
− W (n)

n

∣∣∣∣
≤ |W (n)|

∣∣∣∣1t − 1
n

∣∣∣∣+ 1
n

sup
t∈[n,n+1]

|W (t)−W (n)|

≤ 2
n
|W (n)| − Z(n)

n
,

where Z(n) = supt∈[0,1] |W (n+ t)−W (n)|, t ∈ [n, n+ 1). It holds

2
n
|W (n)| = 2

n

∣∣∣∣∣
∞∑
i=1

(W (i)−W (i− 1))
∣∣∣∣∣ a.s.−−→ 2 |EW (1)| = 0.

We show that EZ(1) <∞.

P (Z(1) > x) ≤ P
(

max
t∈[0,1]

W (t) > x

)
+ P

(
max
t∈[0,1]

(−W (t)) > x

)
= 2P

(
max
t∈[0,1]

W (t) > x

)
,

since {−W (t), t ∈ [0, 1]} is also a Wiener process. It holds

P (Z(1) > x) ≤ 2
√

2
π

∫ ∞
x

e−
y2
2 dy and thus Z(n)

n
a.s.−−→ 0 for n→∞.

Hence W (t)
t

a.s.−−→ 0 for t→∞.

3.3.2 Invariance properties

Specific transformations of the Wiener process again reveal a Wiener process.
Theorem 3.3.2
Let {W (t), t ≥ 0} be a Wiener process. Then the stochastic processes {Y (i)(t), t ≥ 0},
i = 1, . . . , 4, with

Y (1)(t) = −W (t), (Symmetry)
Y (2)(t) = W (t+ t0)−W (t0) for a t0 > 0, Translation of the origin)
Y (3)(t) =

√
cW ( tc) for a c > 0, (Scaling)

Y (4)(t) =
{
tW (1

t ), t > 0,
0, t = 0. (Reflection at t=0)

are Wiener processes as well.

Proof 1. Y (i), i = 1, . . . , 4, have independent increments with Y (i)(t2)−Y (i)(t1) ∼ N (0, t2−
t1).
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2. Y (i)(0) = 0, i = 1, . . . , 4.

3. Y (i), i = 1, . . . , 3, have continuous trajectories. {Y (i)(t), t ≥ 0} has continuous trajecto-
ries for t > 0.

4. We have to proof that limt→0 tW (1
t ) = 0.

limt→0 tW (1
t ) = limt→∞

W (t)
t

a.s.= 0 because of corollary 3.3.1.

Corollary 3.3.2
Let {W (t), t ≥ 0} be a Wiener process. Then it holds:

P
(

sup
t≥0

W (t) =∞
)

= P
(

inf
t≥0

W (t) = −∞
)

= 1.

Proof For x, c > 0 it holds:

P
(

sup
t≥0

W (t) > x

)
= P

(
sup
t≥0

W

(
t

c

)
>

x√
c

)
= P

(
sup
t≥0

W (t) > x√
c

)

⇒ P
(
{sup
t≥0

W (t) = 0} ∪ {sup
t≥0

W (t) =∞}
)

= P(sup
t≥0

W (t) = 0) + P(sup
t≥0

W (t) =∞) = 1.

Moreover it holds

P
(

sup
t≥0

W (t) = 0
)

= P
(

sup
t≥0

W (t) ≤ 0
)
≤ P

(
W (t) ≤ 0, sup

t≥1
W (t) ≤ 0

)

= P
(
W (1) ≤ 0, sup

t≥1
(W (t)−W (1)) ≤ −W (1)

)

=
∫ 0

−∞
P
(

sup
t≥1

W (t)−W (1) ≤ −W (t) |W (1) = x

)
P (W (1) ∈ dx)

=
∫ 0

−∞
P
(

sup
t≥0

(W (t)−W (1)) ≤ −x |W (1) = x

)
P (W (1) ∈ dx)

=
∫ 0

−∞
P
(

sup
t≥0

W (t) = 0
)

P (W (1) ∈ dx)

= P
(

sup
t≥0

W (t) = 0
)

1
2 ,

thus P
(
supt≥0W (t) = 0

)
= 0 and thus P

(
supt≥0W (t) =∞

)
= 1.

Analogous one can show that P (inft≥0W (t) = −∞) = 1.

Remark 3.3.1
P
(
supt≥0X(t) =∞, inft≥0X(t) = −∞

)
= 1 implies that the trajectories of W oscillate be-

tween positive and negative values on [0,∞) an infinite number of times.
Corollary 3.3.3
Let {W (t), t ≥ 0} be a Wiener process. Then it holds

P (ω ∈ Ω : W (ω) is nowhere differentiable in [0,∞)) = 1.
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Proof

{ω ∈ Ω : W (ω) is nowhere differentiable in [0,∞)}
= ∩∞n=0{ω ∈ Ω : W (ω) is nowhere differentiable in [n, n+ 1)}.

It is sufficient to show that P(ω ∈ Ω : W (ω) is differentiable for a t0 = t0(ω) ∈ [0, 1]) = 0.
Define the set

Anm =
{
ω ∈ Ω : it exists a t0 = t0(ω) ∈ [0, 1] with |X(t0ω + h, ω)−W (t0(ω, ω))| ≤ mh, ∀h ∈

[
0, 4
k

]}
.

Then it holds

{ω ∈ Ω : W (ω) differentiable for a t0 = t0(ω)} = ∪m≥1 ∪n≥1 Anm.

We still have to show P(∪m≥1 ∪n≥1 Anm) = 0.
Let k0(ω) = mink=1,2,...{ kn ≥ t0(ω)}. Then it holds for ω ∈ Anm and j = 0, 1, 2∣∣∣∣W (

k0(ω) + j + 1
n

, ω

)
−W

(
k0(ω) + j

n
, ω

)∣∣∣∣ ≤ ∣∣∣∣W (
k0(ω) + j + 1

n
, ω

)
−W (t0(ω), ω)

∣∣∣∣
+
∣∣∣∣W (

k0(ω) + j

n
, ω

)
−W (t1(ω), ω)

∣∣∣∣
≤ 8m

n
.

Let ∆0(k) = W (k+1
n )−W ( kn). Then it holds

P(Anm) ≤ P
(
∪nk=0 ∪2

j=0 |∆n(k + j)| ≤ 8m
n

)
≤

n∑
k=0

P
(
∩2
j=0 |∆n(k + j)| ≤ 8m

n

)
= P

(
|∆n(0)| ≤ 8m

n

)

≤ (n+ 1)
( 16m√

2πn

)3
→ 0, n→∞,

and since Anm ⊂ An+1,m holds, it follows P (Anm) = 0.

Corollary 3.3.4
With probability 1 it holds:

sup
n≥1

sup
0≤t0<...<tn≤1

n∑
i=1
|W (ti)−W (ti−1)| =∞,

i.e. {W (t), t ∈ [0, 1]} possesses a.s. trajectories with unbounded variation.

Proof Since every continuous function g : [0, 1] → R with bounded variation is differentiable
almost everywhere, the assertion follows from corollary 3.3.3.

Alternative proof
It is sufficient to show that limn→∞

∑2n
i=1

∣∣∣W (
it
2n
)
−W

(
(i−1)t

2n
)∣∣∣ =∞.
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Let Zn =
∑2n
i=1

(
W
(
it
2n
)
−W

(
(i−1)t

2n
))2
− t. Hence EZn = 0 and EZ2

n = t22−n+1 and with
Tchebysheff’s inequality

P (|Zn| < ε) ≤ EZ2
n

ε2 =
(
t

ε

)2
2−n+1, i.e.

∞∑
i=1

P (|Zn| > ε) a.s.= 0.

From lemma of Borel-Cantelli it follows that limn→∞ Zn = 0 almost surely and thus

0 ≤ t ≤
2n∑
i=1

(
W

(
it

2n
)
−W

((i− 1)t
2n

))2

≤ lim inf
n→∞

max
1≤k≤2n

∣∣∣∣W (
kt

2n
)
−W

((k − 1)t
2n

)∣∣∣∣ 2n∑
i=1

∣∣∣∣W (
it

2n
)
−W

((i− 1)t
2n

)∣∣∣∣ .
Hence the assertion follows since W has continuous trajectories and therefore

lim
n→∞

max
1≤k≤2n

∣∣∣∣W (
kt

2n
)
−W

((k − 1)t
2n

)∣∣∣∣ = 0.

3.4 Additional exercises
Exercise 3.4.1
Give an intuitive (exact!) method to realize trajectories of a Wiener process W = {W (t), t ∈
[0, 1]}. Thereby use the independence and the distribution of the increments ofW . Additionally,
write a program in R for the simulation of paths of W . Draw three paths t 7→ W (t, ω) for
t ∈ [0, 1] in a common diagram.
Exercise 3.4.2
Given are the Wiener process W = {W (t), t ∈ [0, 1]} and L := argmaxt∈[0,1]W (t). Show that
it holds:

P(L ≤ x) = 2
π

arcsin
√
x, x ∈ [0, 1].

Hint: Use relation maxr∈[0,t]W (r) d= |W (t)|.
Exercise 3.4.3
For the simulation of a Wiener process W = {W (t), t ∈ [0, 1]} we also can use the approxima-
tion

Wn(t) =
n∑
k=1

Sk(t)zk

where Sk(t), t ∈ [0, 1], k ≥ 1 are the Schauder functions, and zk ∼ N (0, 1) i.i.d. random
variables and the series converges almost surely for all t ∈ [0, 1] (n→∞).

a) Show that for all t ∈ [0, 1] the approximation Wn(t) also converges in the L2-sense to
W (t).

b) Write a program in R (alternative: C) for the simulation of a Wiener process W =
{W (t), t ∈ [0, 1]}.
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c) Simulate three paths t 7→ W (t, ω) for t ∈ [0, 1] and draw these paths into a common
diagram. Hereby consider the sampling points tk = k

n , k = 0, . . . , n with n = 28 − 1.

Exercise 3.4.4
For the Wiener process W = {W (t), t ≥ 0} we define the process of the maximum that is given
by M = {M(t) := maxs∈[0,t]W (s), t ≥ 0}. Show that it holds:

a) The density fM(t) of the maximum M(t) is given by

fM(t)(x) =
√

2
πt

exp
{
−x

2

2t

}
1{x ≥ 0}.

Hint: Use property P(M(t) > x) = 2P(W (t) > x).

b) Expected value and variance of M(t) are given by

EM(t) =
√

2t
π
, varM(t) = t(1− 2/π).

Now we define τ(x) := argmin s∈R{W (s) = x} as the first point in time for which the Wiener
process takes value x.

c) Determine the density of τ(x) and show that: Eτ(x) =∞.

Exercise 3.4.5
Let W = {W (t), t ≥ 0} be a Wiener process. Show that the following processes are Wiener
processes as well:

W1(t) =
{

0, t = 0,
tW (1/t), t > 0,

W2(t) =
√
cW (t/c), c > 0.

Exercise 3.4.6
The Wiener process W = {W (t), t ≥ 0} is given. Size Q(a, b) denotes the probability that the
process exceeds the half line y = at+ b, t ≥ 0, a, b > 0. Proof that:

a) Q(a, b) = Q(b, a) and Q(a, b1 + b2) = Q(a, b1)Q(a, b2),

b) Q(a, b) is given by Q(a, b) = exp{−2ab}.
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4.1 Lèvy processe
Definition 4.1.1
A stochastic process {X(t), t ≥ 0} is called Lèvy process, if

1. X(0) = 0,

2. {X(t)} has stationary and independent increments,

3. {X(t)} is stochastically continuous, i.e for an arbitrary ε > 0, t0 ≥ 0:

lim
t→t0

P(|X(t)−X(t0)| > ε) = 0.

Note

• One can easily consider, that compound Poisson processes fulfil the 3 conditions, since
for arb. ε > 0 it holds

P (|X(t)−X(t0)| < ε) ≥ P (|X(t)−X(t0)| > 0) ≤ 1− e−λ|t−t0| −−−→
t→t0

0.

• Further holds for the Wiener process for arb. ε > 0

P (|X(t)−X(t0)| > ε) =
√

2
π(t− t0)

∫ ∞
t

exp
(
− y2

2(t− t0)

)
dy

x= y√
t−t0= 2

π

∫ ∞
t√
t−t0

e−
x2
2 dx −−−→

t→t0
0.

4.1.1 Infinitely Divisibility
Definition 4.1.2
Let X : Ω → R be an arbitrary random variable. Then X is called infinitely divisible, if for
arbitrary n ∈ N there exist random variables Y1, Y2, . . . , Yn with X d= Y

(n)
1 + . . .+ Y

(n)
n .

Theorem 4.1.1
Let {X(t), t ≥ 0} be a Lèvy process. Then the random variable X(t) is infinitely divisible for
every t ≥ 0.

Proof For arbitrary t ≥ 0 and n ∈ N it obviously holds that

X (t) = X

(
t

n

)
+
(
X

(2t
n

)
−X

(
t

n

))
+ . . .+

(
X

(
nt

n

)
−X

((n− 1)t
n

))
.

Since {X(t)} has independent and stationary increments, summands are obviously independent
and identically distributed random variables.

52
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Lemma 4.1.1
The random variable X : Ω→ R is infinitely divisible if and only if the characteristic function
ϕX of X can be expressed for every n ≥ 1 in the form

ϕX(s) = (ϕn(s))n for all s ∈ R,

where ϕn are characteristic functions of random variables.

Proof „⇒ “
Y

(n)
1 , . . . , Y

(n)
n i.i.d., X d= Y

(n)
1 + . . . + Y

(n)
n . Hence, it follows that ϕX(s) =

∏n
i=1 ϕY (n)

i

(s) =
(ϕn(s))n.
“⇐ “

ϕX(s) = (ϕn(s))n ⇒ there exist Y (n)
1 , . . . , Y

(n)
n i.i.d. with characteristic function ϕn and

ϕY1,...,Yn(s) = (ϕn(s))n = ϕX(s). With the uniqueness theorem for characteristic functions
it follows that X d= Y

(n)
1 + . . .+ Y

(n)
n .

Lemma 4.1.2
Let X1, X2, . . . : Ω→ R be a sequence of random variables. If there exists a function ϕ : R→ C,
such that ϕ(s) is continuous in s = 0 and limn→∞ ϕXn(s) = ϕ(s) for all s ∈ R, then ϕ is the
characteristic function of a random variable X and it holds that Xn

d−→ X.

Definition 4.1.3
Let ν be a measure on the measure space (R,B(R)). Then ν is called a Lèvy measure, if
ν({0}) = 0 and ∫

R
min

{
y2, 1

}
ν(dy) <∞.

Abb. 4.1:

Note

• Apparently every Lèvy measure is σ-finite and

ν ((−ε, ε)c) < ε, for all ε > 0, (4.1.1)

where (−ε, ε)c = R | (−ε, ε).

• In particular every finite measure ν is a Lèvy measure, if ν({0}) = 0.
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• An equivalent condition to (4.1.1) is∫
R

y2

1 + y2 ν(dy) <∞, since y2

1 + y2 ≤ min
{
y2, 1

}
≤ 2 y2

1 + y2 . (4.1.2)

Theorem 4.1.2
Let a ∈ R, b ≥ 0 be arbitrary and let ν be an arbitrary Lèvy measure. Then the characteristic
function of a infinitely divisible random variable is given through the function ϕ : R→ C with

ϕ(s) = exp
{
ias− bs2

2 +
∫
R

(
eisy − 1− isy1(y ∈ (−1, 1))

)
ν(dy)

}
for all s ∈ R. (4.1.3)

Remark 4.1.1 • The formula (4.1.3) is also called Lèvy-Chintschin formula.

• The inversion of theorem 4.1.2 also holds, hence every infinitely divisible random variable
has such a representation. Therefore the characteristic triplet (a, b, ν) is also called Lèvy
characteristic of an infinitely divisible random variable.

Proof des Theorems 4.1.2 1st step
Show that ϕ is a characteristic function.

• ∣∣∣eisy − 1− isy
∣∣∣ =

∣∣∣∣∣
∞∑
k=0

(isy)k

k! − 1− isy
∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=2

(isy)k

k!

∣∣∣∣∣ ≤ y2
∣∣∣∣∣
∞∑
k=2

sk

k!

∣∣∣∣∣︸ ︷︷ ︸
:=c

≤ y2c

Hence follows with (4.1.1) and (4.1.2) that the integral in (4.1.3) exists and therefore it
is well-defined.

• Let now {cn} be an arbitrary sequence of numbers with cn > cn+1 > . . . > 0 and
limn→∞ cn = 0. Then the function ϕn : R→ C with

ϕn(s) := exp
{
is

(
a−

∫
[−cn,cn]c∩(−1,1)

yν(dy)
)
− bs2

2

}
exp

{∫
[−cn,cn]c

(
eisy − 1

)
ν(dy)

}

is the characteristic function of the sum from Z
(n)
1 and Z

(n)
2 , 2 independent random

variables, since
– the first factor is the characteristic function of the normal distribution with expec-

tation a−
∫

[−cn,cn]c∩(−1,1) yν(dy) and variance b.
– the second factor is the characteristic function of a compound Poisson process with

characteristics

λ = ν([−cn, cn]c) and PU (·) = ν(· ∩ [−cn, cn]c/ν([−cn, cn]c))

.

• Furthermore limn→∞ ϕn(s) = ϕ(s) for all s ∈ R, where ϕ is obviously continuous in 0,
since it holds for the function ϕ : R→ C which is the exponent of (4.1.3), thus

ψ(s) =
∫
R

(
eisy − 1− isy1 (y ∈ (−1, 1))

)
ν(dy) for all s ∈ R

that |ψ(s)| = cs2 ∫
(−1,1) y

2ν(dy) +
∫

(−1,1)c
∣∣eisy − 1

∣∣ ν(dy). Out of this and from (4.1.2)
follows with the theorem of Lebesgue that lims→∞ ψ(s) = 0.
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• Lemma 4.1.2 gives that the function ϕ given in (4.1.3) is the characteristic function of a
random variable.

2nd step
The infinitely divisibility of this random variable follows from lemma 4.1.1 and out of the fact,
that for arbitrary n ∈ N ν

n is also a Lèvy measure and that

ϕ(s) = exp
{
i
a

n
s−

b
ns

2

2 +
∫
R

(
eisy − 1− isy1(y ∈ (−1, 1))

)(ν
n

)
(dy)

}
for all s ∈ R.

Remark 4.1.2
The map η : R→ C with

η(s) = ias− bs2

2 +
∫
R

(
eisy − 1− isy1(y ∈ (−1, 1))

)
ν(dy)

from (4.1.3) is called Lèvy exponent of this infinitely divisible distribution.

4.1.2 Lèvy-Chintschin Representation
{X(t), t ≥ 0} – Lèvy process. We want to represent the characteristic function of X(t), t ≥ 0,
through the Lèvy-Chintschin formula.
Lemma 4.1.3
Let {X(t), t ≥ 0} be a stochastic continuous process, i.e. for all ε > 0 and t0 ≥ 0 it holds that
limt→t0 P(|X(t) −X(t0)| > ε) = 0. Then for every s ∈ R, t 7−→ ϕX(t)(s) is a continuous map
from [0,∞) to C.

Proof • y 7−→ eisy continuous in 0, i.e. for all ε > 0 there exists a δ1 > 0, such that

sup
y∈(−δ1,δ1)

∣∣∣eisy − 1
∣∣∣ < ε

2 .

• {X(t), t ≥ 0} is stochastic continuous, i.e. for all t0 ≥ 0 there exists a δ2 > 0, such that

sup
t≥0, |t−t0|<δ2

P (|X(t)−X(t0)| > δ1) < ε

4 .

Hence, it follows that for s ∈ R, t ≥ 0 and |t− t0| < δ2 it holds∣∣∣ϕX(t)(s)− ϕX(t0)(s)
∣∣∣ =

∣∣∣E (eisX(t) − eisX(t0)
)∣∣∣ ≤ E

∣∣∣eisX(t0)
(
eis(X(t)−X(t0)) − 1

)∣∣∣
≤ E

∣∣∣eis(X(t)−X(t0)) − 1
∣∣∣ =

∫
R

∣∣∣eisy − 1
∣∣∣PX(t)−X(t0)(dy)

≤
∫

(−δ1,δ1)

∣∣∣eisy − 1
∣∣∣PX(t)−X(t0)(dy)

+
∫

(−δ1,δ1)c

∣∣∣eisy − 1
∣∣∣︸ ︷︷ ︸

=2

PX(t)−X(t0)(dy)

≤ sup
y∈(−δ1,δ1)

∣∣∣eisy − 1
∣∣∣+ 2P (|X(t)−X(t0)| > δ1) ≤ ε.
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Theorem 4.1.3
Let {X(t), t ≥ 0} be a Lèvy process. For all t ≥ 0

ϕX(t)(s) = etη(s), s ∈ R,

holds, where η : R→ C is a continuous function. In particular it holds that

ϕX(t)(s) = etη(s) =
(
eη(s)

)t
=
(
ϕX(1)(s)

)t
, for all s ∈ R, t ≥ 0.

Proof

ϕX(t+t′)(s) = EeisX(t+t′) = E
(
eisX(t)eis(X(t+t′)−X(t))

)
= ϕX(t)(s)ϕX(t′)(s)

Let gs : [0,∞) → C be defined by gs(t) = ϕX(t)(s), s ∈ R, gs(t + t′) = gs(t)gs(t′), t, t′ ≥ 0.
X(0) = 0. 

gs(t+ t′) = gs(t)gs(t′), t, t′ ≥ 0,
gs(0) = 1,
gs : [0,∞)→ C continuous.

Hence follows: η : R → C exists, such that gs(t) = eη(s)t for all s ∈ R, t ≥ 0. ϕX(1)(s) = eη(s)

and it follows that η is continuous.

Lemma 4.1.4
Let µ1, µ2, . . . be a sequence of finite measures (on B(R)) with

1. supn≥1 µn(R) < c, c = const <∞ (uniformly bounded)

2. for all ε > 0 there exists Bε ∈ B(R) compact, such that supn≥1 µn(Bc
ε) ≤ ε. Hence follows

that there exists a subsequence µn1 , µn2 , . . . and a finite measure over B(R), such that for
all f : R→ C, bounded, continous, it holds that

lim
k→∞

∫
R
f(y)µnk(dy) =

∫
R

lim
k→∞

f(y)µnk(dy) =
∫
R
f(y)µ(dy)

Proof See [14], page 122 - 123.

Theorem 4.1.4
Let {X(t), t ≥ 0} be a Lèvy process. Then there exist a ∈ R, b ≥ 0 and a Lèvy measure ν,
such that

ϕX(1)(s) = eias−
bs2

2 +
∫
R

(
eisy − 1− iy1(y ∈ (−1, 1))

)
ν(dy), for all s ∈ R.

Proof For all null sequences t1, t2, . . . it holds

η(s) =
(
etη(s)

)′∣∣∣∣
t=0

= lim
n→∞

etnη(s) − 1
tn

= lim
n→∞

ϕX(tn)(s)− 1
tn

. (4.1.4)

η : R → C continuous ⇒ The convergence in (4.1.4) is uniformly in s ∈ [−t0, t0] for an s0 > 0
(Taylor-expansion of etnη(s)). Let tn = 1

n and Pn be the distribution of X( 1
n). Hence it follows
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that

lim
n→∞

n

∫
R

(eisy − 1)Pn(ds) = lim
n→∞

n
ϕX( 1

n
)(s)− 1
1
n

= η(s)

lim
n→∞

∫
R
n

∫ s0

−s0

(
eisy − 1

)
Pn(dy)ds =

∫ s0

−s0
η(s)ds

⇒ lim
n→∞

n

∫
R

(
1− sin(s0y)

s0y

)
Pn(dy) = − 1

2s0

∫ s0

−s0
η(s)ds

η : R → C is continuous with η(0) = 0 and it follows from that, that it exists for all ε > 0
δ0 > 0, such that

∣∣∣− 1
2s0

∫ s0
−s0

η(s)ds
∣∣∣ < ε. Since 1− sin(s0y)

s0y
≥ 1

2 , |s0y| ≥ 2, it holds: for all ε > 0
there exist s0 > 0, n0 > 0, such that

lim sup
n→∞

n

2

∫{
y:|y|≥ 2

s0

} Pn(dy) ≤ lim sup
n→∞

n

∫
R

(
1− sin(s0y)

s0y

)
Pn(dy) < ε.

For all ε > 0 there exist s0 > 0, n0 > 0, such that

n

∫{
y:|y|≥ 2

s0

} Pn(dy) ≤ 4ε, for all n ≥ n0.

Decreasing s0 gives
n

∫{
y:|y|≥ 2

s0

} Pn(dy) ≤ 4ε, for all n ≥ 1.

y2

1 + y2 ≤ c
(

1− sin y
y

)
, for all y 6= 0 and a c > 0.

Hence, it follows that

sup
n≥1

n

∫
R

y2

1 + y2 Pn(dy) ≤ c′ for a c′ <∞.

Let now µn : B(R)→ [0,∞) be defined as

µn(B) = n

∫
B

y2

1 + y2 Pn(dy) for all B ∈ B(R).

It follows that {µn}n∈N is uniformly bounded, supn≥1 µn(R) < c′. Furthermore holds y2

1+y2 ≤ 1,
supn≥1 µn

({
y : |y| > 2

s0

})
≤ 4ε and {µn}n∈N relatively compact. After lemma 4.1.3 it holds:

there exists {µnk}k∈N, such that

lim
k→∞

∫
R
f(y)µnk(dy) =

∫
R
f(y)µ(dy)

for a measure µ and f continuous and bounded. Let for s ∈ R the function fs : R → C be
defined as

fs(y) =
{ (

eisy − 1− isy
) 1+y2

y2 , y 6= 0,
− s2

2 , otherwise.
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Hence follows that fs is bounded and continuous and

η(s) = lim
n→∞

∫
R

(
eisy − 1

)
Pn(dy)

= lim
n→∞

(∫
R
fs(y)µn(dy) + isn

∫
R

sin yPn(dy)
)

= lim
n→∞

(∫
R
fs(y)µnk(dy) + isnk

∫
R

sin yPnk(dy)
)

=
∫
R
fs(y)µ(dy) + lim

k→∞
isnk

∫
R

sin yPnk(dy)

η(s) = ia′s− bs2

2 +
∫
R

(
eisy − 1− is sin y

)
ν(dy),

for all s ∈ R with a′ = limk→∞ isnk
∫
R sin yPnk(dy), b = µ ({0}), ν : B(R)→ [0,∞),

ν(dy) =
{

1+y2

y2 µ(dy), y 6= 0,
0 , y = 0.

∫
R
|y1(y ∈ (−1, 1))− sin y| ν(dy) <∞.

|y1(y ∈ (−1, 1))− sin y| 1 + y2

y2 < c′′, for all y 6= 0 and a c′′ > 0.

Hence follows that

η(s) = ias− bs2

2 +
∫
R

(
eisy − 1− isy1 (y ∈ (−1, 1))

)
ν(dy), for all s ∈ R.

a = a′ +
∫
R

(y1(y ∈ (−1, 1))− sin y) ν(dy).

4.1.3 Examples

1. Wiener process (it is enough to look at X(1))

X(1) ∼ N (0, 1), ϕX(1)(s) = e−
s2
2 and hence follows

(a, b, ν) = (0, 1, 0).

Let X = {X(t), t ≥ 0} be a Wiener proess with drift µ, i.e. X(t) = µt + σW (t), W =
{W (t), t ≥ 0} – Brownian motion. It follows

(a, b, ν) = (µ, σ2, 0).

ϕX(1)(s) = EeisX(1) = Ee(µ+σW (1))is = eµisϕW (1)(σs) = eisµ−σ
2 s2

2 , s ∈ R.
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2. Compound Poisson process with parameters (λ,Pn)
X(t) =

∑N(t)
i=1 Ui, N(t) ∼ Pois(λt), Ui i.i.d. ∼ PU .

ϕX(1)(s) = exp
{
λ

∫
R

(
eisX − 1

)
PU (dx)

}
= exp

{
λis

∫
R
x1(x ∈ [−1, 1])PU (dx) + λ

∫
R

(
eisx − 1− isx1(x ∈ [−1, 1])

)
PU (dx)

}
= exp

{
λis

∫ 1

−1
xPU (dx) + λ

∫
R

(
eisx − 1− isx1(x ∈ [−1, 1])

)
PU (dx)

}
, s ∈ R.

Hence follows

(a, b, ν) =
(
λ

∫ 1

−1
xPU (dx), 0, λPU

)
, PU – finite on R.

3. Processes of Gauss-Poisson type
X = {X(t), t ≥ 0}, X(t) = X1(t) +X2(t), t ≥ 0.
X1 = {X1(t), t ≥ 0} und X2 = {X2(t), t ≥ 0} independent.
X1 – Wiener process with drift µ and variance σ2,
X2 – Compound Poisson process with parameters λ,PU .

ϕX(t)(s) = ϕX1(t)(s)ϕX2(t)(s)

= exp
{
is

(
µ+ λ

∫ 1

−1
xPU (dx)

)
− σ2s2

2

+
∫
R
λ
(
eisx − 1− isx1(x ∈ [−1, 1])

)
PU (dx)

}
, s ∈ R.

Hence follows
(a, b, ν) =

(
µ+ λ

∫ 1

−1
xPU (dx), σ2, λPU

)
.

4. Stable Lèvy processes
X = {X(t), t ≥ 0} – Lèvy process with X(t) ∼ α stable distribution, α ∈ (0, 2]. If
X = W (Wiener process), then X(1) ∼ N (0, 1). Let Y, Y1, . . . , Yn be i.i.d. N (µ, σ2)-
variables. Since the convolution of the normal distribution is stable it holds

Y1 + . . .+ Yn ∼ N (nµ, nσ2) d=
√
nY + nµ−

√
nµ

=
√
nY + µ

(
n−
√
n
)

= n
1
2Y + µ

(
n

2
2 − n

1
2
)
, α = 2.

Definition 4.1.4
The distribution of a random variable Y is called α-stable, if for all n ∈ N only copies Y1, . . . , Yn
exist (of Y )

Y1 + . . .+ Yn
d= n

1
αY + dn,

where dn is deterministic (thus a constant w.r.t. W , i.e. not random). The constant α ∈ (0, 2]
is called index of stability.

dn =
{
µ
(
n− n

1
α

)
, α 6= 1,

µn logn , α = 1.
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Without proof
Example 4.1.1 • α = 2: Normal distribution

• α = 1: Cauchy distribution with parameters (µ, σ2). The density:

fY (x) = σ

π
(
(x− µ)2 + σ2

) , x ∈ R.

It holds EY 2 =∞, EY does not exist.

• α = 1
2 : Lèvy distribution with parameters (µ, σ2). The density:

fY (x) =


(
σ
2π
) 1

2 1
(x−µ)

3
2

exp
{
− σ

2(x−µ)

}
, x > µ,

0 , otherwise.

These examples are the few examples of α-stable distribution, which have an explicit form
of the density. For other α ∈ (0, 2), α 6= 1

2 , 1, the α-stable distribution will be introduced
through its characteristic function. In general holds: If Y α-stable, α ∈ (0, 2], then E|Y |p <∞,
0 < p < α.
Definition 4.1.5
The distribution of a random variable is called symmetric, if Y d= −Y . If Y has a symmetric
α-stable distribution, α ∈ (0, 2],

ϕY (s) = exp {−c |s|α} .

In fact, it follows from the stability of Y that

(ϕY (s))n = eidnsϕY
(
n

1
α s
)
, s ∈ R.

It follows that dn = 0, since ϕ−Y (s) = ϕY (s). It holds: eidns = e−idns, s ∈ R and dn = 0. The
rest is left as an exercise.
Lemma 4.1.5
Lèvy-Chintschin representation of the characteristic function is a stable distribution. A Lèvy
characteristic (a, b, ν), a ∈ R arbitrary.

b =
{
σ2, α = 2,
0 , α < 2.

ν(dx) =


0 , α = 2,
c1

x1+α 1(x ≥ 0)dx+ c2
|x|1+α 1(x < 0)dx, α < 2,

c1, c2 ≥ 0 : c1 + c2 > 0 ,

Without proof
You can show that

P (|Y | ≥ x) ∼
x→∞

{
e−

x2
2σ2 , α = 2,

c
xα , α < 2.

Definition 4.1.6
The Lèvy process X = {X(t), t ≥ 0} is called stable, if X(1) has an α-stable distribution,
α ∈ (0, 2] (α = 2: Brownian motion (with drift)).
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4.1.4 Subordinators

Definition 4.1.7
A Lèvy process X = {X(t), t ≥ 0} is called subordinator, if for all 0 < t1 < t2, X(t1) ≤ X(t2)
a.s. holds

X(0) = 0 a.s. ⇒ X(t) ≥ 0, t ≥ 0.

This class of Lèvy processes is important, since you can easily introduce
∫ b
a g(t)dX(t) as a

Lebesgue-Stieltjes-integral.

Theorem 4.1.5
The Lèvy process X = X(t), t ≥ 0 is a subordinator if and only if the Lèvy-Chintschin repre-
sentation can be expressed in the form

ϕX(t)(s) = exp
{
ias+

∫
R

(
eisx − 1

)
ν(dx)

}
, s ∈ R,

where ν is the Lèvy measure, with

ν ((−∞, 0)) = 0,
∫ ∞

0
min

{
1, y2

}
ν(dy) <∞.

Proof Sufficiency
It has to be shown that X(t2) ≥ X(t1) a.s., if t2 ≥ t1 ≥ 0.
First of all we show that X(1) ≥ 0 a.s.. If ν ≡ 0, then X(1) = a a.s., hence

ϕX(t)(s) =
(
ϕ(s)
X(t)

)t
= eiats, s ∈ R.

X(t) = at a.s. and therefore it follows that X(t) ↑ and X is a subordinator. If ν([0,∞)) > 0,
then there exists N > 0, such that n ≥ N , 0 < ν

([
1
n ,∞

))
<∞. It follows

ϕX(t)(s) = exp
{
ias+ lim

n→∞

∫ ∞
1
n

(
eisx − 1

)
ν(dx)

}
= eias lim

n→∞
ϕn(s), s ∈ R,

where ϕn(s) =
∫∞

1
n

(
eisx − 1

)
ν(dx) is the characteristic function of a compound Poisson process

distribution with parameters
(
ν
([

1
n ,∞

))
,
ν(∩[ 1

n
,∞))

ν([ 1
n
,∞))

)
for all n ∈ N. Let Zn be the random

variable with characteristic function ϕn. It holds: Zn =
∑Nn
i=1 Ui, Nn ∼ Pois

(
ν
([

1
n ,∞

)))
,

Ui ∼
ν(∩[ 1

n
,∞))

ν([ 1
n
,∞)) and hence follows Zn ≥ 0 a.s. and X(1) = a︸︷︷︸

=0

+ limZn︸ ︷︷ ︸
≥0

≥ 0 a.s.. Since X is a

Lèvy process, it holds

X (1) = X

( 1
n

)
+
(
X

( 2
n

)
−X

( 1
n

))
+ . . .+

(
X

(
n

n

)
−X

(
n− 1
n

))
,

where, because of stationarity and independence of the increments X
(
k
n

)
−X

(
k−1
n

) a.s.
≥ 0 for

1 ≤ k ≤ n for all n. X(q2)−X(q1) ≥ 0 a.s. for all q1, q2 ∈ Q, q2 ≥ q1 ≥ 0. Now let t1, t2 ∈ Q,
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such that 0 ≤ t1 ≤ t2. Let
{
q

(n)
1 , q

(n)
2

}
be sequences of numbers from Q with q

(n)
1 ≤ q

(n)
2 .

q
(n)
1 ↓ t1, q(n)

2 ↑ t2, n→∞. For ε > 0

P (X(t2)−X(t1) < −ε) = P
(
X(t2)−X

(
q

(n)
2

)
+X

(
q

(n)
2

)
−X

(
q

(n)
1

)
+X

(
q

(n)
1

)
−X (t1) < −ε

)
≤ P

(
X(t2)−X

(
q

(n)
2

)
+X

(
q

(n)
1

)
−X (t1) < −ε

)
≤ P

(
X(t2)−X

(
q

(n)
2

)
< −ε

)
+ P

(
X
(
q

(n)
1

)
−X(t1) ≤ −ε2

)
−−−→
n→∞

0.

⇒ P (X(t2)−X(t1) < ε) = 0 for all ε > 0
⇒ P (X(t2)−X(t1) < 0) = lim

ε→+0
P (X(t2)−X(t1) < ε) = 0

⇒ X(t2) ≥ X(t1) a.s.

Necessity
Let X be a Lèvy process, which is a subordinator. It has to be shown that ϕX1(t)(·) has the
above form.
After the Lèvy-Chintschin representation for X1(t) it holds that

ϕX(1)(s) = exp
{
ias− b2s2

2 +
∫ ∞

0

(
eisx − 1− isx1(x ∈ [−1, 1])

)
ν(dx)

}
, s ∈ R.

The measure ν is concentrated on [0,∞), since X(1)
a.s.
≥ 0 and from the proof of theorem 4.1.4

ν ((−∞, 0)) = 0 can be chosen.

ϕX(1)(s) ≤ exp
{
ias− b2s2

2

}
︸ ︷︷ ︸

:=ϕY1(s)

exp
{∫ ∞

0

(
eisx − 1− isx1 (x ∈ [−1, 1])

)
ν(dx)

}
︸ ︷︷ ︸

:=ϕY2(s)

Hence, it follows that X(1) = Y1 + Y2, Y1 and Y2 are independent, Y1 ∼ N (a, b2) and therefore
b = 0. For all ε ∈ (0, 1)

ϕX1(s) = exp
{
is

(
a−

∫ 1

ε
xν(dx)

)
+
∫ ε

0

(
eisx − 1− isx

)
ν(dx) +

∫ ∞
0

(
eisx − 1

)
ν(dx)

}

It has to be shown that for ε→ 0 it holds that
∫∞
ε

(
eisx − 1

)
ν(dx)→

∫∞
0
(
eisx − 1

)
ν(dx) <∞

with
∫ 1
0 min {x, 1} ν(dx) < ∞. ϕX(1)(s) = exp

{
is
(
a−

∫ 1
ε xν(dx)

)}
ϕZ1(s)ϕZ2(s), where Z1

and Z2 are independent, ϕZ1(s) = exp
{(
eisx − 1− isx

)
ν(dx)

}
, ϕZ2(s) = exp

{∫∞
ε

(
eisx − 1

)
ν(dx)

}
,

s ∈ R. X(1) d= a−
∫ 1
ε xν(dx) + Z1 + Z2. There exist ϕ(2)

Z1
(0) = −EZ2

1
2 <∞, ϕ(1)

Z1
(0) = 0 = iEZ1

and it therefore follows that EZ1 = 0 and P(Z1 ≤ 0) > 0. On the other hand, Z2 has a
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compound Poisson distribution with parameters
(
ν ([ε,∞)) , ν(∩[ε,+∞])

ν([ε,+∞))

)
, ε ∈ (0, 1).

⇒ P (Z2 ≤ 0) > 0
⇒ P (Z1 + Z2 ≤ 0) ≥ P (Z1 ≤ 0, Z2 ≤ 0) = P (Z1 ≤ 0) P (Z2 ≤ 0) > 0

⇒ a−
∫ 1

ε
xν(dx) ≥ 0 for all ε ∈ (0, 1)

⇒
∫ a

0
min {x, 1} dx <∞

⇒ for ε→∞ Z1
d→ 0

ϕX(1)(s) = exp
{
is

(
a−

∫ 1

0
xν(dx)

)
+
∫ ∞

0

(
eisx − 1

)
ν(dx)

}
, s ∈ R.

Example 4.1.2 (α-stable subordinator):
X = {X(t), t ≥ 0} a Lèvy process, subordinator, with a = 0 – Lévy measure.

ν(dx) =
{

α
Γ(1−α)

1
x1+αdx , x > 0,

0 · 1
x1+αdx = 0, x ≤ 0.

Therefore, it follows that X is a α-stable Lèvy process.
We show that l̂X(·)(s) = Ee−sX(t) = e−ts

α for all s, t ≥ 0.

ϕX(t)(s) =
(
ϕX(1)(s)

)t
= exp

{
t

∫ ∞
0

(
eisx − 1

) α

Γ(1− α)
1

x1+αdx

}
, s ∈ R.

It has to be shown that

Ud = α

Γ(1− α)

∫ ∞
0

(
1− e−ux

) dx

x1+α , u ≥ 0.

This is enough since ϕX(t)(·) can be continued analytically on {Z ∈ C : =Z ≥ 0}, i.e. ϕX(t)(iu) =
l̂X(t), u ≥ 0. In fact, it holds that∫ ∞

0

(
1− e−ux

) dx

x1+d =
∫ ∞

0
u

∫ x

0
e−uydyx−1−αdx

=
∫ ∞

0

∫ ∞
y

ue−uyx−1−αdxdy

=
∫ ∞

0

∫ ∞
y

x−1−αdxue−uydy

= u

α

∫ ∞
0

e−uyy−αdy

= u

α

∫ ∞
0

e−zz−α
1
u−α

d

(
z

u

)
= uα

α

∫ ∞
0

e−zz(1−α)−1dz

= uα

α
Γ(1− α)

and hence follows l̂X(t)(s) = e−ts
α , t, s ≥ 0.



64 4 Lèvy Prozesse

4.2 Additional Exercises

Exercise 4.2.1
Given a real-valued random variable X with distribution function F and characteristic function
ϕ. Show that the following statements hold:

a) If X is infinitely divisible, then it holds ϕ(t) 6= 0 for all t ∈ R. Hint: Show that
limn→∞ |ϕn(s)|2 = 1 for all s ∈ R, if ϕ(s) = (ϕn(s))n. Note further, that |ϕn(s)|2 is
again a characteristic function and limn→∞ x

1
n = 1 holds for x > 0.

b) Give an example (with explanation) for a distribution, which is not infinitely divisible.

Exercise 4.2.2
Let X = {X(t), t ≥ 0} be a Lévy process. Show that the random variable X(t) is then infinitely
divisible for every t ≥ 0.

Exercise 4.2.3
Show that the sum of two indepenent Lévy processes is again a Lévy process, and state the
corresponding Lévy characteristic.

Exercise 4.2.4
Look at the following function ϕ : R→ C with

ϕ(t) = eψ(t), where ψ(t) = 2
∞∑

k=−∞
2−k(cos(2kt)− 1).

Show that ϕ(t) is the characteristic function of an infinitely divisible distribution. Hint: Look
at the Lévy-Chintschin representation with measure ν({±2k}) = 2−k, k ∈ Z.

Exercise 4.2.5
The Lévy process {X(t), t ≥ 0} be a Gamma process with parameters b, p > 0, that is, for
every t ≥ 0 holds X(t) ∼ Γ(b, pt). Show that {X(t), t ≥ 0} is a subordinator with the Laplace
exponent ξ(u) =

∫∞
0 (1 − e−uy)ν(dy) für ν(dy) = py−1e−bydy, y > 0. (The Laplace exponent

of {X(t), t ≥ 0} is the function ξ : [0,∞)→ [0,∞), for which holds that Ee−uX(t) = e−tξ(u) for
arbitrary t, u ≥ 0)

Exercise 4.2.6
Let {X(t), t ≥ 0} be a Lévy process with charactersistic Lévy exponent η and {τ(s), s ≥ 0} a
independent subordinator witch characteristic Lévy exponent γ. The stochastic process Y be
defined as Y = {X(τ(s)), s ≥ 0}.

(a) Show that
E
(
eiθY (τ(s))

)
= eγ(−iη(θ))s, θ ∈ R,

where =z describes the imaginary part of z.

Hint: Since τ is a process with non-negative values, it holds Eeiθτ(s) = eγ(θ)s for all
θ ∈ {z ∈ C : =z ≥ 0} through analytical continuation of theorem 4.1.3.

(b) Show that Y is a Lèvy process with characteristic Lèvy exponent γ(−iη(·)).
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Exercise 4.2.7
Let {X(t), t ≥ 0} be a compound Poisson process with Lèvy measure

ν(dx) = λ
√

2
σ
√
π
e−

x2
2σ2 dx, x ∈ R,

where λ, σ > 0. Show that {σW (N(t)), t ≥ 0} has the same finite-dimensionale distribution
as X, where {N(s), s ≥ 0} is a Poisson process with intensity 2λ and W is a standard Wiener
process independent from N .
Hint to exercise 4.2.6 a) and exercise 4.2.7

• In order to calculate the expectation for the characteristic function, the identity E(X) =
E(E(X|Y )) =

∫
R E(X|Y = y)FY (dy) for two random variables X and Y can be used. In

doing so, it should be conditioned on τ(s).

•
∫∞
−∞ cos(sy)e−

y2
2a dy =

√
2πa · e−

as2
2 for a > 0 and s ∈ R.

Exercise 4.2.8
Let W be a standard Wiener process and τ an independent α

2 -stable subordinator, where
α ∈ (0, 2). Show that {W (τ(s)), s ≥ 0} is a α-stable Lévy process.
Exercise 4.2.9
Show that the subordinator T with marginal density

fT (t)(s) = t

2
√
π
s−

3
2 e−

t2
4s 1{s > 0}

is a 1
2 -stable subordinator. (Hint: Differentiate the Laplace transform of T (t) and solve the

differential equation)
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5.1 Basic Ideas

Let (Ω,F ,P) be a complete probability space.

Definition 5.1.1
Let {Ft, t ≥ 0} be a family of σ-algebras Ft ⊂ F . It is called

1. a filtration, if Fs ⊆ Ft, 0 ≤ s < t.

2. a complete filtration, if it is a filtration, such that F0 (and therefore all Fs, s > 0) contains
all the probability measure null sets.
Later on we will always assume, that we have a complete filtration.

3. a right-continuous filtration, if for all t ≥ 0 Ft = ∩s>tFs.

4. a natural filtration for a stochastic process {X(t), t ≥ 0}, if it is generated by the past of
the process untill time t ≥ 0, i.e. for all t ≥ 0 Ft is the smallest σ-algebra (⊂ Ft), which
contains the sets {ω ∈ Ω : (X(t1), . . . , X(tn))> ⊂ B}, for all n ∈ N, 0 ≤ t1, . . . , tn ≤ t,
B ∈ B(Rn).

A random variable τ : Ω → R+ is called stopping time (w.r.t. the filtration {Ft, t ≥ 0}),
if for all t ≥ 0 {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft, i.e. by looking at the process X (up to the natural
filtration {Ft, t ≥ 0}) you can tell, if the moment τ occured.

Lemma 5.1.1
Let {Ft, t ≥ 0} be a right-continuous filtration. τ is a stopping time w.r.t. {Ft, t ≥ 0} if and
only if {τ < t} ∈ Ft︸ ︷︷ ︸

{ω∈Ω:τ(ω)≤t}∈Ft

, for all t ≥ 0.

Proof „⇐ “
Let {τ < t} ∈ Ft, t ≥ 0. To show: {τ ≤ t} ∈ Ft.
{τ ≤ t} = ∩s∈(t,t+ε){τ < s} for all ε > 0 ⇒ {τ ≤ t} ∈ ∩s>tFs = Ft

„⇒ “
To show: {τ ≤ t} ∈ Ft, t ≥ 0 ⇒ {τ < t} ∈ Ft, t ≥ 0.
{τ < t} = ∪s∈(0,t){τ ≤ t− s} ∈ ∪s∈(0,t)Ft−s ⊂ Ft

Definition 5.1.2
Let (Ω,F ,P) be a probability space, {Ft, t ≥ 0} a filtration (Ft ⊂ F , t ≥ 0) and X =
{X(t), t ≥ 0} a stochastic process on (Ω,F ,P). X is adapted w.r.t. the filtration {Ft, t ≥ 0},
if X(t) is Ft-measurable, for all t ≥ 0, i.e., for all B ⊂ B(R) {X(t) ∈ B} ∈ Ft.

66
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Definition 5.1.3
The time τB(ω) = inf{t ≥ 0 : X(t) ∈ B}, ω ∈ Ω, is called first hitting time to the set B ∈ B(R)
by the stochastic process X = {X(t), t ≥ 0} (also called: first passage time, first entrance
time).
Theorem 5.1.1
Let {Ft, t ≥ 0} be a right-continuous filtration and X = {X(t), t ≥ 0} an adapted (w.r.t.
{Ft, t ≥ 0}) càdlàg process. For open B ⊂ R, τB is a stopping time. If B is closed, then
τ̃B(ω) = inf{t ≥ 0 : X(t) ∈ B or X(t−) ∈ B} is a stopping time, where X(t−) = lims↑tX(s).

Proof 1. Let B ∈ B(R) be open.
Because of lemma 5.1.1 it is enough to show that {τB < t} ∈ Ft, t ≥ 0. Because of
right-continuity of the trajectories of X it holds:

{τB < t} = ∪s∈Q∩(0,t){X(s) ∈ B} ∈ ∪s∈Q∩(0,t)Fs ⊆ Ft, since Fs ⊆ Ft, s < t.

2. Let B ∈ B(R) be closed.
For all ε > 0. Let Bε = {x ∈ R : d(x,B) < ε} be a parallel set of B, where d(x,B) =
infy∈B |x− y|. Bε is open, for all t ≥ 0.
{τ̃B ≤ t} = {X(t) ∈ B} ∪ ∩n≥1,s∈Q∩(0,t) ∪ {X(s) ∈ B 1

n
} ∈ Ft, since X is adapted w.r.t.

{Ft, t ≥ 0}.

Lemma 5.1.2
Let τ1, τ2 be stopping times w.r.t. the filtration {Ft, t ≥ 0}. Then min{τ1, τ2}, τ1 + τ2 and
ατ1, α ≥ 1, are stopping times (w.r.t. {Ft, t ≥ 0}).

Proof For all t ≥ 0 holds:
{min{τ1, τ2} ≤ t} = {τ1 ≤ t}︸ ︷︷ ︸

∈Ft

∪{τ2 ≤ t}︸ ︷︷ ︸
∈Ft

∈ Ft,

{max{τ1, τ2} ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∈ Ft,
{ατ1 ≤ t} = {τ1 ≤ t

α} ∈ F t
α
⊂ Ft, since t

α ≤ t,
{τ1 + τ2 ≤ t} = {τ1 > t}︸ ︷︷ ︸

∈Ft

∪{τ2 > t}︸ ︷︷ ︸
∈Ft

∪ τ1 ≥ t, τ2 > 0︸ ︷︷ ︸
Ft

∪{0 < τ2 < t, τ1 − τ2 > t},

To show: {0 < τ2 < t, τ1 − τ2 > t} ∈ Ft.
{0 < τ2 < t, τ1 + τ2 > t} = ∪s∈Q∩(0,t){s < τ1 < t, τ2 > t− s} ∈ Ft

Theorem 5.1.2
Let τ be an a.s. finite stopping time w.r.t. the filtration {Ft, t ≥ 0} on the probability space
(Ω,F ,P), i.e. P(τ =∞) = 1. Then there exists a sequence of discrete stopping times {τn}n∈N,
τ1 ≥ τ2 ≥ τ3 ≥ . . ., such that τn ↓ τ , n→∞ a.s.

Proof For all n ∈ N let

τn =
{

0, if τ(ω) = 0
k+1
2n , if k

2n < τ(ω) ≤ k+1
2n , for a k ∈ N0

For all t ≥ 0 and for all n ∈ N ∃k ∈ N0 : k
2n ≤ t ≤ k+1

2n holds {τn ≤ t} = {τn ≤ k
2n } = {τ ≤

k
2n } ∈ F k

2n
⊂ Ft ⇒ τn is a stopping time. Therefore it is obvious, that τn ↓ τ , n→∞ a.s.
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Conclusion 5.1.1
Let τ be an a.s. finite stopping time w.r.t. the filtration {Ft, t ≥ 0} and X = {X(t), t ≥ 0} a
càdlàg process on (Ω,F ,P), Ft ⊂ F for all t ≥ 0. Then X(ω, τ(ω)), ω ∈ Ω is a random variable
on (Ω,F ,P).

Proof To show: X(τ) : Ω → R measurable, i.e. for all B ∈ B(R) {X(τ) ∈ B} ∈ F . Let
τn ↓ τ , n→∞ be as in theorem 5.1.2. Since X is càdlàg, it holds that X(τn) −−−→

n→∞
X(τ) a.s..

Then X(τ) is F-measurable as the limit of X(τn), which are themselves F-measurable. For all
B ∈ B(R) holds

{X(τn) ∈ B} = ∪∞k=0({τn = k

2n }︸ ︷︷ ︸
∈F

∩{X( k2n ) ∈ B}︸ ︷︷ ︸
∈F

) ∈ F

5.2 (Sub-, Super-)Martingales
Definition 5.2.1
Let X = {X(t), t ≥ 0} be a stochastic process adapted w.r.t. to a filtration {Ft, t ≥ 0},
Ft ⊂ F , t ≥ 0, on the probability space (Ω,F ,P), E |X(t)| <∞, t ≥ 0. X is called martingale
(resp. sub- or supermartingale), if E(X(t) | Fs)

≥= X(s) for all s, t ≥ 0 with t ≥ s: ⇒
E(X(t)) = E(X(s)) = const for all s, t.
Examples

Very often martingales are constructed on the basis of a stochastic process Y = {Y (t), t ≥ 0}
as follows: X(t) = Y (t)− EY (t).

1. Poisson process
Let Y = {Y (t), t ≥ 0} be the homogeneous Poisson process with intensity λ > 0.
EY (t) = var Y (t) = λt, weil Y (t) ∼ Pois(λt), t ≥ 0.
a) X(t) = Y (t)−λt, t ≥ 0⇒ X(t) is a martingale w.r.t. the natural filtration {Fs, s ≥

0}.
E(X(t) | Fs)s≤t = E(Y (t)− λt− (Y (s)− λs+ (Y (s)− λs)) | Fs)

= Y (s)− λs+ E(Y (t)− Y (s)− λ(t− s) | Fs)
= Y (s)− λs+ E(Y (t)− Y (s)) + Y (s)− λs
= Y (s)− λs+ E(Y (t− s))︸ ︷︷ ︸

=λ(t−s)

−λ(t− s)

= Y (s)− λ a.s.= X(s)

b) X ′(t) = X2(t)− λ(t), t ≥ 0 ⇒ X ′(t) is a martingale w.r.t. {Fs, s ≥ 0}.
E(X ′(t) | Fs) = E(X2(t)− λt | Fs) = E((X(t)−X(s) +X(s))2 − λt | Fs)

= E((X(t)−X(s))2 + 2((X(t)−X(s))X(s)) +X2(s)− λs− λ(t− s) | Fs)
= X ′(s) + E((X(t)−X(s)))2︸ ︷︷ ︸

=var(Y (t)−Y (s))=λ(t−s)

+2X(s) E(X(t)−X(s))︸ ︷︷ ︸
=0

−λ(t− s)

a.s.= X ′(s), s ≤ t.



5 Martingales 69

2. Compound Poisson process
Y (t) =

∑N(t)
i=1 Ui, t ≥ 0, N – homogeneous Poisson process with intensity λ > 0, Ui –

independent identically distributed random variables, E|Ui| <∞, {Ui} independent of N .
X(t) = Y (t)− EY (t) = Y (t)− λtEU1, t ≥ 0.
Exercise 5.2.1
Show that X = {X(t), t ≥ 0} is a martingale w.r.t. the natural filtration.

3. Wiener process
Let W = {W (t), t ≥ 0} be a Wiener process, {Fs, s ≥ 0} be the natural filtration.

a) Y = {Y (t), t ≥ 0}
Y (t) = W 2(t)− EW 2(t) = W 2(t)− t, t ≥ 0, is a martingale w.r.t. {Fs, s ≥ 0}.

E(Y (t) | Fs) = E((W (t)−W (s) +W (s))2 − s− (t− s) | Fs)
= see example 1b, use the independence and stationarity of the increments of W
= W 2(s)− s a.s.= Y (s), s ≤ t.

b) Y ′(t) = euW (t)−u2 t
2 , t ≥ 0 and a fixed u ∈ R.

E|Y ′(t)| = e−u
2 t

2 EeuW (t) = eu
2 t

2 eu
2 t

2 = 1 <∞. We show that Y ′ = {Y ′(t), t ≥ 0} is
a martingale w.r.t. {Fs, s ≥ 0}.

E(Y ′(t) | Fs) = E(eu(W (t)−W (s)+W (s))−u2 s
2−u

2 (t−s)
2 | Fs)

= e−u
2 s

2 euW (s)︸ ︷︷ ︸
=Y ′(s)

e−u
2 (t−s)

2 E(eu(W (t)−W (s)) | Fs)︸ ︷︷ ︸
=E(euW (t−s))=eu

2 (t−s)
2

= Y ′(s)e−u2 (t−s)
2 eu

2 (t−s)
2 = Y ′(s), s ≤ t.

4. Closed martingale
Let X be a random variable (on (Ω,F ,P)) with E|X| <∞. Let {Fs, s ≥ 0} be a filtration
on (Ω,F ,P).
Y (t) = E(X | Ft), t ≥ 0. Y = {Y (t), t ≥ 0} is a martingale.
E|Y (t)| = E|E(X | Ft)| ≤ E(E(X | Ft)) = E|X| <∞, t ≥ 0.
E(Y (t) | Fs) = E((X | Ft) | Fs) = E(X | Fs)

a.s.= Y (s), s ≤ t ⇒ Fs ⊆ Ft.

5. Lèvy processes
Let X = {X(t), t ≥ 0} be a Lèvy process with Lèvy exponent η and natural filtration
{Fs, s ≥ 0}.

a) If E|X(1)| <∞, define Y (t) = X(t)− tEX(1)︸ ︷︷ ︸
=EX(t)

, t ≥ 0. As in the previous cases it can

be shown that Y = {Y (t), t ≥ 0} is martingale w.r.t. the filtration {Fs, s ≥ 0}.

b) Use the combination from example 3b – normalize the characteristic function of
X(t) without expectation, through the value Y (t) = eiuX(t)

ϕ
(u)
X(t)

= eiuX(t)

tη(u) = eiuX(t)−tη(u),

t ≥ 0, u ∈ R.
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To show: Y = {Y (t), t ≥ 0} is a complexvalued martingale.
E|Y (t)| = |e−tη(u)| <∞, since η : R+ → C. EY (t) = 1, t ≥ 0.

E(Y (t) | Fs) = E(eiu(X(t)−X(s))(t−s)η(u)eiuX(s)−sη(u) | Fs)
= eiuX(s)−sη(u)e−(t−s)η(u)E(eiu(X(t)−X(s)))
= Y (s)e−(t−s)η(u)e(t−s)η(u) a.s.= Y (s)

6. Submartingale/Supermartingale
Every integrable stochastich process X = {X(t), t ≥ 0}, which is adapted w.r.t. to
a filtration {Fs, s ≥ 0} and has a.s. monotone nondecreasing (resp. nonincreasing)
trajectories, is a sub- (resp. a super-)martingale.
In fact, it hols X(t)

a.s.
≥ X(s), t ≥ s ⇒ E(X(t) | Fs)

a.s.
≥ E(X(s) | Fs)

a.s.= X(s). In
particular, every subordinator is a submartingale.

Lemma 5.2.1
Let X = {X(t), t ≥ 0} be a stochastic process, which is adapted w.r.t. a filtration {Ft, t ≥ 0}
and let f : R→ R be convex, such that E|f(X(t))| <∞, t ≥ 0. Then Y = {f(X(t), t ≥ 0)} is
a submartingale, if

a) X is a submartingale, or

b) X is a submartingale and f is monotone nondecreasing.

Proof Use the Jensen inequality for conditional expectations. E(f(X(t)) | Fs) ≥ f(E(X(t)Fs)︸ ︷︷ ︸
≥X(s)

) ≥

f(X(s)), since f is monotone nondecreasing (case b)) or the equation holds (case a)).

5.3 Uniform Integrability

Question: It is known, that in general Xn
a.s.−−−→
n→∞

X does not give Xn
L1−−−→

n→∞
X. Here

X,X1, X2, . . . are random variables, defined on the probability space (Ω,F ,P). When does
„Xn

L1−−−→
n→∞

X“ ⇒ „Xn
L1−−−→

n→∞
X“hold? The answer for this provides the term uniformly

integrability of {Xn, n ∈ N}.
Definition 5.3.1
The sequence {Xn, n ∈ N} of random variables is called uniformly integrable, if E|Xn| < ∞,
n ∈ N, and supn E(|Xn|1(|Xn| > ε)) −−−−→

ε→+∞
0.

Lemma 5.3.1
The sequence {Xn, n ∈ N} of random variables is uniformly integrable, if and only if

1. supn E|Xn| <∞ (uniformly bounded),

2. if for every ε > 0 there is a δ > 0, such that E(|Xn|1(A)) < ε for all n ∈ N and all A ∈ F
with P(A) < δ.

Proof Let {Xn} be a sequence of random variables.
It has to be shown that

sup
n

E(|Xn|1(|Xn| > x)) −−−→
n→∞

0⇐⇒ 1) supn E|Xn| <∞
2) ∀ε > 0 ∃δ > 0 : E(|Xn|1(A)) < ε ∀A ∈ F : P(A) < δ
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„⇐“
An = {|Xn| > x}. From the Markov inequality: P(An) ≤ 1

xE|Xn| for all n ⇒ supn P(An) ≤
1
x supn E|Xn| ≤ c

x −−−→x→∞
0 ⇒ ∃N > 0 : ∀x > N P(An) < δ

2)⇒ supn E(|Xn|1(An)) ≤ ε ⇒ since
ε > 0 can be chosen arbitrarily small ⇒ supn E(|Xn|1(|Xn| > x)) −−−→

x→∞
0.

„⇒“

1.

sup
n

E|Xn| ≤ sup
n

(E(|Xn|1(|Xn| > x)) + E(|Xn|1(|Xn| ≤ x)))

≤ sup
n

(E(|Xn|1(|Xn| > x)) + xP(|Xn| ≤ x)︸ ︷︷ ︸
≤1

)

≤ ε+ x <∞

2.

E(|Xn|1(A)) = E(|Xn|︸ ︷︷ ︸
≤x

1(|Xn| ≤ x)︸ ︷︷ ︸
≤1

1(A)) + E(|Xn|1(|Xn| > x) 1(A)︸ ︷︷ ︸
≤1

)

≤ xP(A)︸ ︷︷ ︸
≤ ε2

+ E(|Xn|1(|Xn| > x))︸ ︷︷ ︸
≤ ε2

,

for all ε > 0 ∃x > 0, such that E(|Xn|1(|Xn| > x)) < ε
2 because of uniformly integrability.

Choose δ > 0, xδ < ε
2 .

Lemma 5.3.2
Let {Xn}n∈N be a sequence of random variables with E|Xn| < ∞, n ∈ N, Xn

a.s.−−−→
n→∞

X.

Xn
L1
−−−→
n→∞

X if and only if {Xn}n∈N is uniformly integrable. In particular follows fromXn
L1
−−−→
n→∞

X the convergence EXn −−−→
n→∞

EX.

Proof Let {Xn}n∈N be uniformly integrable. It has to be shown, that E|Xn −X| −−−→
n→∞

0.

Xn
a.s.−−−→
n→∞

X ⇒ Xn
P−−−→

n→∞
X ⇒ P(|Xn −X| > ε) −−−→

n→∞
0 for all ε.

E |Xn −X| ≤ E (|Xn −X| 1 (|Xn −X| ≤ ε)) + E (|Xn −X| 1 (|Xn −X| > ε))
≤ ε+ E (|Xn −X| 1 (|Xn −X| > ε))︸ ︷︷ ︸

−−−→
n→∞

0, because of lemma 5.3.1, 2) for An={|Xn−X|>ε}

+ E (|X| 1 (|Xn −X| > ε))︸ ︷︷ ︸
−−−→
n→∞

0, weil E|X|<∞, after the theorem of Lebesgue

−−−→
n→∞

0

Why E|X| < ∞? It holds Xn
a.s.−−−→
n→∞

X, from Lemma 5.3.1, 1): supn E|Xn| < ∞. After the
lemma of Fatou it holds E|X| < ∞, since for all ε0 > 0 ∃N : for all n > N |Xn −X| < ε0 ⇒
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Xn ≤ η1, η1 = |X| + ε0, Xn ≥ η2, η2 = |X| − ε0, for all n > N . E|X| = E| limn→∞Xn| ≤
limn→∞ E|Xn| <∞. Thus we have proven that Xn

L1
−−−→
n→∞

X.
Now let E|Xn −X| −−−→

n→∞
0. The properties 1) and 2) of lemma 5.3.1 have to be shown.

1. supn E|Xn| ≤ supn E|Xn −X|+ E|X| <∞, since Xn
L1
−→ X.

2. For allA ⊂ F , P(A) ≤ δ: E(|Xn|1(A)) ≤ E(|Xn−X| 1(A)︸ ︷︷ ︸
≤1

)+E(|X|1(A)) ≤ E|Xn −X|︸ ︷︷ ︸
< ε

2

+ ε
2 =

ε with an appropriate choice of δ, since E|X| <∞ and since for all ε > 0 ∃N , such that
for all n > N E|Xn −X| < ε

2 .

5.4 Stopped Martingales
Notation: x+ = (x)+ = max(x, 0), x ∈ R.
Theorem 5.4.1 (Doob’s inequality):
Let X = {X(t), t ≥ 0} be a càdlàg process, adapted w.r.t. the filtration {F , t ≥ 0}. Let X
be a submartingale. Then for arbitary t > 0 and arbitrary x > 0 it holds:

P
(

sup
0≤s≤t

X(x) > x

)
≤ E(X(t))+

x

Proof W.l.o.g. assume X(t) ≥ 0, t ≥ 0 a.s..
P(sup0≤s≤tX(s) > x) = P(sup0≤s≤t((X(s))+ > x)), for all t ≥ 0, x > 0. A = {supt1,...,tn X(s) >
x}, 0 ≤ t1 < t2 < . . . < tn ≤ t – arbitrary times. A = ∪nk=1Ak,

A1 = {X(t1) > x}
A2 = {X(t2) ≤ x,X(t2) > x}

...
Ak = {X(t1) ≤ x,X(t1) ≤ x, . . . ,X(tk−1) ≤ x,X(tk) > x},

k = 2, . . . , n, Ai ∩Aj = ∅, i 6= j.
It has to be shown that P(A) ≤ E(X(tn))

x .
E(X(tn)) ≥ E(X(tn)1(A)) =

∑n
k=1 E(X(tn)1(Ak)) ≥ x

∑n
k=1 P(Ak) = xP(A), k = 1, . . . , n − 1,

since X is a martingale and thus follows that E(X(tn)1(Ak)) ≥ E(X(tk)1(Ak)) ≥ E(x1(Ak)) =
xP(Ak), k = 1, . . . , n− 1, tn > tk.
Let B ⊂ [0, t] be a finite subset, 0 ∈ B, t ∈ B ⇒ it is proven similarly that P(maxs∈BX(s) >
x) ≤ EX(t)

x .
Q is dense in R ⇒ [0, t) ∩Q ∪ {t} = ∪∞k=1Bk, Bk ⊂ [0, t) ∩Q ∪ {t} finite, Bk ⊂ Bn, k < n. By
the monotonicity of the probability measure it holds:

lim
n→∞

P
(

max
s∈B

X(s) ≥ x
)

= P
(
∪n{max

s∈Bn
X(s) > x}

)
= P

(
sup

s∈∪nBn
X(s) > x

)
≤ EX(t)

x

By the right-continuity of the paths of X it holds P(sup0≤s≤tX(s) > x) ≤ EX(t)
x .
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Conclusion 5.4.1
For the Wiener process W = {W (t), t ≥ 0} we are looking at the Wiener process with
negative drift: Y (t) = W (t) − µt, µ > 0, t ≥ 0. From example nr.3 of section 5.3 X(t) =
exp{u(Y (t) + tµ)− u2t

2 }, t ≥ 0 is a martingale w.r.t. the natural filtration of W . For u = 2µ it
holds

X(t) = exp{2µY (t)}, t ≥ 0.

P
{

sup0≤s≤t Y (s) > x
}

= P
{

sup0≤s≤t e
2µY (s) > e2µx

}
≤ Ee2µY (t)

e2µx = e−2µx, x > 0
⇒ limt→∞ P{sup0≤s≤t Y (s) > x}. From example nr.3 Ee2µY (t) = P(supt≥0 Y (t) > x) ≤ e−2µx

holds.
Theorem 5.4.2
Let X = {X(t), t ≥ 0} be a martingale w.r.t. the filtration {Ft, t ≥ 0} with càdlàg paths. If
T : Ω → [0,∞) is a finite stopping time w.r.t. the filtration {Ft, t ≥ 0}, then, the stochastic
process {XT∧t(t) ≥ 0} is also a martingale, which is also called a stopped martingale. Where
a ∧ b = min{a, b}.
Lemma 5.4.1
LetX = {X(t), t ≥ 0} be a martingale with càdlàg-trajectories w.r.t. the filtration {Ft, t ≥ 0}.
Let T be a finite stopping time and let {Tn}n∈N be the sequence of discrete stopping times out
of theorem 5.1.2, for which Tn ↓ T , n→∞, holds. Then {X(Tn∧t)}n∈N is uniformly integrable
for every t ≥ 0.

Proof
Tn =

{
0 , if T = 0
k+1
2n , if k

2n < T ≤ k+1
2n , for a k ∈ N0

1. It is to be shown: E|X(Tn ∧ t)| <∞ for all n.
E|X(Tn ∧ t)| ≤

∑
k: k2n<t

E|X( k
2n )| + E|X(t)| < ∞, since X is a martingale, therefore

integrable.

2. It is to be shown: supn E(|X(Tn ∧ t)|1(|X(Tn ∧ t)| > x︸ ︷︷ ︸
An

)) −−−→
x→∞

0.

sup
n

E(|X(Tn ∧ t)|1(An))

= sup
n

 ∑
k: k2n<t

E
(∣∣∣∣X (

k

2n
)∣∣∣∣ 1({Tn = k

2n
}
∩An

))
+ E (|X(t)| 1 (Tn > t) 1 (An))


≤ sup

n

 ∑
k: k2n<t

E
(
|X(t)| 1

({
Tn = k

2n
}
∩An

))
+ E (|X(t)| 1 ({Tn > t} ∩An))


= sup

n
E (|X(t)| 1 (An)) ≤ sup

n
E (|X(t)| 1 (Y > x))

= E (|X(t)| 1 (Y > x)) ,

where 1(An) ≤ 1(sup
n
|X(Tn ∧ t)|︸ ︷︷ ︸

Y

> x). It is to be shown: P(Y > x) −−−→
n→∞

0 with help of

Doob’s inequality.
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P(Y > x) ≤ P(sup0≤s≤t |X(s)| > x) ≤ E|X(t)|
x −−−−→

x→+∞
0. Since E|X(t)| < ∞ for all

t ≥ 0 and P(Y > x) −−−→
x→∞

0, this gives E(|X(t)|1(Y > x)) −−−→
n→∞

0 ⇒ supn E|X(Tn ∧
t)1(A)| −−−→

x→∞
0 {X(Tn ∧ t)}n∈N is uniformly integrable.

Proof of theorem 5.4.2
It is to be shown that {X(T ∧ t), t ≥ 0} is a martingale.

1. E|X(T ∧ t)| <∞ for all t ≥ 0. As in conclusion 5.1.1 Tn ↓ T , n→∞ ⇒ X(Tn ∧ t)
a.s.−−−→
n→∞

X(T ∧ t) is approximated, but since E|X(Tn∧ t)| <∞ for all n it follows E|X(T ∧ t)| <∞
because of lemma 5.4.1, since uniform integrability gives L1-convergence.

2. Martingale property
It is to be shown:

E(X(T ∧ t) | Fs)
a.s.= X(T ∧ s), s ≤ t
m

E(X(T ∧ t)1(A)) a.s.= E(X(T ∧ s)1(A)), A ∈ Fs

First of all, we show that E(|X(Tn ∧ t)|1(A)) = E(|X(Tn ∧ s)|1(A)), A ∈ Fs, n ∈ N. Let
t1, . . . , tk ∈ (s, t) be discrete values, which Tn takes with positive probability in (s, t).

E(X(Tn ∧ t) | Fs) = E(E(X(Tn ∧ t) | Ftk) | Fs)
= E(E(X(Tn ∧ t)︸ ︷︷ ︸

X(tk)

1(Tn ≤ tk) | Ftk) | Fs)

+E(E(X(Tn ∧ t)︸ ︷︷ ︸
X(t)

1(Tn > tk) | Ftk) | Fs)

= E(X(tk)1(Tn ≤ tk) | Fs) + E(1(Tn > tk)E(X(t) | Ftk) | Fs)
= E(X(tk ∧ Tn) | Fs) = . . . = E(X(tk−1 ∧ Tn) | Fs) = . . .

= E(X(t1 ∧ Tn) | Fs) = . . . = E(X(Tn ∧ s) | Fs)
a.s.= X(Tn ∧ s)

Since X is càdlàg and Tn ↓ T , n→∞, it holds X(Tn ∧ t)
a.s.−−−→
n→∞

X(Tn ∧ t). Furthermore
{X(Tn ∧ t)}n∈N are uniformly integrable because of L1-convergence. Therefore follows
that

E(X(Tn ∧ t)1(A)) = E(X(Tn ∧ s)1(A)) for all A ∈ Fs
↓ ↓

E(X(T ∧ t)1(A)) = E(X(T ∧ s)1(A))

⇒ {X(T ∧ t), t ≥ 0} is a martingale.

Definition 5.4.1
Let T : Ω → R+ be a stopping time w.r.t. the filtration {Ft, t ≥ 0}, Ft ⊂ F , t ≥ 0. The
„stopped“ σ-algebra FT is defined by A ∈ FT ⇒ A ∩ {T ≤ t} ∈ Ft for all t ≥ 0.
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Lemma 5.4.2 1. Let S, T – stopping times w.r.t. the filtration {Ft, t ≥ 0}, S
a.s.
≤ T . Then

it holds FS ⊂ FT .

2. Let X = {X(t), t ≥ 0} be a martingale with càdlàg-trajectories w.r.t. the filtration
{Ft, t ≥ 0} and let T be a stopping time w.r.t. {Ft, t ≥ 0}. Then X(T ) is FT -
measurable.

Proof 1. A ∈ Fs ⇒ A ∩ {S ≤ t} ∈ Ft, t ≥ 0. A ∩ {T ≤ t} = A ∩ {S ≤ t}︸ ︷︷ ︸
∈Ft

∩{T ≤ t}︸ ︷︷ ︸
∈Ft

∈ Ft

for all t ≥ 0 ⇒ A ∈ FT .

2. X(T ) = g ◦ f , f : Ω→ Ω× R+, f(ω) = (ω, T (ω)), g : Ω× R+ → R, g(ω, s) = X(s, ω).
It has to be shown: f -F | F × BR+-measurable, g-F × BR+ | FT -measurable ⇒ g ◦ f -
F | FT -measurable.
f -F | F × BR+-measurable is obvious, since T is a random variable. If we’re looking at
the restriction of X = {X(s), s ≥ 0} on s ∈ [0, t], t ≥ 0.
It has to be shown: {X(T ) ∈ B} ∩ {T ≤ t} ∈ Ft for all t ≥ 0, B ∈ B(R).
X – càdlàg ⇒ X(s, ω) = X(0, ω)1(s = 0) + limn→∞

∑2n
k=1X(t k2n , ω)1(k−1

2n t < s ≤ k
2n t) ⇒

X(s, ω) is B[0,t] × Ft-measurable ⇒ X(T ) is F | FT -measurable.

Theorem 5.4.3 (Optional sampling-theorem):
Let X = {X(t), t ≥ 0} be a martingale with càdlàg-trajectories w.r.t. a filtration {Ft, t ≥ 0}
and let T be a finite stopping time w.r.t. {Ft, t ≥ 0} ⇒ E(X(t) | FT ) a.s.= X(T ∧ t), t > 0.

Proof First of all we show that E(X(t) | FTn) a.s.= X(Tn ∧ t), t ≥ 0, n ∈ N, where Tn ↓ T ,
n → ∞ is the discrete approximation of T . Let t1 ≤ t2 ≤ . . . ≤ tk = t be the values,
which Tn ∧ t takes with positive probability. It is to be shown, that for all A ∈ FTn it holds:
E(X(t)1(A)) = E(X(Tn ∧ t)1(A)).

(X(t)−X(Tn ∧ t))1(A) =
k−1∑
i=1

X(tk)−X(ti)1({Tn ∧ t = ti} ∩A)

=
k∑
i=2

(X(ti)−X(ti−1))1(A)1({Tn ∧ t < ti})

E((X(t)−X(Tn ∧ t))1(A)) =
k∑
i=2

E((X(ti)−X(ti−1))1(Tn ∧ t < ti)1(A))

=
k∑
i=2

E(E(X(ti)−X(ti−1))1(Tn ∧ t < ti)1(A) | Fti−1)

=
k∑
i=2

E(1(Tn ∧ t < ti)1(A))E((X(ti)−X(ti−1)) | Fti−1) = 0

E(X(t) | FTn) a.s.= E(X(Tn ∧ t) | FTn) a.s.= X(Tn ∧ t), since X(Tn) is FTn-measurable. T ≤ Tn ⇒
FT ⊆ FTn . Since {X(Tn ∧ t)}n∈N is uniformly integrable for t ∈ [0,∞), it holds

E(X(t) | FT ) = E(X(t) | FTn) = lim
n→∞

E(X(Tn ∧ t) | FTn) = lim
n→∞

X(Tn ∧ t) = X(T ∧ t),

since X is càdlàg.
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Conclusion 5.4.2
Let X = {X(t), t ≥ 0} be a càdlàg-martingale and let S, T be finite stopping times, such
that P(S ≤ T ) = 1. Then it holds E(X(t ∧ T ) | Fs)

a.s.= E(X(S ∧ t)), t ≥ 0. In particular
E(X(T ∧ t))) = E(X(0)) holds.

Proof X – martingale. From theorem 5.4.2 {X(T ∧ t), t > 0} is also a martingale. Use
theorem 5.4.3 for this true martingale:

E(X(T ∧ t) | Fs)
a.s.= X(T ∧ S ∧ t) a.s.= X(S ∧ t),

since S
a.s.
≤ T . Set S = 0, then E(E(X(T ∧ t) | F0)) = EX(0 ∧ t) = EX(0).

5.5 Lèvy processes and Martingales
Theorem 5.5.1
Let X = {X(t), t ≥ 0} be a Lèvy process with characteristics (a, b, ν).

1. There exists a càdlàg-modification of X̃ = {X̃(t), t ≥ 0} of X with the same character-
istics (a, b, ν).

2. The natural filtration of a càdlàg-Lèvy processes ist right-continuous.

Without proof
Theorem 5.5.2 (Regeneration theorem for Lèvy processes):
Let X = {X(t), t > 0} be a càdlàg-Lèvy process with natural filtration {FX

t , t ≥ 0} and
let T be a finite stopping time w.r.t. {FX

t , t ≥ 0}. The process Y = {Y (t), t ≥ 0}, given
by Y (t) = X(T + t) − X(T ), t ≥ 0, is also a Lèvy process, adapted w.r.t. the filtration
{FX

T+t, t ≥ 0}, which is independent from FX
T and has the same characteristics as X. T is

called regeneration time. Since Y d= X, Y is independent of FX
T .

Abb. 5.1:

Proof 1. Assumption: There ∃c > 0, such that P(T ≤ c) = 1. Let u1, . . . , un ∈ R. After
example nr.5 in section 5.2 Ỹj = {Ỹj(t) = exp{iujX(t) − tη(uj)}, t ≥ 0}, j = 1, . . . , n,
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is a complexvalued martingale, where η(·) is the Lèvy-exponente of X(t). Let 0 ≤ t0 <
t1 < . . . < tn be arbitrary times. For all A ∈ FX

T it holds

E(1(A) exp{
n∑
j=1

iuj(Y (tj)− Y (tj−1))}) Z.z.= P(A)E(exp{
n∑
j=1

iuj(X(tj)−X(tj−1))})

E(1(A) exp{
n∑
j=1

iuj(Y (tj)− Y (tj−1))})

= E(1(A) exp{
n∑
j=1

iuj(X(T + tj)−X(T )−X(T + tj−1)−X(T )))})

= E

1(A)
n∏
j=1

Ỹj(T + tj)
Ỹj(T + tj−1)

exp{η(uj)(T + tj)}
exp{η(uj)(T + tj−1)}


= E

E

1(A)
n∏
j=1

Ỹj(T + tj)
Ỹj(T + tj−1)

exp{(tj − tj−1)η(uj)} | FX
T+tj−1


= E

1(A)
n−1∏
j=1

Ỹj(T + tj)
Ỹj(T + tj−1)

e(tj−tj−1)η(uj) e
(tn−tn−1)η(un)

Ỹn(T + tn−1)
E(Ỹn(T + tn) | FX

T+tn−1)


= E

1(A)
n−1∏
j=1

Ỹj(T + tj)
Ỹj(T + tj−1)

e(tj−tj−1)η(uj) · . . . · e(tn−tn−1)η(un)


= . . . = E(1(A)

n∏
j=1

e(tj−tj−1)η(uj)) = P(A)
n∏
j=1

e(tj−tj−1)η(uj)

= P(A)E(exp{i
n∑
j=1

(uj(X(tj)−X(tj−1)))})

Conclusion 5.5.1
T1 = T + tn, S1 = T + tn−1 ≤ T1 a.s., T1, S1 ≤ t, since t > c+ tn, T ≥ c.
Exercise 5.5.1
Show that the statement of the theorem follows from E(1(A) exp{

∑n
j=1 iuj(Y (tj)−Y (tj−1))}) =

P(A)E(exp{
∑n
j=1 iuj(X(tj)−X(tj−1))}).

5.6 Martingales und Wiener Processes
Our goal: If W = {W (t), t ≥ 0} is a Wiener process, then it holds

P( max
s∈[0,t]

W (s) > x) =
√

2
πt

∫ +∞

x
e−

y2
2t dy, for all x ≥ 0.

Theorem 5.6.1 (Reflection principle):
Let T be an arbitrary stopping time w.r.t. the natural filtration {FW

t , t ≥ 0}. Let X =
{X(t), t ≥ 0} be the reflectedWiener process at time T , i.e. X(t) = W (T∧t)−(W (t)−W (T∧t)),
t ≥ 0. Then X d= W holds.
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Abb. 5.2:

Proof Let X1(t) = W (T ∧ t), X2(t) = W (T + t) −W (T ), t ≥ 0. From theorem 5.5.2 follows
that X2 is independent from (T1, X1) (W – Lèvy process and T – regeneration time). It holds
W (t) g= X1(t) + X2((t− T )+), X(t) g= X1(t)−X2((t− T )+), t ≥ 0. From theorem ?? follows
that

(T1, X1, X2) d= (T,X1,−X2)
↓ ↓
W

d= X

Let W = {W (t), t ≥ 0} be a Wiener process on (Ω,F ,P), let {FW
t , t ≥ 0} the natural

filtration w.r.t. W . For z ∈ R let TW{z} = inf{t ≥ 0 : W (t) = z}. TW{z} := TWz is an a.s. finite
stopping time w.r.t. {FW

t , t ≥ 0}, z > 0. It obviously holds {FW
z ≤ t} ∈ FW

t . Since W has
continuous paths (a.s.), {FW

t , t ≥ 0} is right-continuous.
Conclusion 5.6.1
Let Mt = maxs∈[0,t]W (s), t ≥ 0. Then it follows for all z > 0, y ≥ 0, that P(Mt ≥ z,W (t) ≤
z − y) = P(W (t) > y + z).

Proof Mt be a random variable, sinceW has continuous paths. T := TWz . After theorem 5.6.1
it holds: for Y (t) = W (T ∧ t)− (W (t)−W (T ∧ t)), t ≥ 0, Y d= W resp. {TWz ,W} d= {T Yz , Y },
since W (t) = z, TWz = T Yz . Therefore

P(T ≤ t,W (t) < z − y) = P(T Yz ≤ t, Y (t) < z − y)

{T Yz ≤ t} ∩ {Y (t) < z − y} = {T Yz ≤ t} ∩ {2z − W (t) < z − y}. If T = T Yz ≤ t, then
Y (t) = W (T )−W (t) +W (T ) = 2z −W (t) and hence follows that

P(T ≤ t,W (t) < z−y) = P(T ≤ t, 2z−W (t) < z−y) = P(T ≤ t,W (t) > z+y) = P(W (t) > z+y).

Per definition in T = TWz it holds:

P(T ≤ t,W (t) < z − y) = P(Mt ≥ z,W (t) < z − y) = P(W (t) > y + z)
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⇒ TWz ≤ t⇐⇒ maxs∈[0,t]W (s) ≥ z.

Theorem 5.6.2 (Distribution of the maximum of W ):
For t > 0 and x ≥ 0 it holds

P(Mt > x) =
√

2
πt

∫ ∞
x

e−
y2
2t dy

Proof In conclusion 5.6.1 set y = 0 ⇒ P(Mt ≥ z,W (t) < z) = P(W (t) > z). It holds
P(W (t) > z) = P(W (t) ≥ z) for all t and all z, since W (t) ∼ N (0, t), thus continuously
distributed
⇒ P(Mt ≥ z,W (t) < z) + P(W (t) ≥ z) = P(W (t) > z) + P(W (t) > z)
⇒ P(Mt ≥ z,W (t) < z) + P(Mt ≥ z,W (t) ≥ z) = P(Mt ≥ z) = 2P(W (t) > z)
⇒ P(Mt > z) = 2P(W (t) > z) = 2 1√

2πt
∫∞
z e−

y2
2z dy =

√
2
πt

∫∞
z e−

y2
2t dy

Let X(t) = W (t) − tµ, t ≥ 0, µ > 0, be the Wiener process with negative drift. Consider
P(supt≥0X(t) > x) = e−2µx, x ≥ 0.

Motivation Calculation of the ruin-probability in risk theory.

Assumptions Initial capital x ≥ 0. Let µ be the volume of premiums per time unit.⇒ µt
– earned premiums at time t ≥ 0. Let W (t) be the loss process (price development). ⇒
Y (t) = x + tµ −W (t) – remaining capital at time t. The ruin probability is P(inft≥0 Y (t) <
0) = P(x− supt≥0X(t) < 0) = P(supt≥0X(t) > x)

Theorem 5.6.3
It holds

P(sup
t≥0

X(t) > x) = e−2µx, x ≥ 0, µ > 0.

Proof Let T = TXz = inf{t ≥ 0 : X(t) = z}. It is known that Y (t) = exp{uX(t)− t(u2

2 −µu)},
t ≥ 0, u ≥ 0, is a martingale. Let T ′ = T ∧ t – a finite stopping time w.r.t. {FX

t , t ≥ 0}. From
conclusion 5.4.1: EY (T ′) = EY (0) = Ee0 = 1

⇒ E(Y (T ′)1(T < t)) + E(Y (T ′)1(T ≥ t)) = E(Y (T )1(T < t)) + E(Y (T ′)1(t ≥ t))

It is to be shown that E(Y (T ′)1(T ≥ t)) −−−→
t→∞

0.
From conclusion ?? it is known that

W (t)
t

a.s.−−−→
t→∞

0⇒ lim
t→∞

X(t)
t

= lim
t→∞

W (t)
t
− µ = −µ⇒ X(t) a.s.−−−−→

t→+∞
−∞

Y (T ′)1(T ≥ t) = exp{uX(t) − t(u2

2 − µu)}1(T ≥ t) a.s.−−−−→
t→+∞

0, if u2

2 − µu > 0 ⇒ u ≥ 2µ.
Otherwise, Y (T ′)1(T ≤ t) ≤ exp{uz} ⇒ after Lebesgue’s theorem it holds:

E(Y (T ′)1(T ≥ t)) −−−−→
t→+∞

0
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⇒ lim
t→+∞

E(Y (T )1(T < t)) = 1, Y (T ) = exp{uz − T (u
2

2 − µu)}

⇒ lim
t→+∞

E(exp{−T (u
2

2 − µu)}1(T < t)) = e−uz

u=2µ⇒ lim
t→+∞

P(T < t) = P(T <∞) = e−2µz

⇒ P(sup
t≥0

X(t) > z) = P(TXz <∞) = e−2µz

Theorem 5.6.4
Let µ ∈ R, δ > 0, T (t) = inf{s ≥ 0 : W (s) +µs = δt}, t ≥ 0. Then T = {T (t), t ≥ 0} is a Lèvy
process with m̂T (t)(z) = Ee−zT (t) = exp{−tδ(

√
2z + µ2 − µ)}, t ≥ 0, z ≥ 0.

Special case: For µ = 0, δ = 1√
2 , T = {T (t), t ≥ 0} is a 1

2 -stable subordinator, which
is sometimes also called Lèvy-subordinator. Here holds m̂X(t)(z) = e−t

√
z. (For α-stable

subordinators holds: m̂T (t)(z) = e−tz
α , α ∈ (0, 1))

To remind you: The Lèvy-measure of a α-stable subordinator is

ν(dx) = α

Γ(1− α)
dx

x1+α 1(x > 0), α ∈ (0, 1).

Proof of theorem 5.6.4 for the special case (general case analog)
Let T (t) = inf{s ≥ 0 : W (s) = t√

2}, t ≥ 0. It is to be shown, that T = {T (t), t ≥ 0} is a Lèvy
process.
T (0) a.s.= 0. It follows from theorem 5.5.2, that T has independent and stationary increments.
T is stochastically continuous, since

lim
t→0

P(T (t) > ε) = lim
t→∞

P( max
s∈[0,ε]

W (s) < t√
2

) = lim
t→0

(1−
√

2
πε

∫ ∞
t√
2

e−
y2
2ε dy) = 1− 1 = 0.

Thus we have proven that T is a Lèvy process.
It now is to be shown, that T (t) is α-stable for α = 1

2 , i.e. Ee−zT (t) = e−t
√
z, for all z and t ≥ 0.

Similar to the proof of theorem 5.6.3 we are considering the martingale X = {X(s), s ≥ 0},
X(s) = exp{zW (s)− s z2

2 }, s ≥ 0.
Let Yn,t = T (t)∧ n, for all n ∈ N, t ≥ 0, a sequence of stopping times w.r.t. {Ft, t ≥ 0}. From
conclusion 5.4.1
{X(Yn,t), n ∈ N} for all t, z > 0, is also a martingale.

EX(Yn,t) = EX(Y0,t) = EX(0) = ez0 = 1
E(X(Yn,z)1(T (t) < n)) + E(X(Yn,t))1(T (t) ≥ n)
= E(exp{zW (T (t))︸ ︷︷ ︸

= t√
2

−T (t) z2

2 }1(T (t) < n)) + E(exp{zW (n)− n z2

2 1(T (t) ≥ n))

It is to be shown, that E(exp{zW (n)−n z2

2 }1(T (t) ≥ n)) −−−→
n→∞

0. It will follow from that, that

1 = limn→∞ E(exp{z t√
2 − T (t) z2

2 } 1(T (t) < n)︸ ︷︷ ︸
a.s.−−−→
n→∞

1

) = E exp{z t√
2 − T (t) z2

2 }, since T (t) is a finite
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stopping time, i.e. P(T (t) <∞) = 1 for all t ≥ 0.
The convergence above holds after Lebesgue’s theorem over majorised convergence

⇒ E exp{−T (t) z2

2︸︷︷︸
=u

} − e−t
z√
2 ⇒ Ee−uT (t) = e−t

√
u, u ≥ 0.

It is yet to be shown, that E(exp{zW (n)− n z2

2 } 1(T (t) ≥ n)︸ ︷︷ ︸
a.s.−−−→
n→∞

0

) −−−→
n→∞

0.

In addition holds: T (t) ≥ n⇒W (n) ≤ t√
2 .

exp{zW (n)− n z2

2 }1(T (t) ≥ n) ≤ exp{t t√
2} for all n ∈ N0.

⇒ Lebesgue’s theorem gives the convergence.

Remark 5.6.1
If T (t) = min{s ≥ 0 : W (s)+µs = δt}, µ ∈ R, δ > 0, t ≥ 0, then the Laplace transform of T (t),
Ee−zT (t) = exp{−tδ(

√
2z + µ2 − µ)} can be explicitly inverted into (compare theorem 5.6.4):

the density of T (t) can be written as

fT (t)(x) = δt√
2π
eδtµx−

3
2 exp{−1

2(t2δ2 1
x

+ µ2x)}1(x ≥ 0).

That is the density of the so called inverse Gauss distribution.
Theorem 5.6.5
Let X = {X(t), t ≥ 0} be a Lèvy process and let T = {T (t), t ≥ 0} be a subordinator,
which are both defined on a probability space (Ω,F ,P). Let X and T be independent. Then
Y = {Y (t), t ≥ 0} is definde by Y (t) = X(T (t)), t ≥ 0, which is also a Lèvy process.
Without proof

5.7 Additional Exercises
Exercise 5.7.1
Let X,Y : Ω→ R be arbitrary random variables on (Ω,F ,P) with

E|X| <∞, E|Y | <∞, E|XY | <∞,

and let G ⊂ F be an arbitrary sub-σ-Algebra of F . Then it holds

(a) E(X|{∅,Ω}) = EX,E(X|F) = X,

(b) E(aX + bY |G) = aE(X|G) + bE(Y |G) for arbitrary a, b ∈ R,

(c) E(X|G) ≤ E(Y |G), if X ≤ Y ,

(d) E(XY |G) = Y E(X|G), if Y is a (G,B(R))-measurable random variable,

(e) E(E(X|G2)|G1) = E(X|G1), if G1 and G2 are sub-σ-algebras of F with G1 ⊂ G2,

(f) E(X|G) = EX, if the σ-algebra G and σ(X) = X−1(B(R)) are independent, i.e., if P(A ∩
A′) = P(A)P(A′) for arbitrary A ∈ G and A′ ∈ σ(X).
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(g) E(f(X)|G) ≥ f(E(X|G)), if f : R→ R is a convex function, such that E|f(X)| <∞.

Exercise 5.7.2
Look at the two random variables X and Y on the probability space ([−1, 1],B([−1, 1]), 1

2ν)
with E|X| <∞, where ν is the Lebesgue measure of [−1, 1]. Determine σ(Y ) and a version of
the conditional expectation E(X|Y ) for the following random variables.

(a) Y (ω) = ω5 (Hint: Show first that σ(Y ) = B([−1, 1]))

(b) Y (ω) = (−1)k for ω ∈
[
k−3

2 , k−2
2

)
, k = 1, . . . , 4 and Y (1) = 1

(Hint: It holds E(X|B) = E(X1B)
P(B) for B ∈ σ(Y ) with P(B) > 0)

(c) Calculate the distribution of E(X|Y ) in (a) and (b), if X ∼ U [−1, 1].

Exercise 5.7.3
Let X and Y be random variables on a probability space (Ω,F ,P). The conditional variance
var(Y |X) is defined by

var(Y |X) = E((Y − E(Y |X))2|X).

Show that
var Y = E(var(Y |X)) + var(E(Y |X)).

Exercise 5.7.4
For a stopping time τ define the stopped σ-algebra Fτ as follows:

Fτ = {B ∈ F : B ∩ {τ ≤ t} ∈ Ft for arbitrary t ≥ 0}.

Let now S and T be stopping times w.r.t. the filtration {Ft, t ≥ 0}. Show:

(a) A ∩ {S ≤ T} ∈ FT ∀A ∈ FS

(b) Fmin{S,T} = FS ∩ FT

Exercise 5.7.5 (a) Let {X(t), t ≥ 0} be a martingale. Show that EX(t) = EX(0) holds for
all t ≥ 0.

(b) Let {X(t), t ≥ 0} be a sub- resp. supermartingale. Show that EX(t) ≥ EX(0) resp.
EX(t) ≤ EX(0) holds for all t ≥ 0.

Exercise 5.7.6
The stochastisc process X = {X(t), t ≥ 0} be adapted and càdlàg. Show that

P( sup
0≤v≤t

X(v) > x) ≤ EX(t)2

x2 + EX(t)2

holds for arbitrary x > 0 and t ≥ 0, if X is a submartingale with EX(t) = 0 and EX(t)2 <∞.
Exercise 5.7.7 (a) Let g : [0,∞)→ [0,∞) be a monotone increasing function with

g(x)
x
→∞, x→∞.

Show that the sequenceX1, X2, . . . of random variables is uniformly integrable, if supn∈N Eg(|Xn|) <
∞.
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(b) Let X = {X(n), n ∈ N} be a martingale. Show that the sequence of random variables
X(T∧1), X(T∧2), . . . is uniformly integrable for every finite stopping time T , if E|X(T )| <
∞ and E(|X(n)|1{T>n})→ 0 for n→∞.

Exercise 5.7.8
Let S = {Sn = a+

∑n
i=1Xi, n ∈ N} be a symmetric random walk with a > 0 and P(Xi = 1) =

P(Xi = −1) = 1/2 for i ∈ N. The random walk is stopped at the time T , when it exceeds or
falls below one of the two values 0 and K > a for the first time, i.e.

T = min
k≥0
{Sk ≤ 0 or Sk ≥ K}.

Show that Mn =
∑n
i=0 Si − 1

3S
3
n is a martingale and E(

∑T
i=0 Si) = 1

3(K2 − a2)a+ a holds.
Hint: To calculate E(Mn|FM

m ), n > m, you can use E(
∑l
i=kXi)3 = 0, 1 ≤ k ≤ l, Mn =∑m

r=0 Sr +
∑n
r=m+1 Sr − 1

3S
3
n and Sn = Sn − Sm + Sm.

A discrete martingale w.r.t. a filtration {Fn}n∈N is a sequence of random variables {Xn}n∈N
on a probability space {Ω,F ,P), such that Xn is measurable w.r.t. {Fn}n∈N and E(Xn+1|Xn) =
Xn for all n ∈ N. A discrete stopping time w.r.t. {Fn}n∈N is a random variable T : Ω →
N ∪ {∞}, such that {T ≤ n} ∈ Fn for all n ∈ N ∪ {∞}, where F∞ = σ{

⋃∞
n=1 Fn}.

Exercise 5.7.9
Let {Xn}n∈N be a discrete martingale and T a discrete stopping time w.r.t. {Fn}n∈N. Show
that{Xmin{T,n}}n∈N is also a martingale w.r.t. {Fn}n∈N.
Exercise 5.7.10
Let {Sn}n∈N be a symmetric random walk with Sn =

∑n
i=1Xi for a sequence of independent and

identically distributed random variables X1, X2, . . ., such that P(X1 = 1) = P(X1 = −1) = 1
2 .

Let T = inf{n : |Sn| >
√
n} and Fn = σ{X1, . . . , Xn}, n ∈ N.

(a) Show that T is a stopping time w.r.t. {Fn}n∈N.

(b) Show that {Gn}n∈N with Gn = S2
min{T,n} − min{T, n} is a martingale w.r.t. {Fn}n∈N.

(Hint: Use exercise 5.7.9)

(c) Show that |Gn| ≤ 4T holds for all n ∈ N.
(Hint: It holds |Gn| ≤ |S2

min{T,n}|+ |min{T, n}| ≤ S2
min{T,n} + T )

Exercise 5.7.11
Let X1, X2, . . . be a sequence of independent and identically distributed random variables with
E|X1| < ∞. Let Fn = σ{X1, . . . , Xn}, n ∈ N, and let T be a stopping time w.r.t. {Fn}n∈N
with ET <∞.

(a) Let T be independent of X1, X2, . . .. Derive a formula for the characteristic function of
ST =

∑T
i=1Xi her verify the Wald’s identity with it, i.e. EST = ETEX1.

(b) Let additionally EX1 = 0 and T = inf{n : Sn < 0}. Use theorem 2.1.3 from the lecture,
to show that ET =∞. (Hint: Proof by contradiction)
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6.1 Sequences of Independent Random Variables
It is known, that the series ∑∞

n=1
1
nα <∞ ⇐⇒ α > 1,∑∞

n=1
(−1)n
nα <∞ ⇐⇒ α > 0,

since the drift of neighboring terms have oder 1
n1+α .

When (for which α > 0) converges the series
∑∞
n=1

δn
nα , where δn are i.i.d. random variables

with Eδn = 0, e.g. P(δn = ±1) = 1
2?

More general question: Under which conditions converges (a.s.) the series
∑∞
n=1Xn, where

Xn are independent?
It is known, that for a sequencce of random variables {Yn} with Yn

a.s.−−−→
n→∞

Y it holds that

Yn
P−−−→

n→∞
Y . The opposite is in general not true.

Theorem 6.1.1
Let Xn, n ∈ N, be independent random variables. If Sn =

∑n
i=1Xi

P−−−→
n→∞

S, then Sn
a.s.−−−→
n→∞

S.

Without proof
Conclusion 6.1.1
If the sequences Xn, n ∈ N, are independent, varXn <∞, n ∈ N, EXn = 0,

∑∞
n=1 varXn <∞,

then
∑∞
n=1Xn converges a.s.

Proof Sn =
∑n
i=1Xi, S =

∑∞
i=1Xi, m < n,

E(Sn − Sm)2 = ‖Sn − Sm‖2L2 =
n∑

i=m+1
varXi −−−−−→

n,m→∞
0,

since
∑∞
i=1 varXi <∞ ⇒ {Sn}n∈N is a Cauchy sequence in L2(Ω,F ,P)

⇒ ∃S = lim
n→∞

Sn =
∞∑
i=1

Xi ⇒ Sn
P−−−→

n→∞
S
Theorem 6.1.1⇒ Sn

a.s.−−−→
n→∞

S.

Conclusion 6.1.2
If
∑∞
n=1 a

2
n < ∞, where {an}n∈N is a deterministic sequence, and {δn} is a sequence of i.i.d.

random variables with Eδn = 0, var δn = σ2 < ∞, n ∈ N, then the sequence
∑∞
n=1 anδn

converges a.s.
Exercise 6.1.1
Derive conclusion 6.1.2 from theorem 6.1.1.

84
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For us: δn i.i.d., Eδn = 0, var δn = σ2 > 0 (e.g. δn ∼ Bernouli(1
2)), an = 1

nα , n ∈ N.∑∞
n=1

1
nα <∞, if

∑∞
n=1

1
n2α <∞, i.e. for α < 1

2 .

Conclusion 6.1.3
Let {Xn}n∈N be a sequence of independent random variables with

∑∞
n=1 EXn,

∑∞
n=1 varXn <∞

⇒
∑∞
n=1Xn

a.s.
< ∞.

Proof Let Yn = Xn − EXn, thus Xn = EXn︸ ︷︷ ︸
=an

+Yn, n ∈ N, and EYn = 0,
∑∞
n=1 an < ∞

after the condition.
∑∞
n=1 Yn

a.s.
< ∞ after conclusion 6.1.1, since varXn = var Yn, n ∈ N,∑∞

n=1 varXn <∞ ⇒
∑
nXn =

∑
n an +

∑
n Yn

a.s.
< ∞.

6.2 Stationarity in the Narrow Sense and Ergodic Theory

6.2.1 Basic Ideas

Let {Xn}n∈N be stationary in the narrow sense sequence of random variables, i.e. for all n, k ∈ N
the distribution of (Xn, . . . , Xn+k)> is independent of n ∈ N. In particular, this means that all
Xn are identically distributed. In the language of Kolmogorov’s theorem:

P((Xn, Xn+1, . . .) ∈ B) = P((X1, X2, . . .) ∈ B),

for all n ∈ N, for all B ∈ B(R∞), R∞ = R× R× . . .× . . ..

Example 6.2.1 (of stationary sequences of random variables): 1. Let {Xn}n∈N be
a sequence of i.i.d. random variables, then {Xn}n∈N is stationary.

2. Let Yn = a0Xn+. . .+akXn+k, k – fixed number out of N, {Xn}n∈N from 1), a0, . . . , ak ∈ R
(fixed), n ∈ N. Yn are not stationary anymore, bud identically distributed. The sequence
{Yn}n∈N is stationary.

3. Let Yn =
∑∞
j=0 ajXn+j for arbitrary n ∈ N. The sequence {aj}j∈N is a sequence of

numbers from R with the property that
∑∞
j=1 |aj | <∞ and EXn = 0,

∑∞
n=1 varXn <∞,∑∞

j=1 a
2
j <∞ (compare conclusion 6.1.2).

It is obvious that {Yn}n∈N is a stationary sequence. (This construction is important for
autoregressive time series (AR processes), e.g. in econometrics).

4. Let Yn = g(Xn, Xn+1, . . .), n ∈ N, g : R∞ → R measurable, {Xn}n∈N from 1). Then
{Yn}n∈N is stationary.

Remark 6.2.1 1. An arbitrary stationary sequence of random variables X = {Xn}n∈N can
be extended to a stationären sequence X̄ = {Xn}n∈Z. In fact, the finite dimensional
distribution of X̄ can be defined after the theorem of Kolmogorov as:

(Xn, . . . , Xn+k)
d= (X1, . . . , Xk+1), n ∈ Z, k ∈ N.

Therefore (after Kolmogorov’s theorem) there exists a probability space and a sequence
{Yn}n∈Z with the above distribution. We set X̄ = {Yn}n∈Z and hence follows that
{Yn}n∈N

d= {Xn}n∈N.
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2. We define a shift of coordinates. Let x ∈ R∞−∞, x = (xk, k ∈ N), x = (xk, k ∈ Z). Define
the mapping θ : R∞−∞ → R∞−∞, (θx)k = xk+1 (shift of the coordinates by 1), k ∈ N,
k ∈ Z. If θ is considered on R∞−∞, then it is bijective and the backwards mapping would
be (θ−1x)k = xk−1, k ∈ Z.
Let now X = {Xn, n ∈ Z} be a stationary sequence of random variables. Let X̄ = θX.
It is obvious that X̄ is again stationary and X̄ d= X. Hence follows that

P(θX ∈ B) = P(X ∈ B), B ∈ B(R∞−∞).

θ is called a measure preserving map. There are also other maps which have a measure
preserving effect.

Definition 6.2.1
Let (Ω,F ,P) be an arbitary probability space. A map T : Ω→ Ω is called measure preserving,
if

1. T is measurable, i.e. T−1A ∈ F for all A ∈ F ,

2. P(T−1A) = P(A), A ∈ F .

Lemma 6.2.1
Let T be a measure preserving mapping X0 – a random variable. We define a sequence of
random variables Xn. Let UY (ω) = Y (T (ω)), ω ∈ Ω, be the map for an arbitrary random
variable Z to (Ω,F ,P). Define Xn(ω) = UnX0(ω) = X0(Tn(ω)), ω ∈ Ω, n ∈ N. Then the
sequence of random variables X = {X0, X1, X2, . . .} is stationary.

Proof Let B ∈ B(R∞), A = {ω ∈ Ω : X(ω) ∈ B}, A1 = {ω ∈ Ω : θX(ω) ∈ B}.

X(ω) = (X0(ω), X0(T (ω)), X0(T 2(ω)), . . .)
θX(ω) = (X0(T (ω)), X0(T 2(ω)), . . .)

Therefore ω ∈ A1 ⇔ T (ω) ∈ A. Since P(T−1A) = P(A), it holds P(A1) = P(A). For An =
{ω ∈ Ω : θnX(ω) ∈ B} the same holds, P(An) = P(A), n ∈ N (Induction). And hence follows
that the sequence X is stationary.

The sequence X in lemma 6.2.1 is called the sequence generated by T .
Definition 6.2.2
A map T : Ω→ Ω is called measure preserving in both directions, if

1. T is bijective and T (Ω) = Ω,

2. T and T−1 are measurable,

3. P(T−1A) = P(A), A ∈ F , and therefore P(TA) = P(A).

Thus, exactly as in lemma 6.2.1, we can construct stationary sequences of random variables
with time parameter n ∈ Z:

X(ω) = {X0(Tn(ω))}n∈N, ω ∈ Ω,

where T is a measure preserving map (in both directions), X0(T 0(ω)) = X0(ω), (T 0 = Id).
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Lemma 6.2.2
For an arbitrary stationary sequence of random variables X = (X0, X1, . . .) there exists a
measure preserving map T and a random variable Y0, such that Y (ω) = {Y0(Tn(ω))}n∈N has
the same distribution as X: X

d= Y . The same statement holds for sequences with time
parameter n ∈ Z.

Proof We are considering the canonical probability space (R∞,B(R∞),PX), Y (ω) = ω, ω ∈ R,
T = θ. With that, Y is constructed, since PX(A) = PY (A) = PX(Y ∈ A), A ∈ B(R∞).

Example 6.2.2 (Measure preserving maps): 1. Let Ω = {ω1, . . . , ωk}, k ≥ 2, F = 2Ω,
P(ωi) = 1

k , i = 1, . . . , k, be a Laplace probability space. Tωi = ωi+1 for all i = 1, . . . , k−1,
Tωk = ω1.

2. Let Ω = [0, 1), F = B([0, 1)), P = ν1 – Lebesgue-measure on [0, 1). Tω = (ω+ s) mod 1,
s ≥ 0. T is measure preserving in both directions.

Sequences of random variables, which in these examples can be generated by the map T , are
mostly determinisitc resp. zyclic. In example 1) we can consider a random variableX0 : Ω→ R,
such that X(ωi) = xi are all pairwise distinct. Therefore Xn(ω) = X0(Tn(ω)) uniquely defines
the value of Xn+1(ω) = X0(Tn+1(ω)), for all n ∈ N.
Remark 6.2.2
Measure preserving maps play a big role in physics. There, T is interpreted as the change
of state of a physical system and the measure can e.g. be the volume. (Ex.: T – Change of
temperature, measure P – volume of the gas.) Therefore the to be developed ergodic theory is
transfered to some physical processes.
Theorem 6.2.1 (Poincarè):
If T is a measure preserving map on (Ω,F ,P), A ∈ F , then for almost all ω ∈ A the relation
{Tn(ω) ∈ A} holds for infinitely many n ∈ N.
That means, the trajectory {Tn(ω), n ∈ N} returns to A infinitely often, if ω ∈ Ω, P(A) > 0.

Proof It is to be shown, that A ∈ F , T : Ω→ Ω is measure preserving. Show, that for almost
all ω ∈ Ω, T (ω) ∈ A for infinitely many n ∈ N. Let N = {ω ∈ A : Tn(ω) /∈ A∀n ≥ 1}. It is
obvious that N ∈ F , since {ω ∈ Ω : Tn(ω) /∈ A} ∈ F for all n ≥ 1. N ∩ T−nN = ∅ for all
n ≥ 1. In fact, if ω ∈ N ∩ T−nN , then ω ∈ A, Tn(ω) /∈ A for all n ≥ 1, ω1 = Tn(ω), ω1 ∈ N .
Hence follows, that ω1 ∈ A and Tn(ω) ∈ A. That a contradiction.
T−nN = {ω ∈ Ω : Tn(ω) ∈ N}. For arbitrary m ∈ N it holds

T−mN ∩ T−(n+m)N = T−m(N ∩ T−nN) = T−m(∅) = ∅.

Hence follows that the sets T−nN , n ∈ N, are pairwise disjoint, belong to F and P(T−nN) =
P(A) = a ≥ 0 holds.

1 ≥ P(∪nT−nN) =
∑

P(T−nN) =
∞∑
n=0

a⇒ a = 0⇒ P(N) = 0.

Hence follows that for almost all ω ∈ A (ω ∈ A{}N) there exists a n1 = n1(ω), such that
Tm(ω) ∈ A. Let now T k be instead of T , k ∈ N. It holds P(Nk) = 0 and for all ω ∈ A{}Nk

there exists nk = nk(ω), such that (T k)nk(ω) ∈ A. Since knk ≥ k it follows for almost all
ω ∈ A, that Tn(ω) ∈ A for infinitely many n.
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Conclusion 6.2.1
Let X ≥ 0 be a random variable, A = {ω ∈ Ω : X(ω) > 0}. Then it holds for almost all ω ∈ Ω
that

∑∞
n=0X(T (n)(ω)) = +∞, where T is a measure preserving map.

Exercise 6.2.1
Proof it.

Remark 6.2.3
The proof of theorem 6.2.1 holds for the sets A ∈ F : P(A) ≥ 0. If however P(A) = 0, it is
possible that A{}N = ∅ and thus the statement of the theoreme is trivial.
As an example we are considering Ω = [0, 1), F = B([0, 1)), P = ν1 – Lebesgue-measure,
T (ω) = ω+s mod 1, s ∈ Q. As set a A we are considering A = ω0, ω0 ∈ Ω. Then Tn(ω0) 6= ω0
holds for all n, because otherwise there exists k,m ∈ N, such that ω0 + ks−m = ω0 and hence
follows s = m

k ∈ Q. Thus we get a contradiction.

6.2.2 Mixing Properties and Ergodicity

Here we study the dependency structure in a stationary sequence of random variables, which
is generated by a measure preserving map T .
Let X = {Xn}n∈N be a stationary sequence (in the narrow sense) of random variables. Then

there exists a measure preserving map T : Ω → Ω, such that Xn(ω) d= X0(T (n)(ω)) and
Xn

d= X0, and thus Xs gives the marginal distribution of the sequence X. In return the map
T responsiblbe for the dependency within X (it indicates the properties of multidimensional
distributions). We will therefore now examine the depedency properties, which are generated
by T .

Definition 6.2.3 1. Event A ∈ F is called invariant w.r.t. (a measure preserving map)
T : Ω→ Ω, if T−1A = A.

2. Event A ∈ F is called almost invariant w.r.t. T , if P(T−1A4A) = 0. 4 is the symmetric
difference.

Exercise 6.2.2
Show that the set of all (almost) invariant events T is a σ-algebra J(J∗).

Lemma 6.2.3
Let A ∈ J∗. Then there exists B ∈ J∗, such that P(A4B) = 0

Proof Let B = lim supn→∞ TnA = ∩∞n=1∪∞k=nT
−kA. It is to be shown, that B ∈ J , P(A4B) =

0. It is obvious, that T−1(B) = lim supn→∞ T−(n+1)A = B and hence follows that B ∈ J .
It is easy to see, that A4B ⊂ ∪∞k=0(T−kA4T−(k+1)A). Since P(T−kA4T−(k+1)A) = 0 for all
k ≥ 1 due to A ∈ J∗, it follows that P(A4B) = 0.

Definition 6.2.4 1. The measure preserving map T : Ω→ Ω is called ergodic, if for every
A ∈ J

P(A) =
{

0
1 .

2. The stationary sequence of random variables X = {Xn}n∈N is called ergodic, if the
measure preserving map T : Ω→ Ω, which generates X, is ergodic.
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Lemma 6.2.4
The measure preserving map T is ergodic if and only if the probability of arbitrary almost
invariant sets

P(A) =
{

0
1 for all A ∈ J∗.

Proof „⇐ “
Obvious, since arbitrary invariant set are also alsmost invariant, i.e. J ⊂ J∗
„⇒ “
T – ergodic. Let A ∈ J∗. It follows that there exists B ∈ J , such that P(A4B) = 0 nach
Lemma 6.2.3. T – ergodic and hence follows

P(B) =
{

0
1 and P(A) =

{
0
1 .

Definition 6.2.5
A random variable Y : Ω→ R is called (almost) invariant w.r.t. T : Ω→ Ω (measure preserving
map), if Y (ω) = Y (T (ω)) for (almost) all ω ∈ Ω.
Theorem 6.2.2
Let T : Ω→ R be a measure preserving map. The following statements are equivalent:

1. T – ergodic

2. If Y is invariant w.r.t. T , then Y = const a.s.

3. If Y is invarinat w.r.t. T , then Y = const a.s.

Proof 1)⇒ 2)⇒ 3)⇒ 1)
1)⇒ 2)

T – ergodic, Y – almost invariant. It is to be shown, that Y (ω) = const for almost all ω ∈ Ω.
Y (T (ω)) = Y (ω) almost surely. Let Av = {ω ∈ Ω : Y (ω) ≤ ω}, ω ∈ R. Hence follows, that
Av ∈ J∗ for all v ∈ R and after lemma 6.2.4

P(Av) =
{

0
1 for all v.

Let c = sup {v : P(Av) = 0}. Show that P(Y = c) = 1.
Av ↑ Ω, v →∞, Av ↓ ∅, v → −∞ ⇒ |c| <∞.

P(Y < c) = P
(
∪∞n=1

{
Y ≤ c− 1

n

})
≤
∞∑
n=1

P
(
Ac− 1

n

)
= 0.

Just the same P(Y > c) = 0 and P(Y = c) = 1.
2)⇒ 3)

Obviously.

3)⇒ 1) It is to be shown, that T is ergodic, i.e. for all A ∈ J P(A) =
{

0
1 .

Let Y = 1A – invariant w.r.t. T , it hence follows that 1A = const =
{

0
1 and P(A) =

{
0
1 .
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Remark 6.2.4 1. The statements of theorem 6.2.2 stays true, if you demand 3) for a.s.
bounded random variables Y .

2. If Y is invariant w.r.t. T , then Yn = min {Y, n}, n ∈ N, is also invariant w.r.t. T .

Example 6.2.3 1. Let Ω = {ω1, . . . , ωd}, F = 2Ω, P({ωi}) = 1
d , i = 1, . . . , d. Let T (ωi) =

ωi+1 mod d, i.e. ωd
T7−→ ω1. T is obviously ergodic and every other invariant random

variable is constant.

2. Let Ω = [0, 1), F = B[0,1), P = ν1, T (ω) = (ω + s) mod 1. Show that T is ergodic ⇐⇒
s /∈ Q.

Proof „⇐ “
Let s /∈ Q, Y – an arbitrary invariant random variable. Let EY 2 < ∞. We decompose the
random variable Y into a Fourier-series. The Fourier series of Y is Y (ω) =

∑∞
n=0 ane

2πinw. We
want to show that an = 0, n > 0, and hence follows that Y (ω) = a0 a.s.. Then T is ergodic
and after theorem 6.2.2.

an =< Y (ω), e2πinw >L2= E(Y (ω)e−2πinw) = E(Y (T (ω))e−2πinw)e−2πins = e−2πinsan,

s /∈ Q ⇒ an = 0.
„⇒“

If s = m
n ∈ Q, then T is not ergodic, i.e. there exists A ∈ J , such that 0 < P (A) < 1. Let

A = ∪n−1
k=0

{
ω ∈ Ω : 2k

2n ≤ ω <
2k+1

2n

}
and P(A) = 1

2 . A is invariant, since T (A) =
(
A+ 2m

2n

)
mod 1 = A.

Definition 6.2.6 1. The measure preserving map T : Ω → Ω is called mixing, if for all
A1, A2 ∈ F it holds: P(A1 ∩ T−nA2) −−−→

n→∞
P(A1)P(A2), i.e. by repeated application

from T on A2, A1 and A2 are getting asymptotically independent.

2. Let X = {Xn}n∈N0
be a stationary sequence of random variables which are generated by

a random variable X0 and a measure preserving map T . X is called weak dependent, if
the random variable Xk and Xk+n are getting asymptotically independent for n → ∞ ,
i.e. for all B1, B2 ∈ BR

P(Xk ∈ B1, Xk+n ∈ B2) −−−→
n→∞

P(X0 ∈ B1)P(X0 ∈ B2).

Theorem 6.2.3
A stationary sequence of random variablesX = {Xn}n∈N0

, generated by the measure preserving
map T , is weak dependent on average, if and only if T is mixing on average.

Exercise 6.2.3
Proof the theorem.

Theorem 6.2.4
Let T be a measure preserving map. It is ergodic, if and only if it is mixing on average.

Proof „⇐ “
It is to be shown, that if T is mixing on average, hence follows that T is ergodic, i.e. for all A ∈ J
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it holds P(A) =
{

0
1 . A1 ∈ F , A2 = A = J , 1

n

∑n
k=1 P(A1 ∩ T−n(A2)︸ ︷︷ ︸

=A2

) = P(A1 ∩ A2) −−−→
n→∞

P(A1)P(A2). P(A1 ∩A2) = P(A1)P(A2) for A1 = A, P(A) = P2(A) and P(A) =
{

0
1

„ ⇒ “
Later.

Now we give the motivation for the term „mixing mapping“.
Theorem 6.2.5
Let A ∈ F , P(A) > 0. The measure preserving map T : Ω → Ω is ergodic (i.e. mixing on
average), if and only if

P
(
∪∞n=0T

−nA
)

= 1.

I.e. the archetypes T−nA, n ∈ N0, are covering almost the whole Ω.

Proof „⇐ “
Let B = ∪∞n=0T

−nA. Obviously, T−1B = ∪∞n=1T
−nA ⊂ B. Since T is measure preserving, i.e.

P(T−1B) = P(B), it follows that P(T−1B4B) = 0, B ∈ J∗ (B – almost invariant w.r.t. T )

and P(B) =
{

0
1 . P(B) ≥ P(A) > 0 ⇒ P(B) = 1.

„ ⇒ “
Let T be non-ergodic. It is to be shown, that P(B) < 1.
If T is not ergodic, there exists A ∈ J , such that 0 < P(A) < 1. B = ∪∞n=0T

−nA = A and
P(B) < 1.

Remark 6.2.5
So far, the fact that the random variables X are realvalued was never explicitly used. Therefore
the above observations can be transfered without modifications to sequences of random elements
with values in an arbitrary measurable space M.

6.2.3 Ergodic Theorem

Let X = {Xn}∞n=0 be a sequence of random variables on the probability space (Ω,F ,P). If Xn

are i.i.d. , then
1
n

n−1∑
k=0

Xk
a.s.−−−→
n→∞

EX0, E|X0| <∞.

We want to prove a similar statement about stationary sequences.
Theorem 6.2.6 (Ergodic theorem, Birkkoff-Kchintchin):
Let X = {Xn}n∈N0

be a stationary sequence of random variables, generated by the random
variable X0 and a measure preserving map T : Ω→ Ω. Let J be the σ-algebra of the invariant
sets from T , i.e. E|X0| <∞. Then

1
n

n−1∑
k=0

Xk
a.s.−−−→
n→∞

E(X0 | J).

If X is weak dependent on average (i.e. T – ergodic), then E(X0 | J) = E(X0).
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Lemma 6.2.5
Let {Xn}, T be as above. Let Sn(ω) =

∑n−1
k=0 X0(T k(ω)), Mk(ω) = max {0, S1(ω), . . . , Sk(ω)}.

Under the condition of theorems 6.2.6 it holds

E(X01(Mn > 0)) ≥ 0, n ∈ N.

Proof For all k ≤ n it holds Sk(ω)︸ ︷︷ ︸
Sk(T (ω))

≤ Mn(ω)︸ ︷︷ ︸
Mn(T (ω))

. We can add X0 and get

X0(ω) +Mn(T (ω)) ≥ X0(ω) + Sk(T (ω)) = Sk+1(ω).

For k = 0 it holds X0(ω) ≥ S1(ω) −Mn(T (ω)). The same holds for k = 0, . . . , n − 1. Hence
follows that X0(ω) ≥ max {S1(ω), . . . , Sn(ω)}︸ ︷︷ ︸

=Mn(ω)

−Mn(T (ω)). Since Mn(ω) > 0, then Mn =

max {S1, . . . , Sn}. It follows that

E(X01(Mn > 0)) ≥ E((Mn −Mn(T ))1(Mn > 0)) ≥ E(Mn −Mn(Tω)) = 0.

Proof of the Ergordic theorem The statement E(X0 | J) = E(X0) is trivial, since for
ergodic T it holds J = {∅,Ω}. w.l.o.g. let E(X0 | J) = 0, otherwise consider X0 = E(X | J).
It has to be shown: limn→∞

Sn
n

a.s.= 0, Sn =
∑n−1
k=0 Xk. It is enough to show that

0 ≤ lim inf
n→∞

Sn
n
≤ lim sup

n→∞

Sn
n
≤ 0.

We first of all show that S = lim supn→∞ Sn
n ≤ 0. It is enough to show that P(S > ε︸ ︷︷ ︸

Aε

) = 0 for

all ε > 0. Let X∗0 = (X0 − ε)1Aε , S∗k =
∑k−1
j=0 X

∗
0 (T j(ω)), M∗k = max{0, S∗1 , . . . , S∗k}. From

lemma 6.2.5 it follows E(X∗0 1(M∗n > 0)) ≥ 0 for all n ≥ 1. But,

{M∗n > 0} =
{

max
1≤k≤n

S∗k > 0
}
↑n→∞

{
sup
k≥1

S∗k > 0
}

=
{

sup
k geq1

S∗k
k
> 0

}
=
{

sup
k≥1

Sk
k
> ε

}
∩Aε = Aε,

since
{

supk≥1
Sk
k > ε

}
⊃
{
S > ε

}
= Aε. After Lebesgue’s theorem: 0 ≤ E(X∗0 1(M∗n >

0)) −−−→
n→∞

E(X∗0 1Aε), since E|X∗0 | ≤ E|X0| + ε. Hence 0 ≤ E(X∗0 1Aε) = E((X0 − ε)1Aε) =
E(X01Aε) − εP(Aε) = E(E(X01Aε | J)) − εP(Aε) = E(1Aε E(X0 | J)︸ ︷︷ ︸

=0

) − εP(Aε) = −εP(Aε) and

hence follows P(Aε) ≤ 0 and P(Aε) = 0 for all ε > 0.
In oder to show 0 ≤ lim infn→∞ Sn

n = S it is enough to look at −X0 instead of X0, since
lim supn→∞(−Sn

n ) = lim infn→∞(Snn ). Since P(−S ≤ 0) = 1 it holds P(S ≥ 0) = 1.

Remark 6.2.6
The speciality about the Ergodic theorem 6.2.6, in comparision with the common law of large
numbers lies in the fact that the limit limn→∞

1
n

∑n
k=1Xk

a.s.−→ E(X0 | J) is random.
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Example 6.2.4
We are considering the probability space from example 6.2.3 a). Ω = {ω1, . . . , ωd}, d = 2l ∈ N.
T : Ω→ Ω be defined by 

T (ωi) = ωi+2 , i = 1, . . . , d− 2,
T (ωd−1) = ω1 ,
T (ωd) = ω2 .

Let A1 = {ω1, ω3, . . . , ω2l−1}, A2 = {ω2, ω4, . . . , ω2l}. Since (Ω,F ,P) is a Laplace probability
space (P({ωi}) = 1

d , for all i) it follows that P(Ai) = 1
2 , i = 1, 2. On the other hand, A1, A2 ∈ J

w.r.t. T and therefore T is not ergodic. For an arbitrary random variable X0 : Ω→ R it holds

1
n

n−1∑
k=0

(Tn(ω)) −−−→
n→∞

{
2
d

∑l−1
j=0X0(ω2j+1), with probability 1

2 , if ω ∈ A1,
2
d

∑l
j=1X0(ω2j) , with probability 1

2 , if ω ∈ A2.

Proof of theorem 6.2.4 It has to be shown: If T : Ω → Ω is ergodic, then T is mixing on
average, i.e. for all A1, A2 ∈ F

1
n

n−1∑
k=0

P(A1 ∩ T−kA2) −−−→
n→∞

P(A1)P(A2).

Let Yn = 1
n

∑n−1
k=0 1(T−kA2) Thoerem 6.2.6−−−−−−−−−→

n→∞
P(A2), since T is ergodic, thus also the sequence{

1(T−kA2)
}
k∈N

. After Lebesgue’s theorem from 1(A1)Yn −−−→
n→∞

1(A1)P(A2) it follows that

E(1(A1)Yn) = 1
n

n−1∑
k=0

P(A1 ∩ T−kA2) −−−→
n→∞

P(A1)P(A2).

Lemma 6.2.6
If {Xn}n∈N is a uniformly integrable sequence of random variables and pn,i ≥ 0, such that∑n
i=1 pn,i = 1 for all n ∈ N, then the sequence of random variables Yn =

∑n
i=1 pn,i |Xi|, n ∈ N,

uniformly integrable as well.
Without proof

Conclusion 6.2.2
Under the conditions of theorem 6.2.6 it holds

1
n

n−1∑
k=0

Xk
L2
−−−→
n→∞

E(X0 | J)

resp.
1
n

n−1∑
k=0

Xk
L2
−−−→
n→∞

E(X0)

in the ergodic case.

Proof If {Xn}n∈N0 is stationary, it then holds supn E(|Xn|1(|Xn| > ε)) = E(|X0|1(|X0| >
ε)) −−−→

ε→0
0, since E|X0| < ∞. Let Sn = 1

n

∑n−1
k=0 Xk =

∑n
i=1 pn,iXi−1, pn,i = 1

n , S̃n =
1
n

∑n−1
k=0 Xk =

∑n
i=1 pn,i|Xi−1|. From lemma 6.2.6,

{
S̃n
}
n∈Z

is also uniformly integrable and
after Lemma 5.3.2 it follows from Sk

a.s.−−−→
k→∞

0 that E|Sn| ≤ 1
n

∑n−1
k=0 E|Xk| −−−→

n→∞
0.
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6.3 Stationarity in the Wide Sense
Let {Xn}n∈Z be a sequence of random variables, which is stationary in the wide sense: E|Xn|2 <
∞, n ∈ N. E|Xn| = const, n ∈ N, cov(Xn, Xm) = C(n−m), n,m ∈ Z.

6.3.1 Correlation Theory
Theorem 6.3.1 (Herglotz):
Let C : Z → R be a positive semi-definite function. Then there exists a finite measure µ on
(−π, π), such that

C(n) =
∫ π

−π
einxµ(dx), n ∈ Z.

µ is called spectral measure of C.
Remark 6.3.1
Since covariance function of a stationary sequence is positive semi-definit, the the above repre-
sentation holds for an arbitrary covariance function C.
Definition 6.3.1
A family {Qλ, λ ∈ Λ} of probability measures is called weakly relatively compact, if an arbitrary
sequence of measures {Qλn}n∈N has a subsequence {Qλnk}n∈N, which converges weakly.
Definition 6.3.2
A family of probability measures Q = {Qλ, λ ∈ Λ} on (S,B), B – Borel σ-algebra on a metric
space S is called tight, if for all ε > 0 there exists a compactum, such that Kε ∈ B and
Qλ(Kε) > 1− ε for all λ ∈ Λ.
Theorem 6.3.2 (Prokhorov):
If the family of probability measures Q = {Qλ, λ ∈ Λ} on the metric measurable space (S,B) is
tight, then it is weakly relatively compact. If S is a Banach space, then every weakly relatively
compact familiy Q = {Qλ, λ ∈ Λ} of measures is also tight.
Without proof

The theorem of Prokhorov is used to prove the weak convergence of a sequence of probability
measures, by checking the tightness among other things. In particular, if S is compact, then
every family of probability measures on (S,B) is tight, since Kε = S for all ε > 0.

Proof of theorem 6.3.2 „⇐ “
If C(n) =

∫ π
−π e

inxµ(dx), n ∈ Z, then for all n ∈ N, for all z1, . . . , zn ∈ C and t1, . . . , tn ∈ Z

n∑
i,j=1

zj z̄jC(ti − tj) =
∫ π

−π

∣∣∣∣∣
n∑
i=1

zie
izix

∣∣∣∣∣
2

µ(dx) ≥ 0.

Hence follows that C is positive semi-definit.
„⇒ “

For all N ≥ 1, x ∈ [−π, π], define the function gN (x) = 1
2πN

∑N
k,j=1C(k − j)e−ikxeijx ≥ 0,

which is continuous in x, since C is positive semi-definit. It holds

gN (x) = 1
2π

∑
|n|<N

(
1− |n|

N

)
C(n)e−inx,
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sine there are N − |n| pairs (k, j) ∈ {1, . . . , N}2, such that k − j = n. Define the measure µN
on ([−π, π],B[−π,π]) by µN (B) =

∫
gN (x)dx, B ∈ B([−π, π]).

∫ π

−π
einxQN (dx) =

∫ π

−π
einxgN (x)dx =

{ (
1− |n|N

)
C(n), |n| < N,

0, otherwise,

since
{
einx

}
n∈Z is a orthogonale system in L2[−π, π]. For n = 0 it holds QN ([−π, π]) = C(0) <

∞, hence
{
QN
C(0)

}
n∈N

is a family of probability measures, which is tight. After theorem 6.3.2
there exists a subsequence {Nk}k∈N,
such that QN

ω−−−→
k→∞

µ. µ – finite measure on [−π, π] and hence follows

lim
k→∞

∫ π

−π
einxgN (x)dx = lim

k→∞

(
1− |n|

Nk

)
C(n) = C(n), for all n ∈ Z.

Let X = {Xn}n∈Z be a stationary in the wide sense sequence of random variables. Then the
following spectral representation holds:

Xn
d=
∫ π

−π
einxZ(dx), n ∈ Z,

where Z is an orthogonal random measure on ([−π, π],B([−π, π])). Therefore both Z and
I(f) =

∫ π
−π f(x)Z(dx) are to be introduced for deterministic functions f : [−π, π]→ C.

6.3.2 Orthogonal Random Measures
Construction scheme of Z resp. I(·):

1. Z is defined on a semiring K (the sumbset of Λ).

2. Z is defined on the algebra A, which is generated by K.

3. Define the integralI w.r.t. Z for a simple function on σ(A), if the measure µ(Λ) <∞, µ
– given measure.

4. Define I as limn→∞ I(fn) for arbitrary random functions f , f = limn→∞ fn, fn simple,
µ(Λ) <∞.

5. Define I on a σ-finite space Λ = ∪nΛn, µ(Λn) < ∞, Λn ∩ Λm = ∅, n 6= m, as I(f) =∑
n I(f | Λn), In – integralw.r.t. Z on Λn. Hence Z is extended on {A ∈ σ(A) : µ(A) <∞}

as Z(A) = I(1(A)).

Step 1
Let K be a semiring of the subsets of Λ (Λ – arbitrary space), i.e. for all A,B ∈ K it

holds A ∩ B ∈ K; if A ⊂ B, then there exist A1, . . . , An ∈ K, Ai ∩ Aj = ∅, i 6= j, such that
B = A ∪ ∪ni=1Ai.
Definition 6.3.3 1. A complexvalued random measure Z = {Z(B), B ∈ K}, given on the

probability space (Ω,F ,P), is called orthogonal, if
a) all Z(B) ∈ L2(Ω,F ,P), B ∈ K,
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b) A,B ∈ K, A ∩B = ∅ ⇒ 〈Z(A), Z(B)〉L2(Ω,F ,P) = E(Z(A), Z(B)) = 0,

c) as a random measure the σ-additivity of Z holds: If B,B1, . . . , Bn, . . . ∈ K, B =
∪nBn, Bi ∩Bj = ∅, i 6= j, Z(B) a.s.=

∑
n Z(Bn), where the convergence of this series

is intepreted in L2(Ω,F ,P) terms.

2. The term µ = {µ(B), B ∈ K} defined by µ(B) = E|Z(B)|2 = 〈Z(B), Z(B)〉L2(Ω,F ,P),
B ∈ K, is called stucture measure of Z. It is easy to see that µ is in fact a measure on
K. If Λ ∈ K, then µ is finite, otherwise σ-finite, Λ = ∪nΛn, Λn ∈ K, Λn ∩ Λm = ∅, such
that µ(Λn) <∞.

3. The orthogonal random measure Z is called centered, if EZ(B) = 0, B ∈ K.

Example 6.3.1
Let Λ = [0,∞), K = {[a, b), 0 ≤ a < b < ∞}, Z([a, b)) = W (b) −W (a), 0 ≤ a < b < ∞,
where W = {W (t), t ≥ 0} is the Wiener process. Z is an orthogonal random measure on K,
since W has independent increments. Analog, this definition can be transfered to an arbitrary
quadratic integrable stochastic process X with independent increments instead of W .

Step 2

Theorem 6.3.3
Let µ be a σ-finite measure on the algebra A, which is generated by K (after the theorem of
Caratheodon µ is uniquely continued on σ(A)). Then there exists a probability space (Ω,F ,P)
and a centered orthogonal random measure Z on (Ω,F ,P), defined on {B ∈ A : µ(B) < ∞},
with structure measure (or control measure) µ.

Without proof
To the definition of Z on A: for B ∈ A, B = ∪ni=1Bi, Bi ∈ K, Bi ∩ Bj = ∅, i 6= j, we set

Z(B) =
∑n
i=1 Z(Bi).

6.3.3 Integral regarding an Orthogonal Random Measure

Step 3
Let f : Λ → C be a simple function, i.e. f(x) =

∑n
i=1 ci1(x ∈ Bi), for ci ∈ C and Bi ∈ E ,

i = 1, . . . , n, such that ∪ni=1Bi = Λ, Bi ∩ Bj = ∅, i 6= j, and (Λ, E , µ) be a measurable space
with µ(Λ) <∞.

Definition 6.3.4
The integral of f w.r.t. an orthogonal random measure Z defined on (Ω,F ,P) is given by
I(f) :=

∫
Λ f(x)Z(dx) =

∑n
i=1 ciZ(Bi).

Exercise 6.3.1
Show that the definition is correct, i.e. I(f) does not depend on the representation of f as a
simple function.

Lemma 6.3.1 (Properties of I):
Let I(·) be the integral w.r.t. the orthogonal random measure, defined on a simple function
Λ→ C as abovev. The following properties hold:

1. Isometry: 〈I(t), I(g)〉L2(Ω) = 〈f, g〉L2(Ω), where f and g are simple functions Λ → C,
〈f, g〉L2(Ω) =

∫
Λ f(x)g(x)Λ(dx).
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2. Linearity: For every simple function f, g : Λ→ C holds I(f + g) a.s.= I(f) + I(g).

Exercise 6.3.2
Proof it.
Step 4
Let now f ∈ L2(Ω, E , µ). Then there exists a sequence of simple functions fn : Λ → C,

such that fn
L2(Λ)−−−→
n→∞

f (simple functions are tight in L2(Λ)). Then define I(f) = limn→∞ I(fn),
whereas this limit is to be understood in the L2(Ω,F ,P) sense. You can show, that the definition
of I(f) is independent of the choice of the sequence {fn}.
Lemma 6.3.2
The statements of lemma 6.3.1 hold for the general case.

Proof Use the continuity 〈·, ·〉.

Remark 6.3.2
If Z is centered, then EI(f) = 0 holds for arbitrary functions f ∈ L2(Λ, E , µ).
Step 5
Let now Λ be σ-finite, i.e. Λ = ∪nΛn, µ(Λn) < ∞, Λn ∩ Λm = ∅, n 6= m. Then for all

f ∈ L2(Λ, E , µ) holds f =
∑
n f |Λn . On L2(Λn, E ∩ Λn, µ) the integral In w.r.t. Z is defined as

in 1)- 4). Now set I(f) :=
∑
n In(f |Λn).

Theorem 6.3.4
The map g : L2(Λ, E , µ) → L2(Ω,F ,P) is an isometry. In particular, as a result, the random
measure Z on {B ∈ ε : µ(B) < E} can be continued as Z(B) := I(1B), B ∈ E : µ(B) <∞.

6.3.4 Spectral Representation
Let X = {X(t), t ∈ T} be an arbitrary complexvalued stochastic process on (Ω,F ,P), T –
an arbitrary index set, E|X(t)|2 < ∞, t ∈ T , EX(t) = 0, t ∈ T (w.l.o.g., otherwise consider
X̃(t) = X(t)− EX(t)), t ∈ T , with C(s, t) = E(X(s), X(t)), s, t ∈ T ).
Theorem 6.3.5 (Karhunen):
X has the spectral representation X(t) =

∫
Λ f(t, x)Z(dx), t ∈ T (i.e., there exists a centered

orthogonal random measure on {B ∈ E : µ(B) <∞}, where L2(Λ, E , µ) is an as above defined
space), if and only if there exists a system of the functionsf(t, ·) ∈ L2(Λ, E , µ), t ∈ T , such that
C(s, t) =

∫
Λ f(s, x)f(t, x)µ(dx), s, t ∈ T , and this system F is completely in L2(Λ, E , µ) (i.e.

〈f(t, ·), ψ〉L2(Ω) = 0, ψ ∈ L2(Ω, E , µ), for all t ∈ T and ψ ≡ 0, µ almost everywhere).
Without proof

Theorem 6.3.6
Let {Xn, n ∈ Z} be a centered complexvalued stationary in the wide sense sequence of ran-
dom variables on (Ω,F ,P). Then there exists an orthogonal centered random measure on
([−π, π],B([−π, π])) (defined on (Ω,F ,P)), such that Xn

a.s.=
∫ π
−π e

inxZ(dx), n ∈ Z.

Proof Let F = {einx, x ∈ [−π, π], n ∈ Z}. This system in complete on L2([−π, π]) (comp.
the theory of the Fourier-series). From the theorem of Herglotz follows that

C(n,m) = E(XnXm) =
∫ π

−π
einxeimxµ(dx),
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where µ is the spectral measure of X, thus a finite measure on ([−π, π],B([−π, π])). Af-
ter theorem 6.3.5 there exists an orthogonal random measure on (Ω,F ,P), such that Xn

a.s.=∫ π
−π e

inxZ(dx), n ∈ Z.

Theorem 6.3.7 (Ergodic theorem for stationary (in the wide sense) sequences of
random variables):
Unter the conditions of theorem 6.3.6 it holds

1
n

n−1∑
k=0

Xk
L2(Ω)−−−−→ Z({0}).

In particular if X is not centered, i.e. EXn = a, n ∈ Z, then 1
n

∑n−1
k=0 Xk

L2(Ω)−−−−→ a converges, if
E|Z({0})|2︸ ︷︷ ︸

µ({0})

= 0, thus Z and therefore µ has no atom in zero.

Proof Sn = 1
n

∑n−1
k=0 Xk =

∫ 1
n

n−1∑
k=0

eikx︸ ︷︷ ︸
ψn(x)

Z(dx). ψn(x) =
{

1
n

1−einx
1−eix , x 6= 0

1, x = 0
, for all n ∈

N. Sn − Z({0}) =
∫ π
−π (ψn(x)− 1(x = 0))︸ ︷︷ ︸

ϕn(x)

Z(dx) =
∫ π
−π ϕn(x)Z(dx). ‖Sn − Z({0})‖2L2(Ω) =

‖ϕn(x)‖2L2([−π,π],µ) =
∫ π
−π |ϕn(x)|2µ(dx) −−−→

n→∞
0 after the theorem of Lebesgue, since |ϕn(x)| ≤

2
n|1−eix| −−−→n→∞

0 for all x ∈ [−π, π].

6.4 Additional Exercises
Exercise 6.4.1
Let Z1, Z2, . . . be a sequence of random variables, such that the series

∑∞
i=1 Zi converges almost

surely. Let a1, a2, . . . be a monotone increasing sequence of positive (deterministic) numbers
with an →∞, n→∞. Show that

1
an

n∑
k=1

akZk
a.s.→ 0, n→∞.

Exercise 6.4.2
Let X be a non-negative variable on a probability space (Ω,F ,P) an T : Ω → Ω a measure
preserving map. Show that

∞∑
k=0

X(T k(ω)) =∞ a.s.

for almost all ω ∈ Ω with X(w) > 0.
Exercise 6.4.3
Let X be a random variable on a probability space (Ω,F ,P) and T : Ω → Ω a measure
preserving map. Show that EX = E(X ◦ T ), i.e.∫

Ω
X(T (ω))P(dω) =

∫
Ω
X(ω)P(dω).

(Hint: algebraic induction)
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Exercise 6.4.4
Let (Ω,F ,P) be a probability space, where Ω = [0, 1), F = B([0, 1)) and P is the Lebesgue
measure. Let λ ∈ (0, 1).

(a) Show that T (x) = (x+ λ) mod 1 is a measure preserving map, where
a mod m = a−

⌊
a
b

⌋
m for a ∈ R and b ∈ Z and bc is the Gauss bracket.

(b) Show that T (x) = λx and T (x) = x2 are no measure preserving maps.
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