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1 Introduction and Mathematical Foundations

These lecture notes are made for students who already have a basic knowledge of mathematical statistics. Esti-
mation and statistical test methods which have been discussed in ”"Stochastik I” are assumed to be known.

The present lecture notes consist of the following parts:

e multivariate normal distribution (nondegenerate and degenerate normal distribution, linear and quadratic
forms)

e linear models (multiple regression, normally distributed disturbance terms, single- and multiple-factor
analysis of variance)

e generalized linear models (logistic regression, maximum-likelihood equation, weighted least squares estima-
tor, evaluation of the goodness of fit)

e tests for distribution assumptions (Kolmogorow—Smirnow test, x?-goodness—of-fit test of Pearson-Fisher)

e nonparametric location tests (binomial test, iteration tests, linear rank tests)

In particular, we will use notions and results which have been introduced in the lecture notes "Elementare
Wahrscheinlichkeitsrechnung und Statistik” and “Stochastik I: we will indicate references to these lecture notes
by "WR” and "I” in front of the section number of the cited lemmas, theorems, corollaries and formulas.

1.1 Some Basic Notions and Results of Matrix Algebra

First, we recall some basic notions and results of matrix algebra, which are needed in these lecture notes.

1.1.1 Trace and Rank

e The trace tr(A) of a quadratic n x n matrix A = (a;;) is given by

n

tr(A) = ai. (1)

i=1

e Let A be an arbitrary n x m matrix. The rank rk(A) is the maximum number of linearly independent rows
(or columns) of A.

— The vectors aj,...,a; € R™ are called linearly dependent if there exist real numbers cq,...,c € R,
which are not all equal to zero and c1a; + ...+ cpay = o.

— Otherwise the vectors aj,...,a; € R™ are called linearly independent.

From the definition of the trace of a matrix in (1) and from the definition of matrix multiplication the next lemma
directly follows.

Lemma 1.1 Let C be an arbitrary n x m matriz and D an arbitrary m x n matriz. Then tr(CD) = tr(DC).

It can be proved that a quadratic matrix A is invertible if and only if A has full rank or det A # 0, respectively.
The following result is also useful in this context.

Lemma 1.2 Let A be an n x m matriz with n > m and tk(A) = m. Then tk(ATA) = m.
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Proof
e It is obvious that the rank rk(ATA) of the m x m matrix AT A cannot exceed m.
e Now, we assume that rk(ATA) < m. Then, there exists a vector ¢ = (c1,...,cn) € R™ with ¢ # o
and ATAc = o.
e From this follows that c' AT Ac = o and (Ac) " (Ac) = o, i.e., Ac = o.
e However, this is contradictory to the assumption that rk(A) = m. (]

Furthermore, it can be proved that the following properties of trace and rank are valid.

Lemma 1.3 Let A and B be arbitrary n x n matrices. Then tr(A — B) = tr(A) — tr(B) always holds. If A
is idempotent and symmetric, i.e., A = A2 and A = A", it also holds that tr(A) = rk(A).

1.1.2 Eigenvalues and Eigenvectors

Definition Let A be an arbitrary n X n matrix. Each (complex) number A € C is called an eigenvalue of the
matrix A if and only if there exists a vector x € C" with x # o and

(A-MD)x=o0. (2)

We call x an eigenvector corresponding to A.

Remark
e Only if A is a solution of the so—called characteristic equation
det(A — A\I) =0, (3)

there is a solution x € C™ with x # o for (2). The left-hand side P(\) = det(A — AI) of (3) is called
the characteristic polynomial of matrix A.

e Let Ai,...,Ax € R be the real-valued solutions of (3). Then the characteristic polynomial can be
written in the form

PA) = (D" A =AD" ... (A= Xp)™q(N), (4)

where a1, ...,a; € N are positive natural numbers, the so—called algebraic multiplicities of A1, ..., Ak,

and ¢(\) is a polynomial of order n — Zle a; which has no real solutions.

Lemma 1.4 Let A = (a;;) be a symmetric n x n matric with real-valued entries a;;. Then every eigenvalue is
a real number and eigenvectors x;,x; € R™ which correspond to different eigenvalues \;, \; € R are orthogonal to
each other.

Proof
e The determinant det(A — AI) in (3) is given by

det(A =D =Y (~1)"™@ T ain, [] (aim — N, (5)

T 1 IFETy 11 1=,

where the summation extends over all m! permutations w = (m,...,m,) of the natural numbers
1,...,m and r(m) is the number of pairs in 7r, which are not in the natural order.
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e Since the elements of A are real numbers, every solution A = a +1b of (3) implies another solution
A=a—ibof (3).

e Let x =a+iband X = a—ib be eigenvectors which correspond to A or A, respectively. Then Ax = \x
and AX = XX or
XTAx =% x = \X'x
and T . T _
XTAx = (ATi) X = (Ai) X = ()\i) X = AX ' X.
e From this it follows that A\X'x = A\X ' x.
e Since X' x = |a|? + |b|2 > 0, it holds that A = ), i.e., \ is a real number.

e In a similar way it can be proved that for different eigenvalues A;, A\; € R there exist eigenvectors
xi,X; € R" with real-valued components which are orthogonal to each other.

e Since the matrix A — \;I only contains real-valued elements, it holds that if x; is an eigenvector which
corresponds to \;, then also X; and x; + X; € R" are eigenvectors that correspond to A; .

o Therefore we can (and will) assume w.l.o.g. that x;,x; € R". Furthermore, if
(A-X\Ix; =0 and (A —)\Ix; =o,
it follows that Ax; = \;x; and Ax; = A\;x; as well as
ijqu; = )\,;ijxi and xiTij = )\jxiij .
e On the other hand it is obvious that ijxZ- = x,;/ x; and with the symmetry of A = (a;;) we get the
identity X;FAXZ' = x; Ax; since

n n n n

T T
x; Ax; = E E TgjQpmTm; = E E TmilGmeTe; = X; AX; .

m=1 (=1 =1 m=1

e Altogether it follows that )\inTXi = \;x;/ x; and (\; — )\j)ijxi =0.

o As \; — \; #0, it holds that x;xi =0. |

1.1.3 Diagonalization Method

e Now, let A be an invertible symmetric n X n matrix.

e In Lemma 1.4 we have shown that all eigenvalues A1,...,\, of A are real numbers (where it is possible
that one number occurs more than once in this sequence).

e Since det A # 0, we get that A = 0 is no solution of (3), i.e., all eigenvalues A1,..., A, of A are different

from zero.
e Furthermore, it can be proved that there are orthonormal (basis) vectors vi,...,v, € R" ie.,
v, vi=1, viv;=0, Vi,je{l,...,n} withi # j, (6)
such that v; is an eigenvector that corresponds to A\;; i =1,...,n.
o If all eigenvalues Aq,..., A, differ from each other, then this is an immediate consequence of part 2 of
Lemma 1.4.

e As a consequence, the following diagonalization method for invertible symmetric matrices is obtained.
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Lemma 1.5

o Let A be an invertible symmetric n x n matriz and let V.= (vq,...,v,) be the n X n matriz that consists
of the orthonormal eigenvalues vi,...,v,.
o Then
VTAV =A, (7)
where A = diag(A1, ..., ) denotes the n x n diagonal matriz which consists of the eigenvalues Ai,..., \p.
Proof
e Equation (2) in the definition of eigenvalues and eigenvectors implies that Av; = \;v; for each i =
1,...,n.
e This means that AV = (A\;vy,..., \,v,) and with (6) it follows that VT AV = VT (A\jvy, ..., A\, v,) =
A. |

1.1.4 Symmetric and Definite Matrices; Factorization

Lemma 1.6 Let A be a symmetric and positive definite n x n matriz, i.e., A = AT and x" Ax > 0 for each
vector x = (1, ... ,acn)—r € R™ with x # o. Then A is invertible and there is an invertible n x n matriz H such
that

A=HH'. (8)

Proof We only prove the second part of Lemma 1.6.

e Lemma 1.5 implies that VT AV = A and

A=(VHAV, (9)
— where V = (v1,...,v,) is the n X n matrix which consists of the orthonormal eigenvectors
Vi3 Vp,
— and A = diag(\y,...,\,) denotes the n x n diagonal matrix which consists of the (positive)
eigenvalues A1, ..., A,.

e Now, let A'/2 be the n x n diagonal matrix A2 = diag(v/A1, ..., vAy) and let
H= (V) 'AY2yT, (10)
e It is obvious that the matrix H, given in (10), is invertible. Because of VTV =T it also holds that
HHT = (VT)71A1/2VT ((VT)flAl/QVT)T _ (VT)71A1/2VTVA1/2V—1
_ (VT)_1A1/2A1/2V—1 = (VH)IAV! = A,

where the last equality follows from (9). O

Remark

e Each invertible n x n matrix H with A = HH" is called a square root of A and is denoted by A'/2.

e Using the Cholesky decomposition for symmetric and positive definite matrices, one can show that
there exists a (uniquely determined) lower triangular matrix H with A = HH'.

The following property of symmetric matrices is a generalization of Lemma 1.6.
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Lemma 1.7 Let A be a symmetric and positive semidefinite n X n matriz, i.e., it holds that A = AT and
x " Ax > 0 for each vector x = (x1,...,2,)" € R". Now, let tk(A) =r (§ n) Then there exists an n X r matric
H with tk(H) = r such that A = HH'.

The proof of Lemma 1.7 is similar to the proof of Lemma 1.6.

Lemma 1.8

o Let m,r € N be arbitrary natural numbers with 1 < r < m. Let A be a symmelric and positive definite
m x m matriz and let B be an v x m matriz with full rank rk(B) = r.

e Then also the matrices BABT and A1 are positive definite.

Proof

e Because of the full rank of BT it holds that B x # o for each x € R" with x # o.
e Since A is positive definite, it also holds that

x"(BAB")x=(B'x)TAB'x) >0

for each x € R™ with x # o, i.e., BABT is positive definite.
e Therefore, we get for B = A~! that
A=A (AAT) =ATA(ATY)

is positive definite. O

1.2 Multivariate Normal Distribution

In this section we recall the notion of a multivariate normal distribution and discuss some fundamental properties
of this family of distributions.

1.2.1 Definition and Fundamental Properties

o Let Xq,...,X,, : Q2 — R be independent and (identically) normally distributed random variables, i.e.,

X; ~ N(u, 0%), Vi=1,...,n, (11)
where 1 € R and 02 > 0.
e The assumption of normality in (11) and the independence of the sample variables X;,...,X,, mean in
vector notation that the distribution of the random sample X = (Xi,...,X,,)" is given by
X ~ N(p,0°1,), (12)
where = (y,..., 1) " and N(p,0%I,) denotes the n—dimensional normal distribution with mean vector p

and covariance matrix ¢2I,,.
e Recall (cf. Section WR-4.3.4): In general, the n—dimensional normal distribution is defined as follows.

— Let gt = (pt1,...,pn) | € R™ be an arbitrary vector and let K be a symmetric and positive definite
n X n-matrix.
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— Let Z = (Zy1,...,Z,)" be an absolutely continuous random vector, where the joint density of Z is
given by
= (L)n 1 (_1 _ TKil(Z— )) (13)
f(z) 7os) Jaak P2 (2 — ) [
for each z = (21,...,2,)" € R™.
— Then the random vector Z = (Z,...,Z,) " is called (nondegenerate) normally distributed.

— Notation: Z ~ N(u, K)
Now, we show that the function given in (13) is an (n—dimensional) probability density.

Theorem 1.1 Let = (ju1,..., /)" € R” be an arbitrary vector and let K be a symmetric and positive definite
n X n-matrix. Then it holds that

[ee] oo 1
/ . / exp(— 5 =) K (x - u)) dzy ... dwn = (27)V2 (det K)V/2 | (14)
Proof
e Since K is symmetric and positive definite (and therefore invertible), Lemma 1.5 implies that there
exists an n X n matrix V. = (vy,...,v,) consisting of the orthogonal eigenvectors vy, ..., v, of K, such
that
VKV =A, (15)
where A = diag(A1,...,\,) denotes the n x n diagonal matrix which is built up of the eigenvalues
)\1,...,)\71 of K.
e Since K is positive definite, it holds that v;; Kv; = A; > 0 for each i = 1,...,n, i.e., all eigenvalues

A, ..., A of K are positive.
Because of VIV =1, it holds VT = V~! and VVT = I, respectively.
Due to the fact that (AB)™! = B~'A~! and due to (15), it follows that

(VIKV) ' = VIK'V = diag(\Th, ..., A1)

’ '

The mapping ¢ : R® — R” with y = ¢(x) = V' (x — ), i.e., x — u = Vy, maps R" bijectively onto
itself and for the Jacobian determinant of ¢ : R™ — R™ it holds that

Ip; _ _
det(axj (z1,... ,xn)) =detV = =£1,

where the last equality follows from the fact that 1 = det(VT V) = (det V)2.
Therefore, the integral on the left—-hand side of (14) can be written as

/oo 7 exp(— % (x — ,u)TK_l(x—u)) dzy ...dey

= /eXP(—%(X—M)TK’l(x—u» d(xl,...,xn):/ exp<_;2§:

R™ R™

(oo} o0
n

1~ y? 1/2
// exp(2 ;)ﬁ)dyl...dynn@ﬂ)\i) .

i=1

e This implies (14) since

[[* =det A =det(VTKV) =det(V V) det K = det K . 0
i=1
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1.2.2 Characteristics of the Multivariate Normal Distribution

e Let o= (u1,...,4n)" € R™ be an arbitrary vector and let K = (k;;) be a symmetric and positive definite
n X n matrix.

e First, we determine the characteristic function of a normally distributed random vector.

e Recall: The characteristic function ¢ : R™ — C of an arbitrary n—dimensional random vector X =
(X1,...,X,)" : Q= R"is given by

p(t) =E exp(it'X) =E exp( thXg> Vt=(t1,....t,) €R". (16)

Theorem 1.2

e Let the random vector X = (X1,...,X,,)" : @ — R" be normally distributed with X ~ N(u, K).
e Then the characteristic function ¢ : R™ — C of X fulfills

1
ot) =exp(itTh— StTKt), VteR". (17)

Proof

e Equations (13) and (16) imply

p(t) = / .../exp(i Ztgxg>f(x1,...,xn)dajl...dzn
—o00 —0o0 =1

o0 oo

1 1 .
= 2 (et K) 12 / /exp 1t X — §(x— ) TK 1 (x — )) dxy ... dxy,
B exp(it ' p) T -
—00

where the last equality holds due to the substitution y = x — p, for which the matrix of the partial
derivatives is the identity matrix and therefore the Jacobian determinant is equal to 1.

e Similar to the proof of Theorem 1.1 it follows with the help of the substitutions y = Vx and t = Vs

that
B exp(it’ p) TR
p(t) = (zn)n/2(detK1/2 / /exp is’ x—5 V'K~ Vx)dml day,
. exp( 1t—r 7 xg
(2m)n/2( detK 1/2 eXP 1 Sexg — K)) dzy...dzy,
and thus
. exp( 1tT J;2
p(t) = (2m)7/% ( detK 72 H / exp(i sexe — 2—)\@) dzy
exp(it’ )ﬁ 1 /ex (isx—ﬁ)dﬂc
p M H e p Ty 3y 05
where the matrix V consists of the orthonormal eigenvectors of K and Aq, ..., A, > 0 are the eigenvalues

of K with det K =Xy -...- \p.
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e Now, it is sufficient to consider that ¢y : R — C with

7 1 . x2
we(s) = / Ny exp<1 sr — 2—)%) dx

is the characteristic function of the (one dimensional) N(0, A¢)—distribution.
e In Section WR-5.3.3 we already have seen that ¢;(s) = exp(—Ags?/2).
e Hence, we get

n /\gS2 e; A[S?
o(t) = exp(it'p) Hexp(— TZ) = exp(it' p) exp(— = 5
(=1
t Kt
= exp(it' p) eXp(— 5 ) 0

Using (17) for the characteristic function we are able to determine expectation and covariance matrix of a normally
distributed random vector.

Corollary 1.1 IfX = (X1,...,X,) " ~ N(u,K), it holds for arbitrary i,j =1,...,n that

]EXZ = Wi, and Cov (XZ, Xj) = kij . (18)
Proof
e From (17) it follows that
do(t) /. =
o = (1 i — ;kwt@)ap(t) (19)
and
9*p(t) . - - -
a0t = - kij@(t) + (1 Hi — ;kietz) (1 Ky — ; kjﬂe)‘ﬂ(t) . (20)
e [t is easy to see that
EX; =i} agt(t) .
i t=o

Because of ¢(0) =1 and (19), it follows that EX; = p,.

e Furthermore,

E(X;X;) =

This equation and (20) imply Cov (X;, X;) = ki;. O

Remark
e In Theorem WR-4.14 we have shown that the covariance matrix K = Kx of an arbitrary random
vector X = (X1,...,X,,) " is always symmetric and positive semidefinite.
e In (13), where the density of the nondegenerate multivariate normal distribution is defined, it is
additionally required that the covariance matrix K is positive definite.

e Here, K being positive definite is not only sufficient but also necessary to ensure that the matrix K is
invertible, i.e., det K # 0 or K has full rank.
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1.2.3 Marginal Distributions and Independence of Subvectors; Convolution Properties
e In this section it is shown how to derive further interesting properties of the multivariate normal distribution
using Theorem 1.2.
e For this purpose we need a wvectorial version of the uniqueness theorem for characteristic functions (cf.

Corollary WR-5.5), which we will state without proof.

Lemma 1.9 Let X, Y : Q — R" be arbitrary random vectors; X = (X1,...,X,)", Y = (Y1,...,Y,) . Then it

holds that 4
X=Y if and only if  ox(t) = py(t) Vt=(t1,...,t,) €R", (21)

where N N
ex(t)=E exp(i thXj) and py(t)=E exp(i Ztiyj)
j=1 j=1

are the characteristic functions of X and Y, respectively.

First, we show that arbitrary subvectors of normally distributed random vectors are also normally distributed.

e We assume g = (pu1,...,,) € R" to be an arbitrary vector and K = (k;;) to be a symmetric and positive
definite n x n-matrix.

e It is obvious that the random vector (Xy,,...,Xy,)" is normally distributed for each permutation m =
(m1,...,m,) " of the natural numbers 1,...,n if X = (Xy,...,X,)" is normally distributed.

e Therefore, we can w.l.o.g restrict the examination of the distribution of subvectors of normally distributed

random vectors to the examination of the first components.

Corollary 1.2 Let X = (Xy,...,X,)" ~ N(u,K), where K is positive definite. Then it holds that
(le"'7Xm)TNN(IJ’m7Km) vm:la"'ana

where p,, = (i1, .-, ptm) | and K,,, denotes the m x m matriz which consists of the first m rows and columns of
K.

Proof

e Let ¢ : R” — C be the characteristic function of (X1,...,X,)".
e Now, the characteristic function ¢, : R™ — C of (X1,...,X,,)" fulfills

Om(tm) = go((tm70,...70)) . Yt =t tm) T €R™
—

n—m

e This result and (17) imply that
1
Om(tm) = exp (it;um ~3 t;Kmtm> , Vt, € R™.

e Since K is symmetric and positive definite, we know that also the m x m matrix K,,, is symmetric and
positive definite. From this fact and from Theorem 1.2 it follows that the characteristic function of the
subvector (X1,...,X,,)" is identical with the characteristic function of the N(p,,, K,,)-distribution.

e The statement follows because of the one-to-one correspondence of characteristic functions and distri-
butions of random vectors (cf. Lemma 1.9). O
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There is a simple criterion for two subvectors (Xi,...,X,)" and (Xuq1,...,X,) ", with 1 < m < n, of the
normally distributed random vector X = (X1,...,X,,) " being independent.

Corollary 1.3 Let X = (X1,...,X,,)" be a normally distributed random vector with X ~ N(u,K); K = (kij).
The subvectors (X1,...,Xm)" and (Xpmi1,...,Xn)" are independent if and only if kij = 0 for arbitrary i €
{1,...,m}and j e {m+1,...,n}.

Proof
e If the subvectors (X1,...,X,,)" and (X,u41,...,X,)" are independent, then the (one-dimensional)
random variables X; and X, are independent for arbitrary ¢ € {1,...,m} and j € {m+1,...,n}.
e Thus, it holds that Cov (X;, X;) = 0 and Corollary 1.1 implies that k;; = 0.
e Let us now assume that k;; = 0 for arbitrary i € {1,...,m} and j € {m+1,...,n}.

e Then Theorem 1.2 implies that the characteristic function ¢(t) of X = (X1,...,X,) " has the following
factorization.

e For each t = (t1,...,t,)" € R™ it holds that

1 n 1 n n
gﬁ(t) = exp(itTu — 5 tTKt) = exp(i Ztl.ul — 5 Z Zt7k”t]>
i=1

i=1 j=1
= exp(i Ztﬁh — 5 Zztlk”tj) exp(i . Z tz,uz — 5 ' Z Z tikijtj) y
1=1 =1 j=1 i=m-+1 i=m+41j=m+1
where the factors of the last term are the characteristic functions of (X1, ..., X,,) " and (Xopma1,---, Xn) '
e The statement follows because of the one-to-one correspondence of characteristic functions and distri-
butions of random vectors (cf. Lemma 1.9). O
Remark

e Finally, we show that the family of multivariate normal distributions is closed under convolution. In the
following we call this property briefly “convolution stability” of the multivariate normal distribution.
In Corollary WR-3.2 we already have proved the convolution stability of one-dimensional normal
distributions.

e The following formula for the characteristic function of sums of independent random vectors is useful
in this context. The proof is analog to the proof of the one-dimensional case (cf. Theorem WR-5.18).

Lemma 1.10 Let Z1,Zs : Q — R™ be independent random vectors. The characteristic function pz,+z, : R" = C
of the sum Zq + Zy can then be written as

Pz, +Zo (t) =¥z (t) Pz (t) ’ vt e R" ’ (22)

where @z, denotes the characteristic function of Z;; i = 1,2.

The following statement is called convolution stability of the multivariate normal distribution.

Corollary 1.4 Let Z1,Z5 : Q@ — R" be independent random vectors with Z; ~ N(p,;,K;) for i = 1,2. Then it
holds that Z1 + Za ~ N(py + po, K1 + Ks).



1 INTRODUCTION AND MATHEMATICAL FOUNDATIONS 14

Proof

e Equations (17) and (22) imply that

PZ1+Z2 (t) = ¥z (t) Pz (t)
1 1
exp(it—ru1 ~ 5 tTKlt) exp(it—ruz ~ 5 tTth)

. 1
eXP(ltT(Ih + pa) — B} t1 (K + K2)t) :

e This result and the uniqueness theorem for characteristic functions (cf. Lemma 1.9) imply the state-
ment. (|

1.2.4 Linear Transformation of Normally Distributed Random Vectors

Now, we show that the linear transformation of a normally distributed random vector again is a normally dis-
tributed random vector.

Theorem 1.3

o Let Y ~ N(u,K) be an n—dimensional normally distributed random vector with mean vector p € R™ and
(positive definite) covariance matriz K.

e Moreover, let m < n, let A be an arbitrary m x n matriz having full rank tk(A) = m and let ¢ € R™ be an
arbitrary m—dimensional vector.

e Then it holds that Z = AY + c is an (m-dimensional) normally distributed random vector with

Z~ NAp+c, AKAT). (23)

Proof

For each a € R™ it holds that

pz(t) = exp(itTa)goZ_a(t) , vVt e R™.

From (17) derived in Theorem 1.2 and from the uniqueness theorem for the characteristic function of
normally distributed random vectors it follows that

Z~ NAp+c, AKA") ifandonlyif Z— (Ap+c)~ N(o, AKAT).

Therefore, we will w.l.o.g. assume that Y ~ N(o,K) and ¢ = o.
Then the characteristic function ¢z (t) of Z = AY fulfills

@Z(t) _ ]EeitTZ
EeitTAY —Eé (ATt)TY

= QOY(ATt) )

for each t € R™, where ¢y (ATt) denotes the value of the characteristic function of the normally
distributed random vector Y at ATt € R™.



1 INTRODUCTION AND MATHEMATICAL FOUNDATIONS 15

e Now, formula (17) for the characteristic function of normally distributed random vectors implies

pz(t) = ov(ATt)
exp(— 1 (ATt)TK(ATt))
2

= exp(— %tT(AKAT)t) .

e In other words: The characteristic function of Z is equal to the characteristic function of N(o, AKAT).

e The uniqueness theorem for characteristic functions of random vectors implies Z ~ N(o, AKAT). O

By using Theorem 1.3 it follows in particular that it is possible to create normally distributed random vectors by
a linear transformation of vectors whose components are independent, N(0, 1)-distributed random variables.

Corollary 1.5

o Let Yq,....Y, : Q@ — R be independent random wvariables with Y; ~ N(0,1) for each i = 1,...,n, i.e,
Y = (Y1,...,Y,) " ~ N(o,I).

o Let K be a symmetric and positive definite n X n matriz and let p € R™.

o Then the random vector Z = K'/2Y + p satisfies Z ~ N(p, K), where K'/2 is the square root of K.

Proof

e With the help of Theorem 1.3 it follows that
Z ~ N(u, K2 (K% "),

e Now, this result and Lemma 1.6 imply the statement. O

1.2.5 Degenerate Multivariate Normal Distribution

In the following, we will give a generalization of the notion of (nondegenerate) multivariate normal distributions,
which was introduced in Section 1.2.1.

e A factorization property of covariance matrices which has already been mentioned in Lemma 1.7 is useful
in this context.

e Recall: Let K be a symmetric and positive semidefinite n x n matrix with rk(K) = r < n. Then there is
an n x r matrix B with rk(B) = r such that

K=BB'. (24)

Definition

e Let Y be an n—dimensional random vector with mean vector g = EY and covariance matrix K =
Cov (Y) such that rk(K) = r with r < n.

e Then Y is called normally distributed if Y 4 p + BZ, where B is an n X r matrix with tk(B) = r
fulfilling (24) and where Z is an r—dimensional random vector with Z ~ N(o,L,).
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e We say that Y ~ N(u, K) follows a degenerate normal distribution if tk(K) < n.
(Notation: Y ~ N(u,K))

Remark
o If tk(K) = r < n, then the random vector Y ~ N(u, K) is not absolutely continuous

— because the values of Y < p + BZ are almost surely (with probability 1) elements of the r—
dimensional subset {p + Bx: x € R"} of R”,

— i.e., the distribution of Y has no density with respect to the n—dimensional Lebesgue measure.

— An example for this is the random vector Y = (Z,Z)" = BZ with Z ~ N(0,02) and B = (1,1)7,
which only takes values on the diagonal {(z1,22) € R? : z; = 2}.

e The distribution of the random vector p + BZ does not depend on the choice of matrix B of the
factorization (24).

e This is an immediate consequence of both of the following criteria for (degenerate and nondegenerate)
multivariate normal distributions.

Theorem 1.4

o LetY be an n—dimensional random vector with mean vector p =EY and covariance matriz K = Cov (Y)
such that tk(K) = r with r < n.

e The random vector Y is normally distributed if and only if one of the following conditions is fulfilled:

1. The characteristic function ¢(t) =E exp (i Z?Zl thj) of Y is given by
1
o(t) :exp(itTuf 5tTKt), Vt=(t,....ts)  €R". (25)

2. The linear function c'Y of Y is normally distributed for each ¢ € R™ with ¢ # o and

¢'Y ~ N(c"p,c"Ke).

The proof of Theorem 1.4 is omitted (and left as an exercise).

1.3 Linear and Quadratic Forms of Normally Distributed Random Vectors
1.3.1 Definition, Expectation and Covariance

Definition
eLetY=(Yy,...,Y,)" and Z = (Z1,...,Z,)" be arbitrary n—dimensional random vectors and let A
be a symmetric n X n matrix with real-valued entries.

e Then the (real-valued) random variable YT AY : Q — R is called a quadratic form of Y (with respect
to A).

e The random variable YT AZ : Q — R is called a bilinear form of Y and Z (with respect to A).
First, we derive the expectation of quadratic or bilinear forms.

Theorem 1.5 LetY = (Y1,..., Yn)—r and Z = (Z4,. .., Zn)T be arbitrary n—dimensional random vectors and
let A be a symmetric n X n matric with real-valued entries. Furthermore, let the mean vectors py = EY and
w7 = EZ as well as the covariance matrices Kyy = (COV (YZ,Y7)) and Kzv = (Cov (Zi,Yj)) be well-defined.
Then it holds that

E(YTAY) = tr(AKyy) + pyApy  and  E(YTAZ) = tr(AKzy) + pyApy. (26)
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Proof

e We only prove the second formula in (26) since the first formula follows as a special case for Z =Y.
e It obviously holds that YTAZ = tr(Y " AZ). Moreover, from Lemma 1.1 it follows that tr(Y AZ) =
tr(AZYT).
o Altogether we get
E(Y'AZ) = Etr(Y'AZ) = Etr(AZY") = tr(AE(ZY"))
= tr(A(Kzy + pzpy)) = tr(AKzy) + pyApg. 0

In a similar way it is possible to derive a formula for the covariance of quadratic forms of normally distributed
random vectors. The following formulas for the third and fourth mixed moments of the components of centered
normally distributed random vectors are useful in this context.

Lemma 1.11 LetZ = (Zy,...,Z,)" ~ N(o,K) be a normally distributed random vector with mean vector . = o
and with an arbitrary covariance matric K = (ki;). Then it holds that

E (ZiZng) =0 and E (ZZZ]Zme) = ]{iijk}gm + kifkjm + k]‘gkim A i,j, g, m € {1, . ,77,} . (27)

The proof of Lemma 1.11 is omitted. It is an immediate consequence of Theorems 1.2 and 1.4, cf. the proof of
Corollary 1.1.

Theorem 1.6
o Let Y = (Y1,...,Y,)" be an n—dimensional random vector with Y ~ N(pu,K) and let A = (a;;), B = (b;;)

be arbitrary symmetric n X n matrices.

e Then
Cov (YTAY, Y'BY) = 2tr(AKBK) + 4" AKBp. (28)

e In particular, it holds that Var (Y TAY) = 2tr((AK)?) + 4" AKAp.

Proof

e From the definition of the covariance and from Theorem 1.5 it follows that

Cov(YTAY,Y'BY) = E((Y'AY -E(Y'AY))(Y'BY —E(Y'BY)))
= E((YTAY — tr(AK) — p"Ap)(Y'BY — tr(BK) — u'Bp)).

e With the substitution Z =Y — p or Y = Z + p it follows that

Cov(YTAY,Y'BY) = E((Z'AZ+2u"AZ - t1(AK))(Z'BZ + 2p"BZ — t1(BK)))
= E(Z'AZZ'BZ)+2u' AE (ZZ'BZ) + 2u" BE (ZZ'AZ)
~-E(Z"AZ)tx(BK) — E (Z'BZ) tr(AK)
+4p " AKBpu + tr(AK) tr(BK)
= E(Z'AZZ'BZ) +2u" AE (ZZ'BZ) +2p ' BE (ZZ" AZ)
+4p" AKBp — tr(AK) tr(BK) ,

where the last equality is a result of Theorem 1.5 because Z ~ N(o,K), which implies E (ZTAZ) =
tr(AK).
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e Since the matrices A, B and K are symmetric, it follows from Lemma 1.11 that

E(Z'AZZ'BZ) = E(Z'"AZ - Z'BZ)

n n n

= ZZZZCL”IMW E(ZiZ;ZZm)

i=1 j=1¢=1 m=1

= Z Z Z Z (aijkjibfmk’m[ + a/jikifb@mkmj + a'ijkjfb(mkmi)

i=1 j=1¢=1 m=1

= tr(AK)tr(BK) + 2tr(AKBK) .
e Furthermore, Lemma 1.11 implies that
E(ZZ"AZ) = (Zza” Zzzg) = (29)
i=1j5=1 ¢

and analogously E (ZZTBZ) =o.
e This result and the above derived expression for Cov (Y TAY, Y 'BY) imply the statement. O

Now, we derive the following formula for the covariance vector of linear or quadratic forms of normally distributed
random vectors.

Theorem 1.7 LetY = (Y1,...,Y,)" be an n—dimensional random vector with Y ~ N(p, K) and let A = (ai;),
B = (b;j) be arbitrary symmetric n x n matrices. Then it holds

Cov (AY, Y'BY) = 2AKBpu. (30)

Proof
e As E(AY) = Ap and as it has been shown in Theorem 1.5 that
E(Y'BY) = tr(BK) + u' By,
it follows that
Cov (AY,Y'BY) = E((AY — Ap)(Y'BY — p'Bp — tr(BK)))
= E((AY —Ap)((Y — p) ' B(Y — p) + 2(Y — p) ' Bp — tr(BK))) .
e Moreover, it holds that E (AY — Ap) = o and from (29) it follows with Z =Y — p that
E((AY = Ap)(Y —p) 'B(Y —p)) = AE (Y — p)(Y — p) 'B(Y —p)) =

e Therefore, we get

Cov (AY,Y'BY) = 2E((AY — Ap)(Y —p) Bu)
— 2AE((Y - u)(Y - )7 )Bu
= 2AKBy.
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1.3.2 Noncentral y>-Distribution

To determine the distribution of quadratic forms of normally distributed random vectors we introduce the (para-
metric) family of the noncentral y?-distribution.

Definition Let g € R” and (X1,...,X,)" ~ N(u,I). Then the random variable

Z=(X1,...,X)(X1,.... X)) =) X7
i=1

is distributed according to a noncentral x>—distribution with n degrees of freedom and the noncentrality
parameter A = p" p. (Notation: Z ~ X%,A)

Remark

e For . = o we obtain the (central) y?-distribution x2 with n degrees of freedom, which has already
been introduced in Section 1-1.3.1, as a special case.

e To derive a formula for the density of the noncentral x?—distribution we consider (in addition to the
characteristic function) still another integral transform of probability densities.

Definition

e Let f: R — [0,00) be the density of a real-valued random variable such that the integral ffooo et f(x) dx
is well-defined for each ¢ € (a,b) in a certain interval (a,b) with a < b.

e Then the mapping ¢ : (a,b) — R with

oo

(1) = / e f(x)dr, Vi€ (ab) (31)

— 00

is called the moment generating function of the density f.
The following uniqueness theorem for moment generating functions is true, which we state without proof.
Lemma 1.12
o Let f,f' : R — [0,00) be densities of real-valued random wvariables and let the corresponding moment

generating functions ¥ : (a,b) = R and ¢’ : (a,b) — R be well-defined in a (common) interval (a,b) with
a <b.

o It holds that ¥(t) = ¢'(t) for each t € (a,b) if and only if f(x) = f'(x) for almost all z € R.

By using Lemma 1.12 we are now able to identify the density of the noncentral x?-distribution.
Theorem 1.8

o Let the random variable Z, ) : @ — R be distributed according to the X%}/\fdistm'bution with n degrees of
freedom and noncentrality parameter \.

o Then the density of Z, x is given by

A\ n
[e%S) — FHi-1
Atz (2) i :
exp(— — , Wfz2>0,
f.(2) = 2 ),,-Zoﬂzzﬂr(’;ﬂ)

0 otherwise.
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Proof

o Let p € R" and (X1,...,X,,)" ~ N(u,1).

e The moment generating function ¢z (t) of Z = (X1,..., Xn)(X1,..., Xn) | = > i1 X7 is well-defined
for t € (—o00,1/2) and for each t < 1/2 it holds that

n

vz (t) = IElexp(th2 / /exp thx? 1:[1\/127_exp(; (xjf,uj)z)dxl...dxn

=1

n/2 oo n n
( ) / /exp(th ;Z(szujf) dzy ...dx,
jl:[l / (277)—1/2 exp (tx? - %(xj — Mj)2> dx; .

e It is possible to rewrite the exponent of the last term as follows:

1
tx? - i(xj S (— 2tx + a: —2xp + u?)

(x§(1 —28) — 2ujpy + 3 (1 — 20 4 2 — 31— 2t)—1)

— (1= 20721 = 20) + 21 = (1= 20)7Y)).

l\D\»—ll\D\»—lw\»—l

/N
—
8

-

e Hence, it holds that

bot) = exp<—;<1—<1—2t>-l>zu§>ﬂ [ em e~ B RCE s,
j=1 J=1_1,

(1— 2t)~"/2 exp(— % 1-(1- 2t)_1))

as the integrand represents the density of the one-dimensional normal distribution (except for the
constant factor (1 — 2t)Y/2); X\ = u" p.

e On the other hand, the moment generating function ¢(t) of the density fz, ,(z) given in (32) can be
written as

N2\ T n/245—1,—2/2
o) = Y M e 2t
par 254973 + j)

where the integral is the moment generating function of the (central) y>~distribution x? 4o, With n+2j
degrees of freedom.

e Similar to the way the characteristic function (cf. Theorem 1-1.5) is defined, the moment generating
function of this distribution is given by

1

) = G5 -

2
X425

e Therefore, it holds that

7 . n/2+j71 —z/2 1
e'? dz = -
/ 9% +i I‘( +]> (1 —2t)n/2+3
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and
Y(t) = (1 7215)*“/2% 1 (é(lth)’l)j
2 1 \2
= (12t exp(— Lyt 2t)’1)) .
2
e Hence, 9(t) = ¥z(t) for each t < 1/2 and the statement follows from Lemma 1.12. O

1.3.3 Distributional Properties of Linear and Quadratic Forms

e Recall: The definition of the noncentral x?-distribution in Section 1.3.2 considers the sum of squares of the
components of N(u, I)-distributed random vectors.

e One can show that the (adequately modified) sum of squares is distributed according to the noncentral
x>—distribution even if the considered normally distributed random vector has an arbitrary positive definite
covariance matrix.

e Indeed, let u € R™ and let K be a symmetric and positive definite n X n matrix.
e IfZ=(Zy,...,Z,)" ~ N(u,K), Theorem 1.3 implies that
K '2Z ~ N(K™Y2u,1).
o Therefore, by the definition of the noncentral y?—distribution it follows that
ZK'Z= (K ?2) K 2Z~ 2, (33)

where A = (K~ Y2u) TK=2pu = u"TK=pu.

The distributional property (33) for quadratic forms of normally distributed random vectors has the following
generalization. In this context Lemma 1.7 about the factorization of symmetric and positive semidefinite matrices
is useful.

Theorem 1.9

o LetZ = (Zy,...,7Z,)" ~ N(u,K), where the covariance matriz K be positive definite. Moreover, let A be
a symmetric n X n matriz with tk(A) =r < n.

o If the matriz AK is idempotent, i.e., if AK = (AK)?, it holds that Z" AZ ~ sz\’ where A\ = ' Ap.

Proof
e Let the matrix AK be idempotent. Then it holds that
AK = AKAK.

e Since K is nondegenerate, it is allowed to multiply both sides of the above equation from the right by
K. It follows
A = AKA (34)

or
x' Ax = x" AKAx = (Ax) "K(Ax) >0

for each x € R™, i.e., A is positive semidefinite.
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e According to Lemma 1.7 there exists a decomposition
A=HH' (35)

such that the n x r matrix H has full column rank 7.
e Now, Lemma 1.2 implies that the inverse matrix (HH) ™! exists.

e From Theorem 1.3 about the linear transformation of normally distributed random vectors it follows
for the r—dimensional vector Z’ = H' Z that

Z ~ NHu,I,) (36)
because

H'KH = (HH 'H'HMHKH)MHH)MHH)!
(H'H)"'H"(AKA)HH "H) !
= H'H M 'AHH H)'=1,,

where the last three equalities follow from (34) and (35).
e As on the other hand

ZTAZ = Z'HH'Z = (H'Z) H'Z = (2)'Z

and since .
H'p) Hp=p HH p=p'Ap,

the statement follows from (36) and from the definition of the noncentral x2-distribution. O

Furthermore, the following criterion for the independence of linear and quadratic forms of normally distributed
random vectors is useful. It can be considered as a (vectorial) generalization of Lemma I-5.3.

Theorem 1.10

o LetZ = (Zy,...,2,)" ~ N(u,K), where K is an arbitrary (symmetric and positive semidefinite) covariance
matriz.

o Moreover, let A, B be arbitrary r1 X n and ro X n matrices with r1,72 < n and let C be a symmetric and
positive semidefinite n X n matriz.

o [f the additional condition
AKB" =0 or AKC=0 (37)

is fulfilled, the random variables AZ and BZ or AZ and Z' CZ, respectively, are independent.

Proof

e First, we show that (37) implies the independence of the linear forms AZ and BZ.

e Because of the uniqueness theorem for characteristic functions of random vectors (cf. Lemma 1.9), it
suffices to show that to € R"

E exp(i (t| AZ + t;BZ)) =E exp(itlTAZ)]E exp(it;BZ)

for arbitrary t; € R™.
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e From (37) it follows that
T T
BKAT = ((BKAT)T) - (AKBT) - 0.
e Therefore, it holds for arbitrary t; € R™, to € R™ that
(t] A)K(tjB)" =t/ AKB 'ty =0, (tg B)K(t{ A)" =t BKAt; = 0. (38)

e Then the representation formula (25) for the characteristic function of normally distributed random
vectors derived in Theorem 1.4 and (38) imply that

E exp(i(t{ AZ +t; BZ)) = E exp(i (t{ A + t, B)Z)
= exp(i(t] A+t B)u - % (t{A+t]BJK(]A+t]B)")
= e(itA+ I B — S (T AKTA) - S (] BKIB)T)
= en(i(t] A — 5 (T AKETA) ) ep(i (6B - (IBK(B)T)
= Eexp(it{ AZ)E exp(it, BZ).
e Now, it remains to show that the independence of AZ of ZT CZ is a result of the second condition of
(37).

e Let 1k(C) = r < n. According to Lemma 1.7 there is an n x r matrix H with rk(H) = r such that
C=HH'.
e Then it follows from (37) that AKHH' =0 and AKHH H = 0.
e Because of Lemma 1.2, the » x 7 matrix H"H has (full) rank rk(H) = r. Hence, H" H is invertible.
e Finally, it follows that AKH = 0.
e Therefore, the first part of the proof implies that the linear forms AZ and H'Z are independent.
e Because of
Z'CZ=7'"HH'Z=H'Z)'H"Z,

the transformation theorem for independent random vectors (cf. Theorem I-1.8) implies that also AZ
and ZT CZ are independent. ]



