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1 Introduction and Mathematical Foundations

These lecture notes are made for students who already have a basic knowledge of mathematical statistics. Esti-
mation and statistical test methods which have been discussed in �Stochastik I� are assumed to be known.

The present lecture notes consist of the following parts:

• multivariate normal distribution (nondegenerate and degenerate normal distribution, linear and quadratic
forms)

• linear models (multiple regression, normally distributed disturbance terms, single� and multiple�factor
analysis of variance)

• generalized linear models (logistic regression, maximum�likelihood equation, weighted least squares estima-
tor, evaluation of the goodness of �t)

• tests for distribution assumptions (Kolmogorow�Smirnow test, χ2�goodness�of��t test of Pearson�Fisher)

• nonparametric location tests (binomial test, iteration tests, linear rank tests)

In particular, we will use notions and results which have been introduced in the lecture notes �Elementare
Wahrscheinlichkeitsrechnung und Statistik� and �Stochastik I�: we will indicate references to these lecture notes
by �WR� and �I� in front of the section number of the cited lemmas, theorems, corollaries and formulas.

1.1 Some Basic Notions and Results of Matrix Algebra

First, we recall some basic notions and results of matrix algebra, which are needed in these lecture notes.

1.1.1 Trace and Rank

• The trace tr(A) of a quadratic n× n matrix A = (aij) is given by

tr(A) =
n∑

i=1

aii . (1)

• Let A be an arbitrary n×m matrix. The rank rk(A) is the maximum number of linearly independent rows
(or columns) of A.

� The vectors a1, . . . ,aℓ ∈ Rm are called linearly dependent if there exist real numbers c1, . . . , cℓ ∈ R,
which are not all equal to zero and c1a1 + . . .+ cℓaℓ = o.

� Otherwise the vectors a1, . . . ,aℓ ∈ Rm are called linearly independent.

From the de�nition of the trace of a matrix in (1) and from the de�nition of matrix multiplication the next lemma
directly follows.

Lemma 1.1 Let C be an arbitrary n×m matrix and D an arbitrary m× n matrix. Then tr(CD) = tr(DC).

It can be proved that a quadratic matrix A is invertible if and only if A has full rank or detA ̸= 0, respectively.
The following result is also useful in this context.

Lemma 1.2 Let A be an n×m matrix with n ≥ m and rk(A) = m. Then rk(A⊤A) = m.
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Proof

• It is obvious that the rank rk(A⊤A) of the m×m matrix A⊤A cannot exceed m.

• Now, we assume that rk(A⊤A) < m. Then, there exists a vector c = (c1, . . . , cm)⊤ ∈ Rm with c ̸= o
and A⊤Ac = o.

• From this follows that c⊤A⊤Ac = o and (Ac)⊤(Ac) = o, i.e., Ac = o.

• However, this is contradictory to the assumption that rk(A) = m. �

Furthermore, it can be proved that the following properties of trace and rank are valid.

Lemma 1.3 Let A and B be arbitrary n× n matrices. Then tr(A−B) = tr(A)− tr(B) always holds. If A
is idempotent and symmetric, i.e., A = A2 and A = A⊤, it also holds that tr(A) = rk(A).

1.1.2 Eigenvalues and Eigenvectors

De�nition Let A be an arbitrary n× n matrix. Each (complex) number λ ∈ C is called an eigenvalue of the
matrix A if and only if there exists a vector x ∈ Cn with x ̸= o and

(A− λI)x = o . (2)

We call x an eigenvector corresponding to λ.

Remark

• Only if λ is a solution of the so�called characteristic equation

det(A− λI) = 0 , (3)

there is a solution x ∈ Cn with x ̸= o for (2). The left�hand side P (λ) = det(A− λI) of (3) is called
the characteristic polynomial of matrix A.

• Let λ1, . . . , λk ∈ R be the real�valued solutions of (3). Then the characteristic polynomial can be
written in the form

P (λ) = (−1)n(λ− λ1)
a1 . . . (λ− λk)

akq(λ) , (4)

where a1, . . . , ak ∈ N are positive natural numbers, the so�called algebraic multiplicities of λ1, . . . , λk,
and q(λ) is a polynomial of order n−

∑k
i=1 ai which has no real solutions.

Lemma 1.4 Let A = (aij) be a symmetric n× n matrix with real�valued entries aij. Then every eigenvalue is
a real number and eigenvectors xi,xj ∈ Rn which correspond to di�erent eigenvalues λi, λj ∈ R are orthogonal to
each other.

Proof

• The determinant det(A− λI) in (3) is given by

det(A− λI) =
∑
π

(−1)r(π)
∏

i: i ̸=πi

aiπi

∏
i: i=πi

(aiπi − λ) , (5)

where the summation extends over all m! permutations π = (π1, . . . , πm) of the natural numbers
1, . . . ,m and r(π) is the number of pairs in π, which are not in the natural order.
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• Since the elements of A are real numbers, every solution λ = a + i b of (3) implies another solution
λ = a− i b of (3).

• Let x = a+ib and x = a− ib be eigenvectors which correspond to λ or λ, respectively. Then Ax = λx
and Ax = λx or

x⊤Ax = x⊤λx = λx⊤x

and
x⊤Ax =

(
A⊤x

)⊤
x =

(
Ax
)⊤

x =
(
λx
)⊤

x = λx⊤x .

• From this it follows that λx⊤x = λx⊤x.

• Since x⊤x = |a|2 + |b|2 > 0, it holds that λ = λ, i.e., λ is a real number.

• In a similar way it can be proved that for di�erent eigenvalues λi, λj ∈ R there exist eigenvectors
xi,xj ∈ Rn with real�valued components which are orthogonal to each other.

• Since the matrix A−λiI only contains real�valued elements, it holds that if xi is an eigenvector which
corresponds to λi, then also xi and xi + xi ∈ Rn are eigenvectors that correspond to λi .

• Therefore we can (and will) assume w.l.o.g. that xi,xj ∈ Rn. Furthermore, if

(A− λiI)xi = o and (A− λjI)xj = o,

it follows that Axi = λixi and Axj = λjxj as well as

x⊤
j Axi = λix

⊤
j xi and x⊤

i Axj = λjx
⊤
i xj .

• On the other hand it is obvious that x⊤
j xi = x⊤

i xj and with the symmetry of A = (aij) we get the

identity x⊤
j Axi = x⊤

i Axj since

x⊤
j Axi =

n∑
m=1

n∑
ℓ=1

xℓjaℓmxmi =
n∑

ℓ=1

n∑
m=1

xmiamℓxℓj = x⊤
i Axj .

• Altogether it follows that λix
⊤
j xi = λjx

⊤
i xj and (λi − λj)x

⊤
j xi = 0.

• As λi − λj ̸= 0, it holds that x⊤
j xi = 0 . �

1.1.3 Diagonalization Method

• Now, let A be an invertible symmetric n× n matrix.

• In Lemma 1.4 we have shown that all eigenvalues λ1, . . . , λn of A are real numbers (where it is possible
that one number occurs more than once in this sequence).

• Since detA ̸= 0, we get that λ = 0 is no solution of (3), i.e., all eigenvalues λ1, . . . , λn of A are di�erent
from zero.

• Furthermore, it can be proved that there are orthonormal (basis) vectors v1, . . . ,vn ∈ Rn, i.e.,

v⊤
i vi = 1 , v⊤

i vj = 0 , ∀ i, j ∈ {1, . . . , n} with i ̸= j , (6)

such that vi is an eigenvector that corresponds to λi; i = 1, . . . , n.

• If all eigenvalues λ1, . . . , λn di�er from each other, then this is an immediate consequence of part 2 of
Lemma 1.4.

• As a consequence, the following diagonalization method for invertible symmetric matrices is obtained.
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Lemma 1.5

• Let A be an invertible symmetric n × n matrix and let V = (v1, . . . ,vn) be the n × n matrix that consists
of the orthonormal eigenvalues v1, . . . ,vn.

• Then
V⊤AV = Λ , (7)

where Λ = diag(λ1, . . . , λn) denotes the n× n diagonal matrix which consists of the eigenvalues λ1, . . . , λn.

Proof

• Equation (2) in the de�nition of eigenvalues and eigenvectors implies that Avi = λivi for each i =
1, . . . , n.

• This means that AV = (λ1v1, . . . , λnvn) and with (6) it follows that V⊤AV = V⊤(λ1v1, . . . , λnvn) =
Λ. �

1.1.4 Symmetric and De�nite Matrices; Factorization

Lemma 1.6 Let A be a symmetric and positive de�nite n × n matrix, i.e., A = A⊤ and x⊤Ax > 0 for each
vector x = (x1, . . . , xn)

⊤ ∈ Rn with x ̸= o. Then A is invertible and there is an invertible n× n matrix H such
that

A = HH⊤ . (8)

Proof We only prove the second part of Lemma 1.6.

• Lemma 1.5 implies that V⊤AV = Λ and

A = (V⊤)−1ΛV−1 , (9)

� where V = (v1, . . . ,vn) is the n × n matrix which consists of the orthonormal eigenvectors
v1, . . . ,vn,

� and Λ = diag(λ1, . . . , λn) denotes the n × n diagonal matrix which consists of the (positive)
eigenvalues λ1, . . . , λn.

• Now, let Λ1/2 be the n× n diagonal matrix Λ1/2 = diag(
√
λ1, . . . ,

√
λn) and let

H = (V⊤)−1Λ1/2V⊤ . (10)

• It is obvious that the matrix H, given in (10), is invertible. Because of V⊤V = I it also holds that

HH⊤ = (V⊤)−1Λ1/2V⊤
(
(V⊤)−1Λ1/2V⊤

)⊤
= (V⊤)−1Λ1/2V⊤VΛ1/2V−1

= (V⊤)−1Λ1/2Λ1/2V−1 = (V⊤)−1ΛV−1 = A ,

where the last equality follows from (9). �

Remark

• Each invertible n× n matrix H with A = HH⊤ is called a square root of A and is denoted by A1/2.

• Using the Cholesky decomposition for symmetric and positive de�nite matrices, one can show that
there exists a (uniquely determined) lower triangular matrix H with A = HH⊤.

The following property of symmetric matrices is a generalization of Lemma 1.6.
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Lemma 1.7 Let A be a symmetric and positive semide�nite n × n matrix, i.e., it holds that A = A⊤ and
x⊤Ax ≥ 0 for each vector x = (x1, . . . , xn)

⊤ ∈ Rn. Now, let rk(A) = r
(
≤ n

)
. Then there exists an n× r matrix

H with rk(H) = r such that A = HH⊤.

The proof of Lemma 1.7 is similar to the proof of Lemma 1.6.

Lemma 1.8

• Let m, r ∈ N be arbitrary natural numbers with 1 ≤ r ≤ m. Let A be a symmetric and positive de�nite
m×m matrix and let B be an r ×m matrix with full rank rk(B) = r.

• Then also the matrices BAB⊤ and A−1 are positive de�nite.

Proof

• Because of the full rank of B⊤ it holds that B⊤x ̸= o for each x ∈ Rr with x ̸= o.

• Since A is positive de�nite, it also holds that

x⊤(BAB⊤)x = (B⊤x)⊤A(B⊤x) > 0

for each x ∈ Rr with x ̸= o, i.e., BAB⊤ is positive de�nite.

• Therefore, we get for B = A−1 that

A−1 = A−1
(
AA−1

)
= A−1A

(
A−1

)⊤
is positive de�nite. �

1.2 Multivariate Normal Distribution

In this section we recall the notion of a multivariate normal distribution and discuss some fundamental properties
of this family of distributions.

1.2.1 De�nition and Fundamental Properties

• Let X1, . . . , Xn : Ω → R be independent and (identically) normally distributed random variables, i.e.,

Xi ∼ N(µ, σ2) , ∀i = 1, . . . , n , (11)

where µ ∈ R and σ2 > 0.

• The assumption of normality in (11) and the independence of the sample variables X1, . . . , Xn mean in
vector notation that the distribution of the random sample X = (X1, . . . , Xn)

⊤ is given by

X ∼ N
(
µ, σ2In

)
, (12)

where µ = (µ, . . . , µ)⊤ and N
(
µ, σ2In

)
denotes the n�dimensional normal distribution with mean vector µ

and covariance matrix σ2In.

• Recall (cf. Section WR-4.3.4): In general, the n�dimensional normal distribution is de�ned as follows.

� Let µ = (µ1, . . . , µn)
⊤ ∈ Rn be an arbitrary vector and let K be a symmetric and positive de�nite

n× n-matrix.
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� Let Z = (Z1, . . . , Zn)
⊤ be an absolutely continuous random vector, where the joint density of Z is

given by

f(z) =
( 1√

2π

)n 1√
detK

exp
(
− 1

2
(z− µ)⊤K−1(z− µ)

)
(13)

for each z = (z1, . . . , zn)
⊤ ∈ Rn.

� Then the random vector Z = (Z1, . . . , Zn)
⊤ is called (nondegenerate) normally distributed.

� Notation: Z ∼ N(µ, K)

Now, we show that the function given in (13) is an (n�dimensional) probability density.

Theorem 1.1 Let µ = (µ1, . . . , µn)
⊤ ∈ Rn be an arbitrary vector and let K be a symmetric and positive de�nite

n× n-matrix. Then it holds that
∞∫

−∞

. . .

∞∫
−∞

exp
(
− 1

2
(x− µ)⊤K−1(x− µ)

)
dx1 . . . dxn = (2π)n/2 (detK)1/2 . (14)

Proof

• Since K is symmetric and positive de�nite (and therefore invertible), Lemma 1.5 implies that there
exists an n×n matrix V = (v1, . . . ,vn) consisting of the orthogonal eigenvectors v1, . . . ,vn of K, such
that

V⊤KV = Λ , (15)

where Λ = diag(λ1, . . . , λn) denotes the n × n diagonal matrix which is built up of the eigenvalues
λ1, . . . , λn of K.

• Since K is positive de�nite, it holds that v⊤
i Kvi = λi > 0 for each i = 1, . . . , n, i.e., all eigenvalues

λ1, . . . , λn of K are positive.

• Because of V⊤V = I, it holds V⊤ = V−1 and VV⊤ = I, respectively.

• Due to the fact that (AB)−1 = B−1A−1 and due to (15), it follows that(
V⊤KV

)−1
= V⊤K−1V = diag

(
λ−1
1 , . . . , λ−1

n

)
.

• The mapping φ : Rn → Rn with y = φ(x) = V⊤(x− µ), i.e., x − µ = Vy, maps Rn bijectively onto
itself and for the Jacobian determinant of φ : Rn → Rn it holds that

det
(∂φi

∂xj
(x1, . . . , xn)

)
= detV = ±1 ,

where the last equality follows from the fact that 1 = det(V⊤V) = (detV)2.

• Therefore, the integral on the left�hand side of (14) can be written as

∞∫
−∞

. . .

∞∫
−∞

exp
(
− 1

2
(x− µ)⊤K−1(x− µ)

)
dx1 . . . dxn

=

∫
Rn

exp
(
− 1

2
(x− µ)⊤K−1(x− µ)

)
d(x1, . . . , xn) =

∫
Rn

exp

(
− 1

2

n∑
i=1

y2i
λi

)
d(y1, . . . , yn)

=

∞∫
−∞

. . .

∞∫
−∞

exp

(
− 1

2

n∑
i=1

y2i
λi

)
dy1 . . . dyn =

n∏
i=1

(2πλi)
1/2 .

• This implies (14) since

n∏
i=1

λi = detΛ = det
(
V⊤KV

)
= det

(
V⊤V

)
detK = detK . �
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1.2.2 Characteristics of the Multivariate Normal Distribution

• Let µ = (µ1, . . . , µn)
⊤ ∈ Rn be an arbitrary vector and let K = (kij) be a symmetric and positive de�nite

n× n matrix.

• First, we determine the characteristic function of a normally distributed random vector.

• Recall: The characteristic function φ : Rn → C of an arbitrary n�dimensional random vector X =
(X1, . . . , Xn)

⊤ : Ω → Rn is given by

φ(t) = E exp
(
i t⊤X

)
= E exp

(
i

n∑
ℓ=1

tℓXℓ

)
, ∀ t = (t1, . . . , tn)

⊤ ∈ Rn . (16)

Theorem 1.2

• Let the random vector X = (X1, . . . , Xn)
⊤ : Ω → Rn be normally distributed with X ∼ N(µ,K).

• Then the characteristic function φ : Rn → C of X ful�lls

φ(t) = exp
(
i t⊤µ− 1

2
t⊤Kt

)
, ∀ t ∈ Rn . (17)

Proof

• Equations (13) and (16) imply

φ(t) =

∞∫
−∞

. . .

∞∫
−∞

exp

(
i

n∑
ℓ=1

tℓxℓ

)
f(x1, . . . , xn) dx1 . . . dxn

=
1

(2π)n/2 (detK)1/2

∞∫
−∞

. . .

∞∫
−∞

exp
(
i t⊤x− 1

2
(x− µ)⊤K−1(x− µ)

)
dx1 . . . dxn

=
exp(i t⊤µ)

(2π)n/2 (detK)1/2

∞∫
−∞

. . .

∞∫
−∞

exp
(
i t⊤y − 1

2
y⊤K−1y

)
dy1 . . . dyn ,

where the last equality holds due to the substitution y = x − µ, for which the matrix of the partial
derivatives is the identity matrix and therefore the Jacobian determinant is equal to 1.

• Similar to the proof of Theorem 1.1 it follows with the help of the substitutions y = Vx and t = Vs
that

φ(t) =
exp(i t⊤µ)

(2π)n/2 (detK)1/2

∞∫
−∞

. . .

∞∫
−∞

exp
(
i s⊤x− 1

2
x⊤V⊤K−1Vx

)
dx1 . . . dxn

=
exp(i t⊤µ)

(2π)n/2 (detK)1/2

∞∫
−∞

. . .

∞∫
−∞

exp
( n∑
ℓ=1

(
i sℓxℓ −

x2ℓ
2λℓ

))
dx1 . . . dxn

and thus

φ(t) =
exp(i t⊤µ)

(2π)n/2 (detK)1/2

n∏
ℓ=1

∞∫
−∞

exp
(
i sℓxℓ −

x2ℓ
2λℓ

)
dxℓ

= exp(i t⊤µ)
n∏

ℓ=1

1√
2πλℓ

∞∫
−∞

exp
(
i sℓxℓ −

x2ℓ
2λℓ

)
dxℓ ,

where the matrixV consists of the orthonormal eigenvectors ofK and λ1, . . . , λn > 0 are the eigenvalues
of K with detK = λ1 · . . . · λn.
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• Now, it is su�cient to consider that φℓ : R → C with

φℓ(s) =

∞∫
−∞

1√
2πλℓ

exp
(
i sx− x2

2λℓ

)
dx

is the characteristic function of the (one dimensional) N(0, λℓ)�distribution.

• In Section WR-5.3.3 we already have seen that φℓ(s) = exp
(
−λℓs2/2

)
.

• Hence, we get

φ(t) = exp(i t⊤µ)

n∏
ℓ=1

exp
(
− λℓs

2
ℓ

2

)
= exp(i t⊤µ) exp

(
−

n∑
ℓ=1

λℓs
2
ℓ

2

)
= exp(i t⊤µ) exp

(
− t⊤Kt

2

)
. �

Using (17) for the characteristic function we are able to determine expectation and covariance matrix of a normally
distributed random vector.

Corollary 1.1 If X = (X1, . . . , Xn)
⊤ ∼ N(µ,K), it holds for arbitrary i, j = 1, . . . , n that

EXi = µi , and Cov (Xi, Xj) = kij . (18)

Proof

• From (17) it follows that

∂ φ(t)

∂ti
=
(
iµi −

n∑
ℓ=1

kiℓtℓ

)
φ(t) (19)

and
∂2φ(t)

∂ti∂tj
= − kijφ(t) +

(
iµi −

n∑
ℓ=1

kiℓtℓ

)(
iµj −

n∑
ℓ=1

kjℓtℓ

)
φ(t) . (20)

• It is easy to see that

EXi = i−1 ∂ φ(t)

∂ti

∣∣∣
t=o

.

Because of φ(o) = 1 and (19), it follows that EXi = µi.

• Furthermore,

E (XiXj) = − ∂2φ(t)

∂ti∂tj

∣∣∣
t=o

.

This equation and (20) imply Cov (Xi, Xj) = kij . �

Remark

• In Theorem WR-4.14 we have shown that the covariance matrix K = KX of an arbitrary random
vector X = (X1, . . . , Xn)

⊤ is always symmetric and positive semide�nite.

• In (13), where the density of the nondegenerate multivariate normal distribution is de�ned, it is
additionally required that the covariance matrix K is positive de�nite.

• Here, K being positive de�nite is not only su�cient but also necessary to ensure that the matrix K is
invertible, i.e., detK ̸= 0 or K has full rank.
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1.2.3 Marginal Distributions and Independence of Subvectors; Convolution Properties

• In this section it is shown how to derive further interesting properties of the multivariate normal distribution
using Theorem 1.2.

• For this purpose we need a vectorial version of the uniqueness theorem for characteristic functions (cf.
Corollary WR-5.5), which we will state without proof.

Lemma 1.9 Let X,Y : Ω → Rn be arbitrary random vectors; X = (X1, . . . , Xn)
⊤, Y = (Y1, . . . , Yn)

⊤. Then it
holds that

X
d
= Y if and only if φX(t) = φY(t) ∀ t = (t1, . . . , tn)

⊤ ∈ Rn , (21)

where

φX(t) = E exp
(
i

n∑
j=1

tjXj

)
and φY(t) = E exp

(
i

n∑
j=1

tjYj

)
are the characteristic functions of X and Y, respectively.

First, we show that arbitrary subvectors of normally distributed random vectors are also normally distributed.

• We assume µ = (µ1, . . . , µn)
⊤ ∈ Rn to be an arbitrary vector and K = (kij) to be a symmetric and positive

de�nite n× n-matrix.

• It is obvious that the random vector (Xπ1 , . . . , Xπn)
⊤ is normally distributed for each permutation π =

(π1, . . . , πn)
⊤ of the natural numbers 1, . . . , n if X = (X1, . . . , Xn)

⊤ is normally distributed.

• Therefore, we can w.l.o.g restrict the examination of the distribution of subvectors of normally distributed
random vectors to the examination of the �rst components.

Corollary 1.2 Let X = (X1, . . . , Xn)
⊤ ∼ N(µ,K), where K is positive de�nite. Then it holds that

(X1, . . . , Xm)⊤ ∼ N(µm,Km) ∀ m = 1, . . . , n ,

where µm = (µ1, . . . , µm)⊤ and Km denotes the m×m matrix which consists of the �rst m rows and columns of
K.

Proof

• Let φ : Rn → C be the characteristic function of (X1, . . . , Xn)
⊤.

• Now, the characteristic function φm : Rm → C of (X1, . . . , Xm)⊤ ful�lls

φm(tm) = φ
(
(tm, 0, . . . , 0︸ ︷︷ ︸

n−m

)
)
, ∀ tm = (t1, . . . , tm))⊤ ∈ Rm .

• This result and (17) imply that

φm(tm) = exp
(
i t⊤mµm − 1

2
t⊤mKmtm

)
, ∀ tm ∈ Rm .

• Since K is symmetric and positive de�nite, we know that also the m×m matrix Km is symmetric and
positive de�nite. From this fact and from Theorem 1.2 it follows that the characteristic function of the
subvector (X1, . . . , Xm)⊤ is identical with the characteristic function of the N(µm,Km)�distribution.

• The statement follows because of the one-to-one correspondence of characteristic functions and distri-
butions of random vectors (cf. Lemma 1.9). �
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There is a simple criterion for two subvectors (X1, . . . , Xm)⊤ and (Xm+1, . . . , Xn)
⊤, with 1 ≤ m < n, of the

normally distributed random vector X = (X1, . . . , Xn)
⊤ being independent.

Corollary 1.3 Let X = (X1, . . . , Xn)
⊤ be a normally distributed random vector with X ∼ N(µ,K); K = (kij).

The subvectors (X1, . . . , Xm)⊤ and (Xm+1, . . . , Xn)
⊤ are independent if and only if kij = 0 for arbitrary i ∈

{1, . . . ,m} and j ∈ {m+ 1, . . . , n}.

Proof

• If the subvectors (X1, . . . , Xm)⊤ and (Xm+1, . . . , Xn)
⊤ are independent, then the (one�dimensional)

random variables Xi and Xj are independent for arbitrary i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . , n}.
• Thus, it holds that Cov (Xi, Xj) = 0 and Corollary 1.1 implies that kij = 0.

• Let us now assume that kij = 0 for arbitrary i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . , n}.
• Then Theorem 1.2 implies that the characteristic function φ(t) ofX = (X1, . . . , Xn)

⊤ has the following
factorization.

• For each t = (t1, . . . , tn)
⊤ ∈ Rn it holds that

φ(t) = exp
(
i t⊤µ− 1

2
t⊤Kt

)
= exp

(
i

n∑
i=1

tiµi −
1

2

n∑
i=1

n∑
j=1

tikijtj

)
= exp

(
i

m∑
i=1

tiµi −
1

2

m∑
i=1

m∑
j=1

tikijtj

)
exp
(
i

n∑
i=m+1

tiµi −
1

2

n∑
i=m+1

n∑
j=m+1

tikijtj

)
,

where the factors of the last term are the characteristic functions of (X1, . . . , Xm)⊤ and (Xm+1, . . . , Xn)
⊤.

• The statement follows because of the one-to-one correspondence of characteristic functions and distri-
butions of random vectors (cf. Lemma 1.9). �

Remark

• Finally, we show that the family of multivariate normal distributions is closed under convolution. In the
following we call this property brie�y �convolution stability� of the multivariate normal distribution.
In Corollary WR-3.2 we already have proved the convolution stability of one�dimensional normal
distributions.

• The following formula for the characteristic function of sums of independent random vectors is useful
in this context. The proof is analog to the proof of the one�dimensional case (cf. Theorem WR-5.18).

Lemma 1.10 Let Z1,Z2 : Ω → Rn be independent random vectors. The characteristic function φZ1+Z2 : Rn → C
of the sum Z1 + Z2 can then be written as

φZ1+Z2(t) = φZ1(t) φZ2(t) , ∀ t ∈ Rn , (22)

where φZi denotes the characteristic function of Zi; i = 1, 2.

The following statement is called convolution stability of the multivariate normal distribution.

Corollary 1.4 Let Z1,Z2 : Ω → Rn be independent random vectors with Zi ∼ N(µi,Ki) for i = 1, 2. Then it
holds that Z1 + Z2 ∼ N(µ1 + µ2,K1 +K2).
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Proof

• Equations (17) and (22) imply that

φZ1+Z2(t) = φZ1(t) φZ2(t)

= exp
(
i t⊤µ1 −

1

2
t⊤K1t

)
exp
(
i t⊤µ2 −

1

2
t⊤K2t

)
= exp

(
i t⊤(µ1 + µ2)−

1

2
t⊤(K1 +K2)t

)
.

• This result and the uniqueness theorem for characteristic functions (cf. Lemma 1.9) imply the state-
ment. �

1.2.4 Linear Transformation of Normally Distributed Random Vectors

Now, we show that the linear transformation of a normally distributed random vector again is a normally dis-
tributed random vector.

Theorem 1.3

• Let Y ∼ N(µ,K) be an n�dimensional normally distributed random vector with mean vector µ ∈ Rn and
(positive de�nite) covariance matrix K.

• Moreover, let m ≤ n, let A be an arbitrary m× n matrix having full rank rk(A) = m and let c ∈ Rm be an
arbitrary m�dimensional vector.

• Then it holds that Z = AY + c is an (m�dimensional) normally distributed random vector with

Z ∼ N(Aµ+ c, AKA⊤) . (23)

Proof

• For each a ∈ Rm it holds that

φZ(t) = exp(i t⊤a)φZ−a(t) , ∀ t ∈ Rm .

• From (17) derived in Theorem 1.2 and from the uniqueness theorem for the characteristic function of
normally distributed random vectors it follows that

Z ∼ N(Aµ+ c, AKA⊤) if and only if Z− (Aµ+ c) ∼ N(o, AKA⊤) .

• Therefore, we will w.l.o.g. assume that Y ∼ N(o,K) and c = o.

• Then the characteristic function φZ(t) of Z = AY ful�lls

φZ(t) = E ei t
⊤Z

= E ei t
⊤AY = E ei (A

⊤t)⊤Y

= φY(A⊤t) ,

for each t ∈ Rm, where φY(A⊤t) denotes the value of the characteristic function of the normally
distributed random vector Y at A⊤t ∈ Rn.
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• Now, formula (17) for the characteristic function of normally distributed random vectors implies

φZ(t) = φY(A⊤t)

= exp
(
− 1

2
(A⊤t)⊤K(A⊤t)

)
= exp

(
− 1

2
t⊤(AKA⊤)t

)
.

• In other words: The characteristic function of Z is equal to the characteristic function of N(o, AKA⊤).

• The uniqueness theorem for characteristic functions of random vectors implies Z ∼ N(o, AKA⊤). �

By using Theorem 1.3 it follows in particular that it is possible to create normally distributed random vectors by
a linear transformation of vectors whose components are independent N(0, 1)�distributed random variables.

Corollary 1.5

• Let Y1, . . . , Yn : Ω → R be independent random variables with Yi ∼ N(0, 1) for each i = 1, . . . , n, i.e.,
Y = (Y1, . . . , Yn)

⊤ ∼ N(o, I).

• Let K be a symmetric and positive de�nite n× n matrix and let µ ∈ Rn.

• Then the random vector Z = K1/2Y + µ satis�es Z ∼ N(µ, K), where K1/2 is the square root of K.

Proof

• With the help of Theorem 1.3 it follows that

Z ∼ N(µ, K1/2
(
K1/2

)⊤
) .

• Now, this result and Lemma 1.6 imply the statement. �

1.2.5 Degenerate Multivariate Normal Distribution

In the following, we will give a generalization of the notion of (nondegenerate) multivariate normal distributions,
which was introduced in Section 1.2.1.

• A factorization property of covariance matrices which has already been mentioned in Lemma 1.7 is useful
in this context.

• Recall: Let K be a symmetric and positive semide�nite n × n matrix with rk(K) = r ≤ n. Then there is
an n× r matrix B with rk(B) = r such that

K = BB⊤ . (24)

De�nition

• Let Y be an n�dimensional random vector with mean vector µ = EY and covariance matrix K =
Cov (Y) such that rk(K) = r with r ≤ n.

• Then Y is called normally distributed if Y
d
= µ + BZ, where B is an n × r matrix with rk(B) = r

ful�lling (24) and where Z is an r�dimensional random vector with Z ∼ N(o, Ir).
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• We say that Y ∼ N(µ,K) follows a degenerate normal distribution if rk(K) < n.
(Notation: Y ∼ N(µ,K))

Remark

• If rk(K) = r < n, then the random vector Y ∼ N(µ,K) is not absolutely continuous

� because the values of Y
d
= µ + BZ are almost surely (with probability 1) elements of the r�

dimensional subset {µ+Bx : x ∈ Rr} of Rn,

� i.e., the distribution of Y has no density with respect to the n�dimensional Lebesgue measure.

� An example for this is the random vector Y = (Z,Z)⊤ = BZ with Z ∼ N(0, σ2) and B = (1, 1)⊤,
which only takes values on the diagonal {(z1, z2) ∈ R2 : z1 = z2}.

• The distribution of the random vector µ + BZ does not depend on the choice of matrix B of the
factorization (24).

• This is an immediate consequence of both of the following criteria for (degenerate and nondegenerate)
multivariate normal distributions.

Theorem 1.4

• Let Y be an n�dimensional random vector with mean vector µ = EY and covariance matrix K = Cov (Y)
such that rk(K) = r with r ≤ n.

• The random vector Y is normally distributed if and only if one of the following conditions is ful�lled:

1. The characteristic function φ(t) = E exp
(
i
∑n

j=1 tjYj

)
of Y is given by

φ(t) = exp
(
i t⊤µ− 1

2
t⊤Kt

)
, ∀ t = (t1, . . . , tn)

⊤ ∈ Rn . (25)

2. The linear function c⊤Y of Y is normally distributed for each c ∈ Rn with c ̸= o and

c⊤Y ∼ N(c⊤µ, c⊤Kc) .

The proof of Theorem 1.4 is omitted (and left as an exercise).

1.3 Linear and Quadratic Forms of Normally Distributed Random Vectors

1.3.1 De�nition, Expectation and Covariance

De�nition

• Let Y = (Y1, . . . , Yn)
⊤ and Z = (Z1, . . . , Zn)

⊤ be arbitrary n�dimensional random vectors and let A
be a symmetric n× n matrix with real�valued entries.

• Then the (real�valued) random variable Y⊤AY : Ω → R is called a quadratic form of Y (with respect
to A).

• The random variable Y⊤AZ : Ω → R is called a bilinear form of Y and Z (with respect to A).

First, we derive the expectation of quadratic or bilinear forms.

Theorem 1.5 Let Y = (Y1, . . . , Yn)
⊤ and Z = (Z1, . . . , Zn)

⊤ be arbitrary n�dimensional random vectors and
let A be a symmetric n × n matrix with real�valued entries. Furthermore, let the mean vectors µY = EY and
µZ = EZ as well as the covariance matrices KYY =

(
Cov (Yi, Yj)

)
and KZY =

(
Cov (Zi, Yj)

)
be well�de�ned.

Then it holds that

E
(
Y⊤AY

)
= tr(AKYY) + µ⊤

YAµY and E
(
Y⊤AZ

)
= tr(AKZY) + µ⊤

YAµZ . (26)
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Proof

• We only prove the second formula in (26) since the �rst formula follows as a special case for Z = Y.

• It obviously holds that Y⊤AZ = tr
(
Y⊤AZ

)
. Moreover, from Lemma 1.1 it follows that tr

(
Y⊤AZ

)
=

tr
(
AZY⊤).

• Altogether we get

E
(
Y⊤AZ

)
= E tr

(
Y⊤AZ

)
= E tr

(
AZY⊤) = tr

(
AE (ZY⊤)

)
= tr

(
A(KZY + µZµ

⊤
Y)
)

= tr(AKZY) + µ⊤
YAµZ . �

In a similar way it is possible to derive a formula for the covariance of quadratic forms of normally distributed
random vectors. The following formulas for the third and fourth mixed moments of the components of centered
normally distributed random vectors are useful in this context.

Lemma 1.11 Let Z = (Z1, . . . , Zn)
⊤ ∼ N(o,K) be a normally distributed random vector with mean vector µ = o

and with an arbitrary covariance matrix K = (kij). Then it holds that

E (ZiZjZℓ) = 0 and E (ZiZjZℓZm) = kijkℓm + kiℓkjm + kjℓkim ∀ i, j, ℓ,m ∈ {1, . . . , n} . (27)

The proof of Lemma 1.11 is omitted. It is an immediate consequence of Theorems 1.2 and 1.4, cf. the proof of
Corollary 1.1.

Theorem 1.6

• Let Y = (Y1, . . . , Yn)
⊤ be an n�dimensional random vector with Y ∼ N(µ,K) and let A = (aij), B = (bij)

be arbitrary symmetric n× n matrices.

• Then
Cov

(
Y⊤AY, Y⊤BY

)
= 2 tr(AKBK) + 4µ⊤AKBµ . (28)

• In particular, it holds that Var
(
Y⊤AY

)
= 2 tr

(
(AK)2

)
+ 4µ⊤AKAµ.

Proof

• From the de�nition of the covariance and from Theorem 1.5 it follows that

Cov
(
Y⊤AY, Y⊤BY

)
= E

(
(Y⊤AY − E (Y⊤AY))(Y⊤BY − E (Y⊤BY))

)
= E

(
(Y⊤AY − tr(AK)− µ⊤Aµ)(Y⊤BY − tr(BK)− µ⊤Bµ)

)
.

• With the substitution Z = Y − µ or Y = Z+ µ it follows that

Cov
(
Y⊤AY, Y⊤BY

)
= E

(
(Z⊤AZ+ 2µ⊤AZ− tr(AK))(Z⊤BZ+ 2µ⊤BZ− tr(BK))

)
= E

(
Z⊤AZZ⊤BZ

)
+ 2µ⊤AE

(
ZZ⊤BZ

)
+ 2µ⊤BE

(
ZZ⊤AZ

)
−E

(
Z⊤AZ

)
tr(BK)− E

(
Z⊤BZ

)
tr(AK)

+4µ⊤AKBµ+ tr(AK) tr(BK)

= E
(
Z⊤AZZ⊤BZ

)
+ 2µ⊤AE

(
ZZ⊤BZ

)
+ 2µ⊤BE

(
ZZ⊤AZ

)
+4µ⊤AKBµ− tr(AK) tr(BK) ,

where the last equality is a result of Theorem 1.5 because Z ∼ N(o,K), which implies E
(
Z⊤AZ

)
=

tr(AK).
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• Since the matrices A, B and K are symmetric, it follows from Lemma 1.11 that

E
(
Z⊤AZZ⊤BZ

)
= E

(
Z⊤AZ · Z⊤BZ

)
=

n∑
i=1

n∑
j=1

n∑
ℓ=1

n∑
m=1

aijbℓmE (ZiZjZℓZm)

=
n∑

i=1

n∑
j=1

n∑
ℓ=1

n∑
m=1

(
aijkjibℓmkmℓ + ajikiℓbℓmkmj + aijkjℓbℓmkmi

)
= tr(AK) tr(BK) + 2 tr(AKBK) .

• Furthermore, Lemma 1.11 implies that

E
(
ZZ⊤AZ

)
=

(
n∑

i=1

n∑
j=1

aijE (ZiZjZℓ)

)
ℓ

= o (29)

and analogously E
(
ZZ⊤BZ

)
= o.

• This result and the above derived expression for Cov
(
Y⊤AY, Y⊤BY

)
imply the statement. �

Now, we derive the following formula for the covariance vector of linear or quadratic forms of normally distributed
random vectors.

Theorem 1.7 Let Y = (Y1, . . . , Yn)
⊤ be an n�dimensional random vector with Y ∼ N(µ,K) and let A = (aij),

B = (bij) be arbitrary symmetric n× n matrices. Then it holds

Cov
(
AY, Y⊤BY

)
= 2AKBµ . (30)

Proof

• As E (AY) = Aµ and as it has been shown in Theorem 1.5 that

E
(
Y⊤BY

)
= tr(BK) + µ⊤Bµ ,

it follows that

Cov
(
AY, Y⊤BY

)
= E

(
(AY −Aµ)(Y⊤BY − µ⊤Bµ− tr(BK))

)
= E

(
(AY −Aµ)((Y − µ)⊤B(Y − µ) + 2(Y − µ)⊤Bµ− tr(BK))

)
.

• Moreover, it holds that E (AY −Aµ) = o and from (29) it follows with Z = Y − µ that

E
(
(AY −Aµ)(Y − µ)⊤B(Y − µ)

)
= AE

(
(Y − µ)(Y − µ)⊤B(Y − µ)

)
= o .

• Therefore, we get

Cov
(
AY, Y⊤BY

)
= 2E

(
(AY −Aµ)(Y − µ)⊤Bµ

)
= 2AE

(
(Y − µ)(Y − µ)⊤

)
Bµ

= 2AKBµ . �
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1.3.2 Noncentral χ2�Distribution

To determine the distribution of quadratic forms of normally distributed random vectors we introduce the (para-
metric) family of the noncentral χ2�distribution.

De�nition Let µ ∈ Rn and (X1, . . . , Xn)
⊤ ∼ N(µ, I). Then the random variable

Z = (X1, . . . , Xn)(X1, . . . , Xn)
⊤ =

n∑
i=1

X2
i

is distributed according to a noncentral χ2�distribution with n degrees of freedom and the noncentrality
parameter λ = µ⊤µ. (Notation: Z ∼ χ2

n,λ)

Remark

• For µ = o we obtain the (central) χ2�distribution χ2
n with n degrees of freedom, which has already

been introduced in Section I�1.3.1, as a special case.

• To derive a formula for the density of the noncentral χ2�distribution we consider (in addition to the
characteristic function) still another integral transform of probability densities.

De�nition

• Let f : R → [0,∞) be the density of a real�valued random variable such that the integral
∫∞
−∞ etxf(x) dx

is well�de�ned for each t ∈ (a, b) in a certain interval (a, b) with a < b.

• Then the mapping ψ : (a, b) → R with

ψ(t) =

∞∫
−∞

etxf(x) dx , ∀ t ∈ (a, b) (31)

is called the moment generating function of the density f .

The following uniqueness theorem for moment generating functions is true, which we state without proof.

Lemma 1.12

• Let f, f ′ : R → [0,∞) be densities of real�valued random variables and let the corresponding moment
generating functions ψ : (a, b) → R and ψ′ : (a, b) → R be well�de�ned in a (common) interval (a, b) with
a < b.

• It holds that ψ(t) = ψ′(t) for each t ∈ (a, b) if and only if f(x) = f ′(x) for almost all x ∈ R.

By using Lemma 1.12 we are now able to identify the density of the noncentral χ2�distribution.

Theorem 1.8

• Let the random variable Zn,λ : Ω → R be distributed according to the χ2
n,λ�distribution with n degrees of

freedom and noncentrality parameter λ.

• Then the density of Zn,λ is given by

fZn,λ
(z) =


exp
(
− λ+ z

2

) ∞∑
j=0

(λ
2

)j
z

n
2 +j−1

j! 2
n
2 +j Γ

(n
2
+ j
) , if z > 0,

0 otherwise.

(32)
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Proof

• Let µ ∈ Rn and (X1, . . . , Xn)
⊤ ∼ N(µ, I).

• The moment generating function ψZ(t) of Z = (X1, . . . , Xn)(X1, . . . , Xn)
⊤ =

∑n
j=1X

2
j is well�de�ned

for t ∈ (−∞, 1/2) and for each t < 1/2 it holds that

ψZ(t) = E exp
(
t

n∑
j=1

X2
j

)
=

∞∫
−∞

. . .

∞∫
−∞

exp
(
t

n∑
j=1

x2j

) n∏
j=1

1√
2π

exp
(1
2
(xj − µj)

2
)
dx1 . . . dxn

=

(
1

2π

)n/2 ∞∫
−∞

. . .

∞∫
−∞

exp

(
t

n∑
j=1

x2j −
1

2

n∑
j=1

(xj − µj)
2

)
dx1 . . . dxn

=
n∏

j=1

∞∫
−∞

(2π)−1/2 exp

(
tx2j −

1

2
(xj − µj)

2

)
dxj .

• It is possible to rewrite the exponent of the last term as follows:

tx2j −
1

2
(xj − µj)

2 = − 1

2
(−2tx2j + x2j − 2xjµj + µ2

j )

= − 1

2

(
x2j (1− 2t)− 2xjµj + µ2

j (1− 2t)−1 + µ2
j − µ2

j (1− 2t)−1
)

= − 1

2

(
(xj − µj(1− 2t)−1)2(1− 2t) + µ2

j (1− (1− 2t)−1)
)
.

• Hence, it holds that

ψZ(t) = exp

(
− 1

2
(1− (1− 2t)−1)

n∑
j=1

µ2
j

)
n∏

j=1

∞∫
−∞

(2π)−1/2 exp
(
− (xj − µj(1− 2t)−1)2

2(1− 2t)−1

)
dxj

= (1− 2t)−n/2 exp
(
− λ

2
(1− (1− 2t)−1)

)
as the integrand represents the density of the one�dimensional normal distribution (except for the
constant factor (1− 2t)1/2); λ = µ⊤µ.

• On the other hand, the moment generating function ψ(t) of the density fZn,λ
(z) given in (32) can be

written as

ψ(t) =
∞∑
j=0

e−λ/2(λ/2)j

j!

∞∫
0

etz
zn/2+j−1e−z/2

2
n
2 +j Γ

(
n
2 + j

) dz ,
where the integral is the moment generating function of the (central) χ2�distribution χ2

n+2j with n+2j
degrees of freedom.

• Similar to the way the characteristic function (cf. Theorem I�1.5) is de�ned, the moment generating
function of this distribution is given by

ψχ2
n+2j

(t) =
1

(1− 2t)n/2+j
.

• Therefore, it holds that
∞∫
0

etz
zn/2+j−1e−z/2

2
n
2 +j Γ

(
n
2 + j

) dz = 1

(1− 2t)n/2+j
,
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and

ψ(t) = e−λ/2(1− 2t)−n/2
∞∑
j=0

1

j!

(λ
2
(1− 2t)−1

)j
= (1− 2t)−n/2 exp

(
− λ

2
(1− (1− 2t)−1)

)
.

• Hence, ψ(t) = ψZ(t) for each t < 1/2 and the statement follows from Lemma 1.12. �

1.3.3 Distributional Properties of Linear and Quadratic Forms

• Recall: The de�nition of the noncentral χ2�distribution in Section 1.3.2 considers the sum of squares of the
components of N(µ, I)�distributed random vectors.

• One can show that the (adequately modi�ed) sum of squares is distributed according to the noncentral
χ2�distribution even if the considered normally distributed random vector has an arbitrary positive de�nite
covariance matrix.

• Indeed, let µ ∈ Rn and let K be a symmetric and positive de�nite n× n matrix.

• If Z = (Z1, . . . , Zn)
⊤ ∼ N(µ,K), Theorem 1.3 implies that

K−1/2Z ∼ N(K−1/2µ, I) .

• Therefore, by the de�nition of the noncentral χ2�distribution it follows that

Z⊤K−1Z =
(
K−1/2Z

)⊤
K−1/2Z ∼ χ2

n,λ , (33)

where λ = (K−1/2µ)⊤K−1/2µ = µ⊤K−1µ.

The distributional property (33) for quadratic forms of normally distributed random vectors has the following
generalization. In this context Lemma 1.7 about the factorization of symmetric and positive semide�nite matrices
is useful.

Theorem 1.9

• Let Z = (Z1, . . . , Zn)
⊤ ∼ N(µ,K), where the covariance matrix K be positive de�nite. Moreover, let A be

a symmetric n× n matrix with rk(A) = r ≤ n.

• If the matrix AK is idempotent, i.e., if AK = (AK)2, it holds that Z⊤AZ ∼ χ2
r,λ, where λ = µ⊤Aµ.

Proof

• Let the matrix AK be idempotent. Then it holds that

AK = AKAK .

• Since K is nondegenerate, it is allowed to multiply both sides of the above equation from the right by
K−1. It follows

A = AKA (34)

or
x⊤Ax = x⊤AKAx = (Ax)⊤K(Ax) ≥ 0

for each x ∈ Rn, i.e., A is positive semide�nite.
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• According to Lemma 1.7 there exists a decomposition

A = HH⊤ (35)

such that the n× r matrix H has full column rank r.

• Now, Lemma 1.2 implies that the inverse matrix (H⊤H)−1 exists.

• From Theorem 1.3 about the linear transformation of normally distributed random vectors it follows
for the r�dimensional vector Z′ = H⊤Z that

Z′ ∼ N(H⊤µ, Ir) (36)

because

H⊤KH = (H⊤H)−1(H⊤H)(H⊤KH)(H⊤H)(H⊤H)−1

= (H⊤H)−1H⊤(AKA)H(H⊤H)−1

= (H⊤H)−1H⊤AH(H⊤H)−1 = Ir ,

where the last three equalities follow from (34) and (35).

• As on the other hand

Z⊤AZ = Z⊤HH⊤Z =
(
H⊤Z

)⊤
H⊤Z = (Z′)⊤Z′

and since (
H⊤µ

)⊤
H⊤µ = µ⊤HH⊤µ = µ⊤Aµ ,

the statement follows from (36) and from the de�nition of the noncentral χ2�distribution. �

Furthermore, the following criterion for the independence of linear and quadratic forms of normally distributed
random vectors is useful. It can be considered as a (vectorial) generalization of Lemma I�5.3.

Theorem 1.10

• Let Z = (Z1, . . . , Zn)
⊤ ∼ N(µ,K), where K is an arbitrary (symmetric and positive semide�nite) covariance

matrix.

• Moreover, let A, B be arbitrary r1 × n and r2 × n matrices with r1, r2 ≤ n and let C be a symmetric and
positive semide�nite n× n matrix.

• If the additional condition
AKB⊤ = 0 or AKC = 0 (37)

is ful�lled, the random variables AZ and BZ or AZ and Z⊤CZ, respectively, are independent.

Proof

• First, we show that (37) implies the independence of the linear forms AZ and BZ.

• Because of the uniqueness theorem for characteristic functions of random vectors (cf. Lemma 1.9), it
su�ces to show that t2 ∈ Rr2

E exp
(
i (t⊤1 AZ+ t⊤2 BZ)

)
= E exp

(
i t⊤1 AZ

)
E exp

(
i t⊤2 BZ

)
for arbitrary t1 ∈ Rr1 .
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• From (37) it follows that

BKA⊤ =
(
(BKA⊤)⊤

)⊤
=
(
AKB⊤

)⊤
= 0.

• Therefore, it holds for arbitrary t1 ∈ Rr1 , t2 ∈ Rr2 that

(t⊤1 A)K(t⊤2 B)⊤ = t⊤1 AKB⊤t2 = 0 , (t⊤2 B)K(t⊤1 A)⊤ = t⊤2 BKA⊤t1 = 0 . (38)

• Then the representation formula (25) for the characteristic function of normally distributed random
vectors derived in Theorem 1.4 and (38) imply that

E exp
(
i (t⊤1 AZ+ t⊤2 BZ)

)
= E exp

(
i (t⊤1 A+ t⊤2 B)Z

)
= exp

(
i (t⊤1 A+ t⊤2 B)µ− 1

2
(t⊤1 A+ t⊤2 B)K(t⊤1 A+ t⊤2 B)⊤

)
= exp

(
i (t⊤1 A+ t⊤2 B)µ− 1

2
(t⊤1 A)K(t⊤1 A)⊤ − 1

2
(t⊤2 B)K(t⊤2 B)⊤

)
= exp

(
i (t⊤1 A)µ− 1

2
(t⊤1 A)K(t⊤1 A)⊤

)
exp
(
i (t⊤2 B)µ− 1

2
(t⊤2 B)K(t⊤2 B)⊤

)
= E exp

(
i t⊤1 AZ

)
E exp

(
i t⊤2 BZ

)
.

• Now, it remains to show that the independence of AZ of Z⊤CZ is a result of the second condition of
(37).

• Let rk(C) = r ≤ n. According to Lemma 1.7 there is an n × r matrix H with rk(H) = r such that
C = HH⊤.

• Then it follows from (37) that AKHH⊤ = 0 and AKHH⊤H = 0.

• Because of Lemma 1.2, the r × r matrix H⊤H has (full) rank rk(H) = r. Hence, H⊤H is invertible.

• Finally, it follows that AKH = 0.

• Therefore, the �rst part of the proof implies that the linear forms AZ and H⊤Z are independent.

• Because of
Z⊤CZ = Z⊤HH⊤Z = (H⊤Z)⊤H⊤Z ,

the transformation theorem for independent random vectors (cf. Theorem I�1.8) implies that also AZ
and Z⊤CZ are independent. �


