Stochastics III - Exercise sheet 1

Due to: 24. 10. 2012 before exercises start

Exercise 1 (4 points)

Let $A = (a_{ij})_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$ be a matrix with real eigenvalues $\lambda_1, \ldots, \lambda_n$. Show that

$$tr(A) := \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i .$$

Exercise 2 (3+1 points)

(a) Let $A \in \mathbb{R}^{n \times m}$ with rk(A) = r. Show: If A has representation

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix},$$

where A_{11} is nonsingular with $rk(A_{11}) = r$, then

$$A^{-} = \begin{pmatrix} A_{11}^{-1} & 0\\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{m \times n}$$

is a generalized inverse of A, i.e. $AA^{-}A = A$.

(b) Determine the generalized inverse of the matrix $A \in \mathbb{R}^{3 \times 4}$,

$$A = \begin{pmatrix} 4 & 7 & -1 & 2 \\ 1 & 2 & 5 & -1 \\ 7 & 13 & 14 & -1 \end{pmatrix}.$$

Exercise 3 (4 points)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric, $X = (X_1, \ldots, X_n)$ an *n*-dimensional random vector with $\mathbb{E}X = \mu = (\mu_1, \ldots, \mu_n)$ and covariance matrix $\Sigma = \mathbb{E}((X - \mu)(X - \mu)^{\top})$. Show that

$$\mathbb{E}(X^{\top}AX) = tr(A\Sigma) + \mu^{\top}A\mu .$$

Exercise 4 (2+3 points)

Let $X = (X_1, \ldots, X_n)$ be an *n*-dimensional random vector, where $\mathbb{E}(X_i^2) < \infty$, $1 \le i \le n$. Furthermore, let $A \in \mathbb{R}^{m \times n}$. Show that

- (a) $\mathbb{E}(AX) = A \mathbb{E}X$,
- (b) $\operatorname{Cov}(AX) = A \operatorname{Cov}(X) A^{\top}$.