Stochastics III - Exercise sheet 2

Due to: 7. 11. 2012 before exercises start

Exercise 1 (3 points)

Give an example of two random variables X and Y which are normally distributed but such that the vector $(X, Y)^{\top}$ is not multivariate normally distributed.

Exercise $2(2+3$ points)
Let $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\top} \sim \mathrm{N}(\boldsymbol{\mu}, \mathbf{K})$ with expectation vector $\boldsymbol{\mu}=(1,2,3)^{\top}$ and covariance matrix

$$
\mathbf{K}=\sigma^{2}\left(\begin{array}{lll}
2 & \rho & 0 \\
\rho & 1 & \rho \\
0 & \rho & 2
\end{array}\right)
$$

(a) Determine the marginal distributions of X_{2} und $\left(X_{1}, X_{3}\right)^{\top}$.
(b) For which ρ are the random variables $X_{1}+X_{2}+X_{3}$ and $X_{1}-X_{2}-X_{3}$ independent?

Exercise 3 (4+4 points)
Proof Theorem 1.4 of the lecture course:
Let \mathbf{Y} be an n-dimensional random vector with expectation vector $\boldsymbol{\mu}=\mathbb{E} \mathbf{Y}$ and covariance matrix $\mathbf{K}=\operatorname{Cov}(\mathbf{Y})$, such that $\operatorname{rk}(\mathbf{K})=r$ with $r \leq n$. The random vector \mathbf{Y} is normally distributed if and only if one of the following conditions is fulfilled.
(a) The characteristic function $\varphi(\mathbf{t})=\mathbb{E} \exp \left(\mathrm{i} \sum_{j=1}^{n} t_{j} Y_{j}\right)$ of \mathbf{Y} is given by

$$
\varphi(\mathbf{t})=\exp \left(\mathrm{it}^{\top} \boldsymbol{\mu}-\frac{1}{2} \mathbf{t}^{\top} \mathbf{K t}\right), \quad \forall \mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)^{\top} \in \mathbb{R}^{n}
$$

(b) The linear function $\mathbf{c}^{\top} \mathbf{Y}$ of \mathbf{Y} for every $\mathbf{c} \in \mathbb{R}^{n}$ with $\mathbf{c} \neq \mathbf{o}$ is normally distributed with

$$
\mathbf{c}^{\top} \mathbf{Y} \sim \mathrm{N}\left(\mathbf{c}^{\top} \boldsymbol{\mu}, \mathbf{c}^{\top} \mathbf{K} \mathbf{c}\right)
$$

Exercise 4 ($6+2$ points)
Let $(X, Y)^{\top}$ bivariate normally distributed with expectation vector $\boldsymbol{\mu}=(1,2)^{\top}$ and covariance matrix

$$
\mathbf{K}=\left(\begin{array}{ll}
5 & 2 \\
2 & 3
\end{array}\right) .
$$

(a) Plot with \mathbf{R} the density $f_{(X, Y)}$ of the random vector $(X, Y)^{\top}$. Hint: Use the commands dmunorm, persp.
(b) Calculate in \mathbf{R} the expectation and the variance of the random variable $2 X-Y+3$.

