Stochastics III - Exercise sheet 1

Due to: 24. 10. 2012 before exercises start

Exercise 1 (4 points)
Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$ be a matrix with real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Show that

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i} .
$$

Exercise 2 ($3+1$ points)
(a) Let $A \in \mathbb{R}^{n \times m}$ with $r k(A)=r$. Show: If A has representation

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} is nonsingular with $r k\left(A_{11}\right)=r$, then

$$
A^{-}=\left(\begin{array}{cc}
A_{11}^{-1} & 0 \\
0 & 0
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

is a generalized inverse of A, i.e. $A A^{-} A=A$.
(b) Determine the generalized inverse of the matrix $A \in \mathbb{R}^{3 \times 4}$,

$$
A=\left(\begin{array}{cccc}
4 & 7 & -1 & 2 \\
1 & 2 & 5 & -1 \\
7 & 13 & 14 & -1
\end{array}\right)
$$

Exercise 3 (4 points)
Let $A \in \mathbb{R}^{n \times n}$ be symmetric, $X=\left(X_{1}, \ldots, X_{n}\right)$ an n-dimensional random vector with $\mathbb{E} X=$ $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and covariance matrix $\Sigma=\mathbb{E}\left((X-\mu)(X-\mu)^{\top}\right)$. Show that

$$
\mathbb{E}\left(X^{\top} A X\right)=\operatorname{tr}(A \Sigma)+\mu^{\top} A \mu
$$

Exercise 4 ($2+3$ points)
Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be an n-dimensional random vector, where $\mathbb{E}\left(X_{i}^{2}\right)<\infty, 1 \leq i \leq n$. Furthermore, let $A \in \mathbb{R}^{m \times n}$. Show that
(a) $\mathbb{E}(A X)=A \mathbb{E} X$,
(b) $\operatorname{Cov}(A X)=A \operatorname{Cov}(X) A^{\top}$.

