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1 Introduction and Mathematical Foundations

These lecture notes are made for students who already have a basic knowledge of mathematical statistics. Esti-
mation and statistical test methods which have been discussed in �Stochastik I� are assumed to be known.

The present lecture notes consist of the following parts:

• multivariate normal distribution (nondegenerate and degenerate normal distribution, linear and quadratic
forms)

• linear models (multiple regression, normally distributed error terms, single� and multiple�factor analysis of
variance)

• generalized linear models (logistic regression, maximum�likelihood equation, weighted least squares estima-
tor, evaluation of the goodness of �t)

• tests for distribution assumptions (Kolmogorow�Smirnow test, χ2�goodness�of��t test of Pearson�Fisher)

• nonparametric location tests (binomial test, iteration tests, linear rank tests)

In particular, we will use notions and results which have been introduced in the lecture notes �Elementare
Wahrscheinlichkeitsrechnung und Statistik� and �Stochastik I�: we will indicate references to these lecture notes
by �WR� and �I� in front of the section number of the cited lemmas, theorems, corollaries and formulas.

1.1 Some Basic Notions and Results of Matrix Algebra

First, we recall some basic notions and results of matrix algebra, which are needed in these lecture notes.

1.1.1 Trace and Rank

• The trace tr(A) of a quadratic n× n matrix A = (aij) is given by

tr(A) =
n∑

i=1

aii . (1)

• Let A be an arbitrary n×m matrix. The rank rk(A) is the maximum number of linearly independent rows
(or columns) of A.

� The vectors a1, . . . ,aℓ ∈ Rm are called linearly dependent if there exist real numbers c1, . . . , cℓ ∈ R,
which are not all equal to zero and c1a1 + . . .+ cℓaℓ = o.

� Otherwise the vectors a1, . . . ,aℓ ∈ Rm are called linearly independent.

From the de�nition of the trace of a matrix in (1) and from the de�nition of matrix multiplication the next lemma
directly follows.

Lemma 1.1 Let C be an arbitrary n×m matrix and D an arbitrary m× n matrix. Then tr(CD) = tr(DC).

It can be proved that a quadratic matrix A is invertible if and only if A has full rank or detA ̸= 0, respectively.
The following result is also useful in this context.

Lemma 1.2 Let A be an n×m matrix with n ≥ m and rk(A) = m. Then rk(A⊤A) = m.
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Proof

• It is obvious that the rank rk(A⊤A) of the m×m matrix A⊤A cannot exceed m.

• Now, we assume that rk(A⊤A) < m. Then, there exists a vector c = (c1, . . . , cm)⊤ ∈ Rm with c ̸= o
and A⊤Ac = o.

• From this follows that c⊤A⊤Ac = o and (Ac)⊤(Ac) = o, i.e., Ac = o.

• However, this is contradictory to the assumption that rk(A) = m. �

Furthermore, it can be proved that the following properties of trace and rank are valid.

Lemma 1.3 Let A and B be arbitrary n× n matrices. Then tr(A−B) = tr(A)− tr(B) always holds. If A
is idempotent and symmetric, i.e., A = A2 and A = A⊤, it also holds that tr(A) = rk(A).

1.1.2 Eigenvalues and Eigenvectors

De�nition Let A be an arbitrary n× n matrix. Each (complex) number λ ∈ C is called an eigenvalue of the
matrix A if and only if there exists a vector x ∈ Cn with x ̸= o and

(A− λI)x = o . (2)

We call x an eigenvector corresponding to λ.

Remark

• Only if λ is a solution of the so�called characteristic equation

det(A− λI) = 0 , (3)

there is a solution x ∈ Cn with x ̸= o for (2). The left�hand side P (λ) = det(A− λI) of (3) is called
the characteristic polynomial of matrix A.

• Let λ1, . . . , λk ∈ R be the real�valued solutions of (3). Then the characteristic polynomial can be
written in the form

P (λ) = (−1)n(λ− λ1)
a1 . . . (λ− λk)

akq(λ) , (4)

where a1, . . . , ak ∈ N are positive natural numbers, the so�called algebraic multiplicities of λ1, . . . , λk,
and q(λ) is a polynomial of order n−

∑k
i=1 ai which has no real solutions.

Lemma 1.4 Let A = (aij) be a symmetric n× n matrix with real�valued entries aij. Then every eigenvalue is
a real number and eigenvectors xi,xj ∈ Rn which correspond to di�erent eigenvalues λi, λj ∈ R are orthogonal to
each other.

Proof

• The determinant det(A− λI) in (3) is given by

det(A− λI) =
∑
π

(−1)r(π)
∏

i: i ̸=πi

aiπi

∏
i: i=πi

(aiπi − λ) , (5)

where the summation extends over all m! permutations π = (π1, . . . , πm) of the natural numbers
1, . . . ,m and r(π) is the number of pairs in π, which are not in the natural order.
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• Since the elements of A are real numbers, every solution λ = a + i b of (3) implies another solution
λ = a− i b of (3).

• Let x = a+ib and x = a− ib be eigenvectors which correspond to λ or λ, respectively. Then Ax = λx
and Ax = λx or

x⊤Ax = x⊤λx = λx⊤x

and
x⊤Ax =

(
A⊤x

)⊤
x =

(
Ax
)⊤

x =
(
λx
)⊤

x = λx⊤x .

• From this it follows that λx⊤x = λx⊤x.

• Since x⊤x = |a|2 + |b|2 > 0, it holds that λ = λ, i.e., λ is a real number.

• In a similar way it can be proved that for di�erent eigenvalues λi, λj ∈ R there exist eigenvectors
xi,xj ∈ Rn with real�valued components which are orthogonal to each other.

• Since the matrix A−λiI only contains real�valued elements, it holds that if xi is an eigenvector which
corresponds to λi, then also xi and xi + xi ∈ Rn are eigenvectors that correspond to λi .

• Therefore we can (and will) assume w.l.o.g. that xi,xj ∈ Rn. Furthermore, if

(A− λiI)xi = o and (A− λjI)xj = o,

it follows that Axi = λixi and Axj = λjxj as well as

x⊤
j Axi = λix

⊤
j xi and x⊤

i Axj = λjx
⊤
i xj .

• On the other hand it is obvious that x⊤
j xi = x⊤

i xj and with the symmetry of A = (aij) we get the

identity x⊤
j Axi = x⊤

i Axj since

x⊤
j Axi =

n∑
m=1

n∑
ℓ=1

xℓjaℓmxmi =
n∑

ℓ=1

n∑
m=1

xmiamℓxℓj = x⊤
i Axj .

• Altogether it follows that λix
⊤
j xi = λjx

⊤
i xj and (λi − λj)x

⊤
j xi = 0.

• As λi − λj ̸= 0, it holds that x⊤
j xi = 0 . �

1.1.3 Diagonalization Method

• Now, let A be an invertible symmetric n× n matrix.

• In Lemma 1.4 we have shown that all eigenvalues λ1, . . . , λn of A are real numbers (where it is possible
that one number occurs more than once in this sequence).

• Since detA ̸= 0, we get that λ = 0 is no solution of (3), i.e., all eigenvalues λ1, . . . , λn of A are di�erent
from zero.

• Furthermore, it can be proved that there are orthonormal (basis) vectors v1, . . . ,vn ∈ Rn, i.e.,

v⊤
i vi = 1 , v⊤

i vj = 0 , ∀ i, j ∈ {1, . . . , n} with i ̸= j , (6)

such that vi is an eigenvector that corresponds to λi; i = 1, . . . , n.

• If all eigenvalues λ1, . . . , λn di�er from each other, then this is an immediate consequence of part 2 of
Lemma 1.4.

• As a consequence, the following diagonalization method for invertible symmetric matrices is obtained.



1 INTRODUCTION AND MATHEMATICAL FOUNDATIONS 9

Lemma 1.5

• Let A be an invertible symmetric n × n matrix and let V = (v1, . . . ,vn) be the n × n matrix that consists
of the orthonormal eigenvalues v1, . . . ,vn.

• Then
V⊤AV = Λ , (7)

where Λ = diag(λ1, . . . , λn) denotes the n× n diagonal matrix which consists of the eigenvalues λ1, . . . , λn.

Proof

• Equation (2) in the de�nition of eigenvalues and eigenvectors implies that Avi = λivi for each i =
1, . . . , n.

• This means that AV = (λ1v1, . . . , λnvn) and with (6) it follows that V⊤AV = V⊤(λ1v1, . . . , λnvn) =
Λ. �

1.1.4 Symmetric and De�nite Matrices; Factorization

Lemma 1.6 Let A be a symmetric and positive de�nite n × n matrix, i.e., A = A⊤ and x⊤Ax > 0 for each
vector x = (x1, . . . , xn)

⊤ ∈ Rn with x ̸= o. Then A is invertible and there is an invertible n× n matrix H, such
that

A = HH⊤ . (8)

Proof We only prove the second part of Lemma 1.6.

• Lemma 1.5 implies that V⊤AV = Λ and

A = (V⊤)−1ΛV−1 , (9)

� where V = (v1, . . . ,vn) is the n × n matrix which consists of the orthonormal eigenvectors
v1, . . . ,vn,

� and Λ = diag(λ1, . . . , λn) denotes the n × n diagonal matrix which consists of the (positive)
eigenvalues λ1, . . . , λn.

• Now, let Λ1/2 be the n× n diagonal matrix Λ1/2 = diag(
√
λ1, . . . ,

√
λn) and let

H = (V⊤)−1Λ1/2V⊤ . (10)

• It is obvious that the matrix H, given in (10), is invertible. Because of V⊤V = I it also holds that

HH⊤ = (V⊤)−1Λ1/2V⊤
(
(V⊤)−1Λ1/2V⊤

)⊤
= (V⊤)−1Λ1/2V⊤VΛ1/2V−1

= (V⊤)−1Λ1/2Λ1/2V−1 = (V⊤)−1ΛV−1 = A ,

where the last equality follows from (9). �

Remark

• Each invertible n× n matrix H with A = HH⊤ is called a square root of A and is denoted by A1/2.

• Using the Cholesky decomposition for symmetric and positive de�nite matrices, one can show that
there exists a (uniquely determined) lower triangular matrix H with A = HH⊤.

The following property of symmetric matrices is a generalization of Lemma 1.6.
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Lemma 1.7 Let A be a symmetric and positive semide�nite n × n matrix, i.e., it holds that A = A⊤ and
x⊤Ax ≥ 0 for each vector x = (x1, . . . , xn)

⊤ ∈ Rn. Now, let rk(A) = r
(
≤ n

)
. Then there exists an n× r matrix

H with rk(H) = r, such that A = HH⊤.

The proof of Lemma 1.7 is similar to the proof of Lemma 1.6.

Lemma 1.8

• Let m, r ∈ N be arbitrary natural numbers with 1 ≤ r ≤ m. Let A be a symmetric and positive de�nite
m×m matrix and let B be an r ×m matrix with full rank rk(B) = r.

• Then also the matrices BAB⊤ and A−1 are positive de�nite.

Proof

• Because of the full rank of B⊤ it holds that B⊤x ̸= o for each x ∈ Rr with x ̸= o.

• Since A is positive de�nite, it also holds that

x⊤(BAB⊤)x = (B⊤x)⊤A(B⊤x) > 0

for each x ∈ Rr with x ̸= o, i.e., BAB⊤ is positive de�nite.

• Therefore, we get for B = A−1 that

A−1 = A−1
(
AA−1

)
= A−1A

(
A−1

)⊤
is positive de�nite. �

1.2 Multivariate Normal Distribution

In this section we recall the notion of a multivariate normal distribution and discuss some fundamental properties
of this family of distributions.

1.2.1 De�nition and Fundamental Properties

• Let X1, . . . , Xn : Ω → R be independent and (identically) normally distributed random variables, i.e.,

Xi ∼ N(µ, σ2) , ∀i = 1, . . . , n , (11)

where µ ∈ R and σ2 > 0.

• The assumption of normality in (11) and the independence of the sampling variables X1, . . . , Xn mean in
vector notation that the distribution of the random sample X = (X1, . . . , Xn)

⊤ is given by

X ∼ N
(
µ, σ2In

)
, (12)

where µ = (µ, . . . , µ)⊤ and N
(
µ, σ2In

)
denotes the n�dimensional normal distribution with mean vector µ

and covariance matrix σ2In.

• Recall (cf. Section WR-4.3.4): In general, the n�dimensional normal distribution is de�ned as follows.

� Let µ = (µ1, . . . , µn)
⊤ ∈ Rn be an arbitrary vector and let K be a symmetric and positive de�nite

n× n-matrix.
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� Let Z = (Z1, . . . , Zn)
⊤ be an absolutely continuous random vector, where the joint density of Z is

given by

f(z) =
( 1√

2π

)n 1√
detK

exp
(
− 1

2
(z− µ)⊤K−1(z− µ)

)
(13)

for each z = (z1, . . . , zn)
⊤ ∈ Rn.

� Then the random vector Z = (Z1, . . . , Zn)
⊤ is called (nondegenerate) normally distributed.

� Notation: Z ∼ N(µ, K)

Now, we show that the function given in (13) is an (n�dimensional) probability density.

Theorem 1.1 Let µ = (µ1, . . . , µn)
⊤ ∈ Rn be an arbitrary vector and let K be a symmetric and positive de�nite

n× n-matrix. Then it holds that
∞∫

−∞

. . .

∞∫
−∞

exp
(
− 1

2
(x− µ)⊤K−1(x− µ)

)
dx1 . . . dxn = (2π)n/2 (detK)1/2 . (14)

Proof

• Since K is symmetric and positive de�nite (and therefore invertible), Lemma 1.5 implies that there
exists an n×n matrix V = (v1, . . . ,vn) consisting of the orthogonal eigenvectors v1, . . . ,vn of K, such
that

V⊤KV = Λ , (15)

where Λ = diag(λ1, . . . , λn) denotes the n × n diagonal matrix which is built up of the eigenvalues
λ1, . . . , λn of K.

• Since K is positive de�nite, it holds that v⊤
i Kvi = λi > 0 for each i = 1, . . . , n, i.e., all eigenvalues

λ1, . . . , λn of K are positive.

• Because of V⊤V = I, it holds V⊤ = V−1 and VV⊤ = I, respectively.

• Due to the fact that (AB)−1 = B−1A−1 and due to (15), it follows that(
V⊤KV

)−1
= V⊤K−1V = diag

(
λ−1
1 , . . . , λ−1

n

)
.

• The mapping φ : Rn → Rn with y = φ(x) = V⊤(x− µ), i.e., x − µ = Vy, maps Rn bijectively onto
itself and for the Jacobian determinant of φ : Rn → Rn it holds that

det
(∂φi

∂xj
(x1, . . . , xn)

)
= detV = ±1 ,

where the last equality follows from the fact that 1 = det(V⊤V) = (detV)2.

• Therefore, the integral on the left�hand side of (14) can be written as

∞∫
−∞

. . .

∞∫
−∞

exp
(
− 1

2
(x− µ)⊤K−1(x− µ)

)
dx1 . . . dxn

=

∫
Rn

exp
(
− 1

2
(x− µ)⊤K−1(x− µ)

)
d(x1, . . . , xn) =

∫
Rn

exp

(
− 1

2

n∑
i=1

y2i
λi

)
d(y1, . . . , yn)

=

∞∫
−∞

. . .

∞∫
−∞

exp

(
− 1

2

n∑
i=1

y2i
λi

)
dy1 . . . dyn =

n∏
i=1

(2πλi)
1/2 .

• This implies (14) since

n∏
i=1

λi = detΛ = det
(
V⊤KV

)
= det

(
V⊤V

)
detK = detK . �
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1.2.2 Characteristics of the Multivariate Normal Distribution

• Let µ = (µ1, . . . , µn)
⊤ ∈ Rn be an arbitrary vector and let K = (kij) be a symmetric and positive de�nite

n× n matrix.

• First, we determine the characteristic function of a normally distributed random vector.

• Recall: The characteristic function φ : Rn → C of an arbitrary n�dimensional random vector X =
(X1, . . . , Xn)

⊤ : Ω → Rn is given by

φ(t) = E exp
(
i t⊤X

)
= E exp

(
i

n∑
ℓ=1

tℓXℓ

)
, ∀ t = (t1, . . . , tn)

⊤ ∈ Rn . (16)

Theorem 1.2

• Let the random vector X = (X1, . . . , Xn)
⊤ : Ω → Rn be normally distributed with X ∼ N(µ,K).

• Then the characteristic function φ : Rn → C of X ful�lls

φ(t) = exp
(
i t⊤µ− 1

2
t⊤Kt

)
, ∀ t ∈ Rn . (17)

Proof

• Equations (13) and (16) imply

φ(t) =

∞∫
−∞

. . .

∞∫
−∞

exp

(
i

n∑
ℓ=1

tℓxℓ

)
f(x1, . . . , xn) dx1 . . . dxn

=
1

(2π)n/2 (detK)1/2

∞∫
−∞

. . .

∞∫
−∞

exp
(
i t⊤x− 1

2
(x− µ)⊤K−1(x− µ)

)
dx1 . . . dxn

=
exp(i t⊤µ)

(2π)n/2 (detK)1/2

∞∫
−∞

. . .

∞∫
−∞

exp
(
i t⊤y − 1

2
y⊤K−1y

)
dy1 . . . dyn ,

where the last equality holds due to the substitution y = x − µ, for which the matrix of the partial
derivatives is the identity matrix and therefore the Jacobian determinant is equal to 1.

• Similar to the proof of Theorem 1.1 it follows with the help of the substitutions y = Vx and t = Vs
that

φ(t) =
exp(i t⊤µ)

(2π)n/2 (detK)1/2

∞∫
−∞

. . .

∞∫
−∞

exp
(
i s⊤x− 1

2
x⊤V⊤K−1Vx

)
dx1 . . . dxn

=
exp(i t⊤µ)

(2π)n/2 (detK)1/2

∞∫
−∞

. . .

∞∫
−∞

exp
( n∑
ℓ=1

(
i sℓxℓ −

x2ℓ
2λℓ

))
dx1 . . . dxn

and thus

φ(t) =
exp(i t⊤µ)

(2π)n/2 (detK)1/2

n∏
ℓ=1

∞∫
−∞

exp
(
i sℓxℓ −

x2ℓ
2λℓ

)
dxℓ

= exp(i t⊤µ)
n∏

ℓ=1

1√
2πλℓ

∞∫
−∞

exp
(
i sℓxℓ −

x2ℓ
2λℓ

)
dxℓ ,

where the matrixV consists of the orthonormal eigenvectors ofK and λ1, . . . , λn > 0 are the eigenvalues
of K with detK = λ1 · . . . · λn.
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• Now, it is su�cient to consider that φℓ : R → C with

φℓ(s) =

∞∫
−∞

1√
2πλℓ

exp
(
i sx− x2

2λℓ

)
dx

is the characteristic function of the (one dimensional) N(0, λℓ)�distribution.

• In Section WR-5.3.3 we already have seen that φℓ(s) = exp
(
−λℓs2/2

)
.

• Hence, we get

φ(t) = exp(i t⊤µ)

n∏
ℓ=1

exp
(
− λℓs

2
ℓ

2

)
= exp(i t⊤µ) exp

(
−

n∑
ℓ=1

λℓs
2
ℓ

2

)
= exp(i t⊤µ) exp

(
− t⊤Kt

2

)
. �

Using (17) for the characteristic function we are able to determine expectation and covariance matrix of a normally
distributed random vector.

Corollary 1.1 If X = (X1, . . . , Xn)
⊤ ∼ N(µ,K), it holds for arbitrary i, j = 1, . . . , n that

EXi = µi , and Cov (Xi, Xj) = kij . (18)

Proof

• From (17) it follows that

∂ φ(t)

∂ti
=
(
iµi −

n∑
ℓ=1

kiℓtℓ

)
φ(t) (19)

and
∂2φ(t)

∂ti∂tj
= − kijφ(t) +

(
iµi −

n∑
ℓ=1

kiℓtℓ

)(
iµj −

n∑
ℓ=1

kjℓtℓ

)
φ(t) . (20)

• It is easy to see that

EXi = i−1 ∂ φ(t)

∂ti

∣∣∣
t=o

.

Because of φ(o) = 1 and (19), it follows that EXi = µi.

• Furthermore,

E (XiXj) = − ∂2φ(t)

∂ti∂tj

∣∣∣
t=o

.

This equation and (20) imply Cov (Xi, Xj) = kij . �

Remark

• In Theorem WR-4.14 we have shown that the covariance matrix K = KX of an arbitrary random
vector X = (X1, . . . , Xn)

⊤ is always symmetric and positive semide�nite.

• In (13), where the density of the nondegenerate multivariate normal distribution is de�ned, it is
additionally required that the covariance matrix K is positive de�nite.

• Here, K being positive de�nite is not only su�cient but also necessary to ensure that the matrix K is
invertible, i.e., detK ̸= 0 or K has full rank.
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1.2.3 Marginal Distributions and Independence of Subvectors; Convolution Properties

• In this section it is shown how to derive further interesting properties of the multivariate normal distribution
using Theorem 1.2.

• For this purpose we need a vectorial version of the uniqueness theorem for characteristic functions (cf.
Corollary WR-5.5), which we will state without proof.

Lemma 1.9 Let X,Y : Ω → Rn be arbitrary random vectors; X = (X1, . . . , Xn)
⊤, Y = (Y1, . . . , Yn)

⊤. Then it
holds that

X
d
= Y if and only if φX(t) = φY(t) ∀ t = (t1, . . . , tn)

⊤ ∈ Rn , (21)

where

φX(t) = E exp
(
i

n∑
j=1

tjXj

)
and φY(t) = E exp

(
i

n∑
j=1

tjYj

)
are the characteristic functions of X and Y, respectively.

First, we show that arbitrary subvectors of normally distributed random vectors are also normally distributed.

• We assume µ = (µ1, . . . , µn)
⊤ ∈ Rn to be an arbitrary vector and K = (kij) to be a symmetric and positive

de�nite n× n-matrix.

• It is obvious that the random vector (Xπ1 , . . . , Xπn)
⊤ is normally distributed for each permutation π =

(π1, . . . , πn)
⊤ of the natural numbers 1, . . . , n if X = (X1, . . . , Xn)

⊤ is normally distributed.

• Therefore, we can w.l.o.g restrict the examination of the distribution of subvectors of normally distributed
random vectors to the examination of the �rst components.

Corollary 1.2 Let X = (X1, . . . , Xn)
⊤ ∼ N(µ,K), where K is positive de�nite. Then it holds that

(X1, . . . , Xm)⊤ ∼ N(µm,Km) ∀ m = 1, . . . , n ,

where µm = (µ1, . . . , µm)⊤ and Km denotes the m×m matrix which consists of the �rst m rows and columns of
K.

Proof

• Let φ : Rn → C be the characteristic function of (X1, . . . , Xn)
⊤.

• Now, the characteristic function φm : Rm → C of (X1, . . . , Xm)⊤ ful�lls

φm(tm) = φ
(
(tm, 0, . . . , 0︸ ︷︷ ︸

n−m

)
)
, ∀ tm = (t1, . . . , tm))⊤ ∈ Rm .

• This result and (17) imply that

φm(tm) = exp
(
i t⊤mµm − 1

2
t⊤mKmtm

)
, ∀ tm ∈ Rm .

• Since K is symmetric and positive de�nite, we know that also the m×m matrix Km is symmetric and
positive de�nite. From this fact and from Theorem 1.2 it follows that the characteristic function of the
subvector (X1, . . . , Xm)⊤ is identical with the characteristic function of the N(µm,Km)�distribution.

• The statement follows because of the one-to-one correspondence of characteristic functions and distri-
butions of random vectors (cf. Lemma 1.9). �
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There is a simple criterion for two subvectors (X1, . . . , Xm)⊤ and (Xm+1, . . . , Xn)
⊤, with 1 ≤ m < n, of the

normally distributed random vector X = (X1, . . . , Xn)
⊤ being independent.

Corollary 1.3 Let X = (X1, . . . , Xn)
⊤ be a normally distributed random vector with X ∼ N(µ,K); K = (kij).

The subvectors (X1, . . . , Xm)⊤ and (Xm+1, . . . , Xn)
⊤ are independent if and only if kij = 0 for arbitrary i ∈

{1, . . . ,m} and j ∈ {m+ 1, . . . , n}.

Proof

• If the subvectors (X1, . . . , Xm)⊤ and (Xm+1, . . . , Xn)
⊤ are independent, then the (one�dimensional)

random variables Xi and Xj are independent for arbitrary i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . , n}.
• Thus, it holds that Cov (Xi, Xj) = 0 and Corollary 1.1 implies that kij = 0.

• Let us now assume that kij = 0 for arbitrary i ∈ {1, . . . ,m} and j ∈ {m+ 1, . . . , n}.
• Then Theorem 1.2 implies that the characteristic function φ(t) ofX = (X1, . . . , Xn)

⊤ has the following
factorization.

• For each t = (t1, . . . , tn)
⊤ ∈ Rn it holds that

φ(t) = exp
(
i t⊤µ− 1

2
t⊤Kt

)
= exp

(
i

n∑
i=1

tiµi −
1

2

n∑
i=1

n∑
j=1

tikijtj

)
= exp

(
i

m∑
i=1

tiµi −
1

2

m∑
i=1

m∑
j=1

tikijtj

)
exp
(
i

n∑
i=m+1

tiµi −
1

2

n∑
i=m+1

n∑
j=m+1

tikijtj

)
,

where the factors of the last term are the characteristic functions of (X1, . . . , Xm)⊤ and (Xm+1, . . . , Xn)
⊤.

• The statement follows because of the one-to-one correspondence of characteristic functions and distri-
butions of random vectors (cf. Lemma 1.9). �

Remark

• Finally, we show that the family of multivariate normal distributions is closed under convolution. In the
following we call this property brie�y �convolution stability� of the multivariate normal distribution.
In Corollary WR-3.2 we already have proved the convolution stability of one�dimensional normal
distributions.

• The following formula for the characteristic function of sums of independent random vectors is useful
in this context. The proof is analog to the proof of the one�dimensional case (cf. Theorem WR-5.18).

Lemma 1.10 Let Z1,Z2 : Ω → Rn be independent random vectors. The characteristic function φZ1+Z2 : Rn → C
of the sum Z1 + Z2 can then be written as

φZ1+Z2(t) = φZ1(t) φZ2(t) , ∀ t ∈ Rn , (22)

where φZi denotes the characteristic function of Zi; i = 1, 2.

The following statement is called convolution stability of the multivariate normal distribution.

Corollary 1.4 Let Z1,Z2 : Ω → Rn be independent random vectors with Zi ∼ N(µi,Ki) for i = 1, 2. Then it
holds that Z1 + Z2 ∼ N(µ1 + µ2,K1 +K2).
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Proof

• Equations (17) and (22) imply that

φZ1+Z2(t) = φZ1(t) φZ2(t)

= exp
(
i t⊤µ1 −

1

2
t⊤K1t

)
exp
(
i t⊤µ2 −

1

2
t⊤K2t

)
= exp

(
i t⊤(µ1 + µ2)−

1

2
t⊤(K1 +K2)t

)
.

• This result and the uniqueness theorem for characteristic functions (cf. Lemma 1.9) imply the state-
ment. �

1.2.4 Linear Transformation of Normally Distributed Random Vectors

Now, we show that the linear transformation of a normally distributed random vector again is a normally dis-
tributed random vector.

Theorem 1.3

• Let Y ∼ N(µ,K) be an n�dimensional normally distributed random vector with mean vector µ ∈ Rn and
(positive de�nite) covariance matrix K.

• Moreover, let m ≤ n, let A be an arbitrary m× n matrix having full rank rk(A) = m and let c ∈ Rm be an
arbitrary m�dimensional vector.

• Then it holds that Z = AY + c is an (m�dimensional) normally distributed random vector with

Z ∼ N(Aµ+ c, AKA⊤) . (23)

Proof

• For each a ∈ Rm it holds that

φZ(t) = exp(i t⊤a)φZ−a(t) , ∀ t ∈ Rm .

• From (17) derived in Theorem 1.2 and from the uniqueness theorem for the characteristic function of
normally distributed random vectors it follows that

Z ∼ N(Aµ+ c, AKA⊤) if and only if Z− (Aµ+ c) ∼ N(o, AKA⊤) .

• Therefore, we will w.l.o.g. assume that Y ∼ N(o,K) and c = o.

• Then the characteristic function φZ(t) of Z = AY ful�lls

φZ(t) = E ei t
⊤Z

= E ei t
⊤AY = E ei (A

⊤t)⊤Y

= φY(A⊤t) ,

for each t ∈ Rm, where φY(A⊤t) denotes the value of the characteristic function of the normally
distributed random vector Y at A⊤t ∈ Rn.
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• Now, formula (17) for the characteristic function of normally distributed random vectors implies

φZ(t) = φY(A⊤t)

= exp
(
− 1

2
(A⊤t)⊤K(A⊤t)

)
= exp

(
− 1

2
t⊤(AKA⊤)t

)
.

• In other words: The characteristic function of Z is equal to the characteristic function of N(o, AKA⊤).

• The uniqueness theorem for characteristic functions of random vectors implies Z ∼ N(o, AKA⊤). �

By using Theorem 1.3 it follows in particular that it is possible to create normally distributed random vectors by
a linear transformation of vectors whose components are independent N(0, 1)�distributed random variables.

Corollary 1.5

• Let Y1, . . . , Yn : Ω → R be independent random variables with Yi ∼ N(0, 1) for each i = 1, . . . , n, i.e.,
Y = (Y1, . . . , Yn)

⊤ ∼ N(o, I).

• Let K be a symmetric and positive de�nite n× n matrix and let µ ∈ Rn.

• Then the random vector Z = K1/2Y + µ satis�es Z ∼ N(µ, K), where K1/2 is the square root of K.

Proof

• With the help of Theorem 1.3 it follows that

Z ∼ N(µ, K1/2
(
K1/2

)⊤
) .

• Now, this result and Lemma 1.6 imply the statement. �

1.2.5 Degenerate Multivariate Normal Distribution

In the following, we will give a generalization of the notation of (nondegenerate) multivariate normal distributions,
which was introduced in Section 1.2.1.

• A factorization property of covariance matrices which has already been mentioned in Lemma 1.7 is useful
in this context.

• Recall: Let K be a symmetric and positive semide�nite n × n matrix with rk(K) = r ≤ n. Then there is
an n× r matrix B with rk(B) = r, such that

K = BB⊤ . (24)

De�nition

• Let Y be an n�dimensional random vector with mean vector µ = EY and covariance matrix K =
Cov (Y), such that rk(K) = r with r ≤ n.

• Then Y is called normally distributed if Y
d
= µ + BZ, where B is an n × r matrix with rk(B) = r

ful�lling (24) and where Z is an r�dimensional random vector with Z ∼ N(o, Ir).
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• We say that Y ∼ N(µ,K) follows a degenerate normal distribution if rk(K) < n.
(Notation: Y ∼ N(µ,K))

Remark

• If rk(K) = r < n, then the random vector Y ∼ N(µ,K) is not absolutely continuous

� because the values of Y
d
= µ + BZ are almost surely (with probability 1) elements of the r�

dimensional subset {µ+Bx : x ∈ Rr} of Rn,

� i.e., the distribution of Y has no density with respect to the n�dimensional Lebesgue measure.

� An example for this is the random vector Y = (Z,Z)⊤ = BZ with Z ∼ N(0, σ2) and B = (1, 1)⊤,
which only takes values on the diagonal {(z1, z2) ∈ R2 : z1 = z2}.

• The distribution of the random vector µ + BZ does not depend on the choice of matrix B of the
factorization (24).

• This is an immediate consequence of both of the following criteria for (degenerate and nondegenerate)
multivariate normal distributions.

Theorem 1.4

• Let Y be an n�dimensional random vector with mean vector µ = EY and covariance matrix K = Cov (Y),
such that rk(K) = r with r ≤ n.

• The random vector Y is normally distributed if and only if one of the following conditions is ful�lled:

1. The characteristic function φ(t) = E exp
(
i
∑n

j=1 tjYj

)
of Y is given by

φ(t) = exp
(
i t⊤µ− 1

2
t⊤Kt

)
, ∀ t = (t1, . . . , tn)

⊤ ∈ Rn . (25)

2. The linear function c⊤Y of Y is normally distributed for each c ∈ Rn with c ̸= o and

c⊤Y ∼ N(c⊤µ, c⊤Kc) .

The proof of Theorem 1.4 is omitted (and left as an exercise).

1.3 Linear and Quadratic Forms of Normally Distributed Random Vectors

1.3.1 De�nition, Expectation and Covariance

De�nition

• Let Y = (Y1, . . . , Yn)
⊤ and Z = (Z1, . . . , Zn)

⊤ be arbitrary n�dimensional random vectors and let A
be a symmetric n× n matrix with real�valued entries.

• Then the (real�valued) random variable Y⊤AY : Ω → R is called a quadratic form of Y (with respect
to A).

• The random variable Y⊤AZ : Ω → R is called a bilinear form of Y and Z (with respect to A).

First, we derive the expectation of quadratic or bilinear forms.

Theorem 1.5 Let Y = (Y1, . . . , Yn)
⊤ and Z = (Z1, . . . , Zn)

⊤ be arbitrary n�dimensional random vectors and
let A be a symmetric n × n matrix with real�valued entries. Furthermore, let the mean vectors µY = EY and
µZ = EZ as well as the covariance matrices KYY =

(
Cov (Yi, Yj)

)
and KZY =

(
Cov (Zi, Yj)

)
be well�de�ned.

Then it holds that

E
(
Y⊤AY

)
= tr(AKYY) + µ⊤

YAµY and E
(
Y⊤AZ

)
= tr(AKZY) + µ⊤

YAµZ . (26)



1 INTRODUCTION AND MATHEMATICAL FOUNDATIONS 19

Proof

• We only prove the second formula in (26) since the �rst formula follows as a special case for Z = Y.

• It obviously holds that Y⊤AZ = tr
(
Y⊤AZ

)
. Moreover, from Lemma 1.1 it follows that tr

(
Y⊤AZ

)
=

tr
(
AZY⊤).

• Altogether we get

E
(
Y⊤AZ

)
= E tr

(
Y⊤AZ

)
= E tr

(
AZY⊤) = tr

(
AE (ZY⊤)

)
= tr

(
A(KZY + µZµ

⊤
Y)
)

= tr(AKZY) + µ⊤
YAµZ . �

In a similar way it is possible to derive a formula for the covariance of quadratic forms of normally distributed
random vectors. The following formulas for the third and fourth mixed moments of the components of centered
normally distributed random vectors are useful in this context.

Lemma 1.11 Let Z = (Z1, . . . , Zn)
⊤ ∼ N(o,K) be a normally distributed random vector with mean vector µ = o

and with an arbitrary covariance matrix K = (kij). Then it holds that

E (ZiZjZℓ) = 0 and E (ZiZjZℓZm) = kijkℓm + kiℓkjm + kjℓkim ∀ i, j, ℓ,m ∈ {1, . . . , n} . (27)

The proof of Lemma 1.11 is omitted. It is an immediate consequence of Theorems 1.2 and 1.4, cf. the proof of
Corollary 1.1.

Theorem 1.6

• Let Y = (Y1, . . . , Yn)
⊤ be an n�dimensional random vector with Y ∼ N(µ,K) and let A = (aij), B = (bij)

be arbitrary symmetric n× n matrices.

• Then
Cov

(
Y⊤AY, Y⊤BY

)
= 2 tr(AKBK) + 4µ⊤AKBµ . (28)

• In particular, it holds that Var
(
Y⊤AY

)
= 2 tr

(
(AK)2

)
+ 4µ⊤AKAµ.

Proof

• From the de�nition of the covariance and from Theorem 1.5 it follows that

Cov
(
Y⊤AY, Y⊤BY

)
= E

(
(Y⊤AY − E (Y⊤AY))(Y⊤BY − E (Y⊤BY))

)
= E

(
(Y⊤AY − tr(AK)− µ⊤Aµ)(Y⊤BY − tr(BK)− µ⊤Bµ)

)
.

• With the substitution Z = Y − µ or Y = Z+ µ it follows that

Cov
(
Y⊤AY, Y⊤BY

)
= E

(
(Z⊤AZ+ 2µ⊤AZ− tr(AK))(Z⊤BZ+ 2µ⊤BZ− tr(BK))

)
= E

(
Z⊤AZZ⊤BZ

)
+ 2µ⊤AE

(
ZZ⊤BZ

)
+ 2µ⊤BE

(
ZZ⊤AZ

)
−E

(
Z⊤AZ

)
tr(BK)− E

(
Z⊤BZ

)
tr(AK)

+4µ⊤AKBµ+ tr(AK) tr(BK)

= E
(
Z⊤AZZ⊤BZ

)
+ 2µ⊤AE

(
ZZ⊤BZ

)
+ 2µ⊤BE

(
ZZ⊤AZ

)
+4µ⊤AKBµ− tr(AK) tr(BK) ,

where the last equality is a result of Theorem 1.5 because Z ∼ N(o,K), which implies E
(
Z⊤AZ

)
=

tr(AK).
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• Since the matrices A, B and K are symmetric, it follows from Lemma 1.11 that

E
(
Z⊤AZZ⊤BZ

)
= E

(
Z⊤AZ · Z⊤BZ

)
=

n∑
i=1

n∑
j=1

n∑
ℓ=1

n∑
m=1

aijbℓmE (ZiZjZℓZm)

=
n∑

i=1

n∑
j=1

n∑
ℓ=1

n∑
m=1

(
aijkjibℓmkmℓ + ajikiℓbℓmkmj + aijkjℓbℓmkmi

)
= tr(AK) tr(BK) + 2 tr(AKBK) .

• Furthermore, Lemma 1.11 implies that

E
(
ZZ⊤AZ

)
=

(
n∑

i=1

n∑
j=1

aijE (ZiZjZℓ)

)
ℓ

= o (29)

and analogously E
(
ZZ⊤BZ

)
= o.

• This result and the above derived expression for Cov
(
Y⊤AY, Y⊤BY

)
imply the statement. �

Now, we derive the following formula for the covariance vector of linear or quadratic forms of normally distributed
random vectors.

Theorem 1.7 Let Y = (Y1, . . . , Yn)
⊤ be an n�dimensional random vector with Y ∼ N(µ,K) and let A = (aij),

B = (bij) be arbitrary symmetric n× n matrices. Then it holds

Cov
(
AY, Y⊤BY

)
= 2AKBµ . (30)

Proof

• As E (AY) = Aµ and as it has been shown in Theorem 1.5 that

E
(
Y⊤BY

)
= tr(BK) + µ⊤Bµ ,

it follows that

Cov
(
AY, Y⊤BY

)
= E

(
(AY −Aµ)(Y⊤BY − µ⊤Bµ− tr(BK))

)
= E

(
(AY −Aµ)((Y − µ)⊤B(Y − µ) + 2(Y − µ)⊤Bµ− tr(BK))

)
.

• Moreover, it holds that E (AY −Aµ) = o and from (29) it follows with Z = Y − µ that

E
(
(AY −Aµ)(Y − µ)⊤B(Y − µ)

)
= AE

(
(Y − µ)(Y − µ)⊤B(Y − µ)

)
= o .

• Therefore, we get

Cov
(
AY, Y⊤BY

)
= 2E

(
(AY −Aµ)(Y − µ)⊤Bµ

)
= 2AE

(
(Y − µ)(Y − µ)⊤

)
Bµ

= 2AKBµ . �
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1.3.2 Noncentral χ2�Distribution

To determine the distribution of quadratic forms of normally distributed random vectors we introduce the (para-
metric) family of the noncentral χ2�distribution.

De�nition Let µ ∈ Rn and (X1, . . . , Xn)
⊤ ∼ N(µ, I). Then the random variable

Z = (X1, . . . , Xn)(X1, . . . , Xn)
⊤ =

n∑
i=1

X2
i

is distributed according to a noncentral χ2�distribution with n degrees of freedom and the noncentrality
parameter λ = µ⊤µ. (Notation: Z ∼ χ2

n,λ)

Remark

• For µ = o we obtain the (central) χ2�distribution χ2
n with n degrees of freedom, which has already

been introduced in Section I�1.3.1, as a special case.

• To derive a formula for the density of the noncentral χ2�distribution we consider (in addition to the
characteristic function) still another integral transform of probability densities.

De�nition

• Let f : R → [0,∞) be the density of a real�valued random variable, such that the integral
∫∞
−∞ etxf(x) dx

is well�de�ned for each t ∈ (a, b) in a certain interval (a, b) with a < b.

• Then the mapping ψ : (a, b) → R with

ψ(t) =

∞∫
−∞

etxf(x) dx , ∀ t ∈ (a, b) (31)

is called the moment generating function of the density f .

The following uniqueness theorem for moment generating functions is true, which we state without proof.

Lemma 1.12

• Let f, f ′ : R → [0,∞) be densities of real�valued random variables and let the corresponding moment
generating functions ψ : (a, b) → R and ψ′ : (a, b) → R be well�de�ned in a (common) interval (a, b) with
a < b.

• It holds that ψ(t) = ψ′(t) for each t ∈ (a, b) if and only if f(x) = f ′(x) for almost all x ∈ R.

By using Lemma 1.12 we are now able to identify the density of the noncentral χ2�distribution.

Theorem 1.8

• Let the random variable Zn,λ : Ω → R be distributed according to the χ2
n,λ�distribution with n degrees of

freedom and noncentrality parameter λ.

• Then the density of Zn,λ is given by

fZn,λ
(z) =


exp
(
− λ+ z

2

) ∞∑
j=0

(λ
2

)j
z

n
2 +j−1

j! 2
n
2 +j Γ

(n
2
+ j
) , if z > 0,

0 otherwise.

(32)
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Proof

• Let µ ∈ Rn and (X1, . . . , Xn)
⊤ ∼ N(µ, I).

• The moment generating function ψZ(t) of Z = (X1, . . . , Xn)(X1, . . . , Xn)
⊤ =

∑n
j=1X

2
j is well�de�ned

for t ∈ (−∞, 1/2) and for each t < 1/2 it holds that

ψZ(t) = E exp
(
t

n∑
j=1

X2
j

)
=

∞∫
−∞

. . .

∞∫
−∞

exp
(
t

n∑
j=1

x2j

) n∏
j=1

1√
2π

exp
(1
2
(xj − µj)

2
)
dx1 . . . dxn

=

(
1

2π

)n/2 ∞∫
−∞

. . .

∞∫
−∞

exp

(
t

n∑
j=1

x2j −
1

2

n∑
j=1

(xj − µj)
2

)
dx1 . . . dxn

=
n∏

j=1

∞∫
−∞

(2π)−1/2 exp

(
tx2j −

1

2
(xj − µj)

2

)
dxj .

• It is possible to rewrite the exponent of the last term as follows:

tx2j −
1

2
(xj − µj)

2 = − 1

2
(−2tx2j + x2j − 2xjµj + µ2

j )

= − 1

2

(
x2j (1− 2t)− 2xjµj + µ2

j (1− 2t)−1 + µ2
j − µ2

j (1− 2t)−1
)

= − 1

2

(
(xj − µj(1− 2t)−1)2(1− 2t) + µ2

j (1− (1− 2t)−1)
)
.

• Hence, it holds that

ψZ(t) = exp

(
− 1

2
(1− (1− 2t)−1)

n∑
j=1

µ2
j

)
n∏

j=1

∞∫
−∞

(2π)−1/2 exp
(
− (xj − µj(1− 2t)−1)2

2(1− 2t)−1

)
dxj

= (1− 2t)−n/2 exp
(
− λ

2
(1− (1− 2t)−1)

)
as the integrand represents the density of the one�dimensional normal distribution (except for the
constant factor (1− 2t)1/2); λ = µ⊤µ.

• On the other hand, the moment generating function ψ(t) of the density fZn,λ
(z) given in (32) can be

written as

ψ(t) =
∞∑
j=0

e−λ/2(λ/2)j

j!

∞∫
0

etz
zn/2+j−1e−z/2

2
n
2 +j Γ

(
n
2 + j

) dz ,
where the integral is the moment generating function of the (central) χ2�distribution χ2

n+2j with n+2j
degrees of freedom.

• Similar to the way the characteristic function (cf. Theorem I�1.5) is de�ned, the moment generating
function of this distribution is given by

ψχ2
n+2j

(t) =
1

(1− 2t)n/2+j
.

• Therefore, it holds that
∞∫
0

etz
zn/2+j−1e−z/2

2
n
2 +j Γ

(
n
2 + j

) dz = 1

(1− 2t)n/2+j
,
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and

ψ(t) = e−λ/2(1− 2t)−n/2
∞∑
j=0

1

j!

(λ
2
(1− 2t)−1

)j
= (1− 2t)−n/2 exp

(
− λ

2
(1− (1− 2t)−1)

)
.

• Hence, ψ(t) = ψZ(t) for each t < 1/2 and the statement follows from Lemma 1.12. �

1.3.3 Distributional Properties of Linear and Quadratic Forms

• Recall: The de�nition of the noncentral χ2�distribution in Section 1.3.2 considers the sum of squares of the
components of N(µ, I)�distributed random vectors.

• One can show that the (adequately modi�ed) sum of squares is distributed according to the noncentral
χ2�distribution even if the considered normally distributed random vector has an arbitrary positive de�nite
covariance matrix.

• Indeed, let µ ∈ Rn and let K be a symmetric and positive de�nite n× n matrix.

• If Z = (Z1, . . . , Zn)
⊤ ∼ N(µ,K), Theorem 1.3 implies that

K−1/2Z ∼ N(K−1/2µ, I) .

• Therefore, by the de�nition of the noncentral χ2�distribution it follows that

Z⊤K−1Z =
(
K−1/2Z

)⊤
K−1/2Z ∼ χ2

n,λ , (33)

where λ = (K−1/2µ)⊤K−1/2µ = µ⊤K−1µ.

The distributional property (33) for quadratic forms of normally distributed random vectors has the following
generalization. In this context Lemma 1.7 about the factorization of symmetric and positive semide�nite matrices
is useful.

Theorem 1.9

• Let Z = (Z1, . . . , Zn)
⊤ ∼ N(µ,K), where the covariance matrix K be positive de�nite. Moreover, let A be

a symmetric n× n matrix with rk(A) = r ≤ n.

• If the matrix AK is idempotent, i.e., if AK = (AK)2, it holds that Z⊤AZ ∼ χ2
r,λ, where λ = µ⊤Aµ.

Proof

• Let the matrix AK be idempotent. Then it holds that

AK = AKAK .

• Since K is nondegenerate, it is allowed to multiply both sides of the above equation from the right by
K−1. It follows

A = AKA (34)

or
x⊤Ax = x⊤AKAx = (Ax)⊤K(Ax) ≥ 0

for each x ∈ Rn, i.e., A is positive semide�nite.
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• According to Lemma 1.7 there exists a decomposition

A = HH⊤ , (35)

such that the n× r matrix H has full column rank r.

• Now, Lemma 1.2 implies that the inverse matrix (H⊤H)−1 exists.

• From Theorem 1.3 about the linear transformation of normally distributed random vectors it follows
for the r�dimensional vector Z′ = H⊤Z that

Z′ ∼ N(H⊤µ, Ir) (36)

because

H⊤KH = (H⊤H)−1(H⊤H)(H⊤KH)(H⊤H)(H⊤H)−1

= (H⊤H)−1H⊤(AKA)H(H⊤H)−1

= (H⊤H)−1H⊤AH(H⊤H)−1 = Ir ,

where the last three equalities follow from (34) and (35).

• As on the other hand

Z⊤AZ = Z⊤HH⊤Z =
(
H⊤Z

)⊤
H⊤Z = (Z′)⊤Z′

and since (
H⊤µ

)⊤
H⊤µ = µ⊤HH⊤µ = µ⊤Aµ ,

the statement follows from (36) and from the de�nition of the noncentral χ2�distribution. �

Furthermore, the following criterion for the independence of linear and quadratic forms of normally distributed
random vectors is useful. It can be considered as a (vectorial) generalization of Lemma I�5.3.

Theorem 1.10

• Let Z = (Z1, . . . , Zn)
⊤ ∼ N(µ,K), where K is an arbitrary (symmetric and positive semide�nite) covariance

matrix.

• Moreover, let A, B be arbitrary r1 × n and r2 × n matrices with r1, r2 ≤ n and let C be a symmetric and
positive semide�nite n× n matrix.

• If the additional condition
AKB⊤ = 0 or AKC = 0 (37)

is ful�lled, the random variables AZ and BZ or AZ and Z⊤CZ, respectively, are independent.

Proof

• First, we show that (37) implies the independence of the linear forms AZ and BZ.

• Because of the uniqueness theorem for characteristic functions of random vectors (cf. Lemma 1.9), it
su�ces to show that t2 ∈ Rr2

E exp
(
i (t⊤1 AZ+ t⊤2 BZ)

)
= E exp

(
i t⊤1 AZ

)
E exp

(
i t⊤2 BZ

)
for arbitrary t1 ∈ Rr1 .
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• From (37) it follows that

BKA⊤ =
(
(BKA⊤)⊤

)⊤
=
(
AKB⊤

)⊤
= 0.

• Therefore, it holds for arbitrary t1 ∈ Rr1 , t2 ∈ Rr2 that

(t⊤1 A)K(t⊤2 B)⊤ = t⊤1 AKB⊤t2 = 0 , (t⊤2 B)K(t⊤1 A)⊤ = t⊤2 BKA⊤t1 = 0 . (38)

• Then the representation formula (25) for the characteristic function of normally distributed random
vectors derived in Theorem 1.4 and (38) imply that

E exp
(
i (t⊤1 AZ+ t⊤2 BZ)

)
= E exp

(
i (t⊤1 A+ t⊤2 B)Z

)
= exp

(
i (t⊤1 A+ t⊤2 B)µ− 1

2
(t⊤1 A+ t⊤2 B)K(t⊤1 A+ t⊤2 B)⊤

)
= exp

(
i (t⊤1 A+ t⊤2 B)µ− 1

2
(t⊤1 A)K(t⊤1 A)⊤ − 1

2
(t⊤2 B)K(t⊤2 B)⊤

)
= exp

(
i (t⊤1 A)µ− 1

2
(t⊤1 A)K(t⊤1 A)⊤

)
exp
(
i (t⊤2 B)µ− 1

2
(t⊤2 B)K(t⊤2 B)⊤

)
= E exp

(
i t⊤1 AZ

)
E exp

(
i t⊤2 BZ

)
.

• Now, it remains to show that the independence of AZ of Z⊤CZ is a result of the second condition of
(37).

• Let rk(C) = r ≤ n. According to Lemma 1.7 there is an n × r matrix H with rk(H) = r, such that
C = HH⊤.

• Then it follows from (37) that AKHH⊤ = 0 and AKHH⊤H = 0.

• Because of Lemma 1.2, the r × r matrix H⊤H has (full) rank rk(H) = r. Hence, H⊤H is invertible.

• Finally, it follows that AKH = 0.

• Therefore, the �rst part of the proof implies that the linear forms AZ and H⊤Z are independent.

• Because of
Z⊤CZ = Z⊤HH⊤Z = (H⊤Z)⊤H⊤Z ,

the transformation theorem for independent random vectors (cf. Theorem I�1.8) implies that also AZ
and Z⊤CZ are independent. �
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2 Linear Models; Design Matrix with Full Rank

Recall (cf. Chapter 5 of the lecture �Stochastik I�):

• In simple linear regression one considers two datasets (x1, . . . , xn) ∈ Rn and (y1, . . . , yn) ∈ Rn, which shall
be modeled stochastically.

• In doing so, we perceive the vectors (x1, y1), . . . , (xn, yn) as realizations of n random vectors, say (X1, Y1), . . . ,
(Xn, Yn), which are typically not identically distributed.

• We interpret the random variables Y1, . . . , Yn as response variables and assume that they depend on the
predictor variables X1, . . . , Xn in the following way:

Yi = φ(Xi) + εi , ∀ i = 1, . . . , n , (1)

where

� φ : R → R is an arbitrary Borel measurable function, the so-called regression function, and

� ε1, . . . , εn : Ω → R are random variables, so-called error terms, which can be used to model random
errors, e.g., errors in measurement.

• We are dealing with an important special case if the regression function φ : R → R is a linear function, the
so-called regression line, i.e., if there are real numbers β1, β2 ∈ R, such that

φ(x) = β1 + β2x , ∀x ∈ R , (2)

where β1 is called the intercept and β2 is called the regression coe�cient.

• The quantities β1, β2 ∈ R are unknown model parameters, which are to be estimated from the observed
data (x1, . . . , xn) ∈ Rn and (y1, . . . , yn) ∈ Rn.

We now consider the following multivariate generalization of the simple linear regression model and let m,n ≥ 2
be arbitrary natural numbers, such that m ≤ n.

• We assume that the response variables Y1, . . . , Yn depend on vectorial m�dimensional predictor variables
(X11, . . . , X1m)⊤, . . . , (Xn1, . . . , Xnm)⊤, i.e.,

Yi = φ(Xi1, . . . , Xim) + εi , ∀ i = 1, . . . , n , (3)

where

� the regression function φ : Rm → R is given by

φ(x1, . . . , xm) = β1x1 + . . .+ βmxm , ∀ (x1, . . . , xm)⊤ ∈ Rm (4)

with (unknown) regression coe�cients β1, . . . , βm ∈ R and

� the random error terms ε1, . . . , εn : Ω → R satisfy the following requirements:

E εi = 0 , Var εi = σ2 , Cov (εi, εj) = 0 , ∀ i, j = 1, . . . , n with i ̸= j (5)

for a certain (unknown) σ2 > 0.

• Here we just consider the case of deterministic predictor variables (X11, . . . , X1m)⊤, . . . , (Xn1, . . . , Xnm)⊤,
i.e., we put

(X11, . . . , X1m)⊤ = (x11, . . . , x1m)⊤, . . . , (Xn1, . . . , Xnm)⊤ = (xn1, . . . , xnm)⊤

for certain vectors (x11, . . . , x1m)⊤, . . . , (xn1, . . . , xnm)⊤ ∈ Rm.
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Remark

• In matrix notation the model given in (3) and (4) can be expressed as follows:

Y = Xβ + ε , (6)

where

Y =


Y1
...

Yn

 , X =


x11 . . . x1m
...

...

xn1 . . . xnm

 , β =


β1
...

βm

 , ε =


ε1
...

εn

 . (7)

• Here X is called the design matrix of the regression model.

2.1 Method of Least Squares

The goal of this section consists in estimating the unknown model parameters β1, . . . , βm and σ2 from the observed
data (x11, . . . , x1m)⊤, . . . , (xn1, . . . , xnm)⊤ ∈ Rm and (y1 . . . , yn)

⊤ ∈ Rn.

• Similar to the way this is done in Section I�5.1 we consider the method of least squares in order to determine
estimators β̂1, . . . , β̂m for the unknown regression coe�cients β1, . . . , βm.

• In detail, this means that a random vector β̂ = (β̂1, . . . , β̂m)⊤ is to be determined, such that the mean
squared error

e(β) =
1

n

n∑
i=1

(
Yi − (β1xi1 + . . .+ βmxim)

)2
(8)

is minimal for β = β̂.

Remark Except the model assumptions made in (5) no further preconditions concerning the distribution of
the random error terms ε1, . . . , εn : Ω → R are required up to now.

2.1.1 Normal Equation

It can easily be shown that the function e(β) considered in (8) has a uniquely determined minimum if the design
matrix X has full (column) rank, i.e., rk(X) = m.

Theorem 2.1 Let rk(X) = m.

• The mean squared error e(β) in (8) is minimal if and only if β is a solution of the so�called normal equation:

X⊤Xβ = X⊤Y . (9)

• The normal equation (9) has the uniquely determined solution

β̂ = (X⊤X)−1X⊤Y . (10)
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Proof

• The function e(β) given in (8) is di�erentiable, where

e′(β) =
(∂e(β)
∂β1

, . . . ,
∂e(β)

∂βm

)⊤
=

2

n

(
X⊤Xβ −X⊤Y

)
and

e′′(β) =
( ∂2e(β)
∂βi∂βj

)
=

2

n
X⊤X .

• Setting e′(β) = o results in the normal equation (9).

• Moreover, it follows from Lemma 1.2 that rk(X⊤X) = m.

� Hence, the m×m matrix X⊤X (and consequently also e′′(β)) is invertible and positive de�nite.

� Therefore, e(β) is minimal if and only if β is a solution of (9).

• As the m×m matrix X⊤X is invertible, we know that (9) has a uniquely determined solution β̂, which
is given by (10). �

Remark The estimator β̂ = (X⊤X)−1X⊤Y for β is a linear transformation of the random sample Y, i.e., β̂
is a linear estimator for β.

Examples (simple and multiple linear regression model)

• For m = 2 and

X =


1 x1
...

...

1 xn

 (11)

we obtain the simple linear regression model already considered in Section I�5.1 as a special case.

• The design matrix X in (11) has full rank rk(X) = 2 if and only if not all x1, . . . , xn are equal.

• The estimators β̂ = (β̂1, β̂2) for the intercept β1 and the regression coe�cient β2, considered in (10)
(see also Theorem I�5.1), are then given by

β̂2 =
s2xy
s2xx

and β̂1 = yn − β̂2xn , (12)

respectively, where xn, yn denote the sample means, i.e.,

xn =
1

n

n∑
i=1

xi , yn =
1

n

n∑
i=1

yi ,

and the sample variances s2xx, s
2
yy and sample covariance s2xy are given by

s2xx =
1

n− 1

n∑
i=1

(
xi − xn

)2
, s2xy =

1

n− 1

n∑
i=1

(xi − xn)(yi − yn) and s2yy =
1

n− 1

n∑
i=1

(
yi − yn

)2
.

• For m > 2 and

X =


1 x12 . . . x1m
...

...
...

1 xn2 . . . xnm

 (13)

we obtain the so-called multiple linear regression model.
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2.1.2 Properties of the LS�Estimator β̂

From now on in Section 2.1, we always assume that the design matrix X has full (column) rank and derive three

di�erent properties of the LS�estimator β̂ = (β̂1, . . . , β̂m)⊤ given in (10).

Theorem 2.2 The estimator β̂ is unbiased for β, i.e., E β̂ = β for all β ∈ Rm.

Proof

Due to E ε = o it follows from (6) and (10) that

E β̂
(10)
= E

(
(X⊤X)−1X⊤Y

) (6)
= E

(
(X⊤X)−1X⊤(Xβ + ε)

)
= β + E

(
(X⊤X)−1X⊤ε

)
= β + (X⊤X)−1X⊤E ε = β . �

The LS�estimator β̂ additionally has the following minimum variance property. We denote by L the family of all
unbiased linear estimators β̃ = AY+a for β, where A is an (m×n)�dimensional matrix and a = (a1, . . . , am)⊤ ∈
Rm.

Theorem 2.3 For all β̃ = (β̃1, . . . , β̃m) ∈ L it holds that

Var β̂i ≤ Var β̃i , ∀ i = 1, . . . ,m , (14)

where the equality in (14) is true for all i = 1, . . . ,m if and only if β̃ = β̂.

Proof

• As it is assumed that the linear estimator β̃ = AY + a is unbiased for β, one has

β = E β̃ = E (AY + a)
(6)
= E

(
A(Xβ + ε)

)
+ a = AXβ +AE ε+ a = AXβ + a

for all β ∈ Rm, where the last equality arises from E ε = o.

• Herefrom, it follows that
AX = I and a = o . (15)

• Hence, one has
β̃ = AY = A(Xβ + ε) = AXβ +Aε = β +Aε ,

i.e., each linear unbiased estimator β̃ for β is of the form

β̃ = β +Aε . (16)

• For the covariance matrix Cov (β̃) of the random vector β̃ it thus holds that

Cov (β̃) = E
(
(β̃ − β)(β̃ − β)⊤

)
= E

(
(Aε)(Aε)⊤

)
= AE (εε⊤)A⊤ = σ2AA⊤ ,

i.e.,
Cov (β̃) = σ2AA⊤ . (17)
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• Furthermore, it results from (17) with A = (X⊤X)−1X⊤ that the covariance matrix Cov (β̂) of the

LS�estimator β̂ is given by
Cov (β̂) = σ2(X⊤X)−1 (18)

because

Cov (β̂) = σ2
(
(X⊤X)−1X⊤)((X⊤X)−1X⊤)⊤

= σ2(X⊤X)−1X⊤X(X⊤X)−1

= σ2(X⊤X)−1 .

• So in order to prove the validity of (14), it has to be shown that(
(X⊤X)−1

)
ii
≤
(
AA⊤)

ii
, ∀ i = 1, . . . ,m . (19)

• For D = A− (X⊤X)−1X⊤ one has

AA⊤ =
(
D+ (X⊤X)−1X⊤)(D+ (X⊤X)−1X⊤)⊤

= DD⊤ + (X⊤X)−1X⊤D⊤ +DX(X⊤X)−1 + (X⊤X)−1

= DD⊤ + (X⊤X)−1

because due to (15) it holds that

DX =
(
A− (X⊤X)−1X⊤)X = AX− I = I− I = 0 ,

where 0 denotes the zero matrix.

• As for D = (dij) the inequality
(
DD⊤)

ii
=
∑m

j=1 d
2
ij ≥ 0 is ful�lled, this gives (19).

• Moreover, it becomes clear that the equality in (19) for each i = 1, . . . ,m holds if and only if D = 0,
i.e., A = (X⊤X)−1X⊤. �

Remark

• It follows from Theorems 2.1 and 2.2 that β̂ ∈ L. Moreover, it arises from Theorem 2.3 that β̂ is the
best unbiased linear estimator for β in terms of (14).

• We now derive a su�cient condition for β̂ to be a weakly consistent estimator for β, where the sample
size n, i.e., the number of rows of the design matrix X = Xn tends to ∞.

• Recall: An estimator β̃n = β̃(Y1, . . . , Yn) for β is called weakly consistent if

lim
n→∞

Pβ(|β̃n − β| > ε) = 0 , ∀ ε > 0, β ∈ Rm .

• Under similar conditions, it can also be shown that β̂n is asymptotically normally distributed if n→ ∞
(cf. Section III.3.2 in Pruscha (2000)).

Theorem 2.4 Let f : N → R \ {0} be a function satisfying limn→∞ f(n) = 0, such that the limit

Q = lim
n→∞

(
f(n)X⊤

nXn

)
(20)

exists and the m×m matrix Q is invertible. Then β̂n is a weakly consistent estimator for β.
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Proof

• As β̂n is unbiased (cf. Theorem 2.2), it holds for each n ≥ m that

Pβ(|β̂n − β| > ε) = Pβ(|β̂n − β|2 > ε2) = Pβ

( m∑
i=1

(
β̂in − βi

)2
> ε2

)
≤ Pβ

( m∪
i=1

{
(β̂in − βi)

2 >
ε2

m

})
≤

m∑
i=1

Pβ

((
β̂in − βi

)2
>
ε2

m

)
≤ m

ε2

m∑
i=1

Var β̂in ,

where the last inequality results from the Chebyshev inequality (cf. Theorem WR-4.18).

• Hence, it su�ces to show that

lim
n→∞

Var β̂in = 0 , ∀ i = 1, . . . ,m . (21)

• The matrixQ−1 is well�de�ned because we assume that the (limiting) matrixQ is invertible. Moreover,
it follows from (20) that

Q−1 = lim
n→∞

(
f(n)X⊤

nXn

)−1
.

• From the formula for the covariance matrix of the random vector β̂n derived in (18), it now results
that

lim
n→∞

Cov (β̂n) = σ2 lim
n→∞

(
X⊤

nXn

)−1
= σ2 lim

n→∞
f(n) lim

n→∞

(
f(n)X⊤

nXn

)−1
=
(
σ2 lim

n→∞
f(n)

)
Q−1 = 0 .

• This particularly implies (21). �

2.1.3 Unbiased Estimation of the Variance σ2 of the Error Terms

• Besides the conditions on the error terms ε1, . . . , εn formulated in (5), we now assume that n > m. Fur-
thermore, we again assume that the design matrix has full rank, i.e., rk(X) = m.

• By generalizing the approach we considered in Section I�5.1.3 for the estimation of σ2 in the simple linear
regression model, we now consider

S2 =
1

n−m
(Y −Xβ̂)⊤(Y −Xβ̂) . (22)

• For normally distributed error terms, S2 can be regarded as a modi�ed version of a maximum�likelihood
estimator for σ2; cf. Section 2.2.

We show that the random variable S2 de�ned in (22) gives an unbiased estimator for σ2. Here, the following
lemmata are useful.

Lemma 2.1 The n× n matrix
G = I−X(X⊤X)−1X⊤ (23)

is idempotent and symmetric, i.e.,
G = G2 and G = G⊤ . (24)
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Proof

• The second part of the statement in (24) follows directly from the de�nition of G and the computation
rules for transposed matrices because

G⊤ =
(
I−X(X⊤X)−1X⊤

)⊤
= I−X(X⊤X)−1X⊤ = G .

• Furthermore, it holds that

G2 =
(
I−X(X⊤X)−1X⊤

)(
I−X(X⊤X)−1X⊤

)
= I− 2X(X⊤X)−1X⊤ +X(X⊤X)−1X⊤X(X⊤X)−1X⊤

= I−X(X⊤X)−1X⊤ = G . �

Lemma 2.2 For the n× n matrix G given in (23) it holds that tr(G) = n−m.

Proof

• One can easily see (cf. Lemmas 1.1 and 1.3) that

� tr(A−B) = tr(A)− tr(B) for arbitrary n× n matrices A and B,

� tr(CD) = tr(DC) for arbitrary n×m matrices C and arbitrary m× n matrices D .

• Herefrom and from the de�nition of G in (23) it follows that

tr(G) = tr
(
In −X(X⊤X)−1X⊤

)
= tr(In)− tr

(
X(X⊤X)−1X⊤

)
= tr(In)− tr

(
X⊤X(X⊤X)−1

)
= tr(In)− tr(Im) = n−m,

where Iℓ denotes the (ℓ× ℓ)�dimensional identity matrix. �

Theorem 2.5 It holds that ES2 = σ2 for any σ2 > 0, i.e., S2 is an unbiased estimator for σ2.

Proof

• It obviously holds that
GX =

(
I−X(X⊤X)−1X⊤)X = 0 . (25)

• Herefrom, it follows with the aid of (10) and (23) that

Y −Xβ̂
(10)
= Y −X(X⊤X)−1X⊤Y

(23)
= GY = GXβ +Gε

(25)
= Gε .

• Hence, for the estimator S2 introduced in (22) it is true that

S2 =
1

n−m
(Gε)⊤(Gε) =

1

n−m
ε⊤G⊤Gε =

1

n−m
ε⊤Gε

=
1

n−m
tr
(
ε⊤Gε

)
=

1

n−m
tr
(
Gεε⊤

)
,

on account of G⊤G = G2 = G (cf. Lemma 2.1).

• Due to E (εε⊤) = σ2In this leads to

ES2 =
1

n−m
tr
(
GE (εε⊤)

)
=

1

n−m
tr
(
Gσ2In

)
=

σ2

n−m
tr
(
G
)
= σ2 ,

where the last equality results from Lemma 2.2. �
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2.2 Normally Distributed Error Terms

• In addition to the model assumptions that were made at the beginning of Chapter 2, we now assume that
the random error terms ε1, . . . , εn : Ω → R are independent and normally distributed, i.e., εi ∼ N(0, σ2) for
each i = 1, . . . , n.

• Moreover, let rk(X) = m and n > m.

• According to Theorem 1.3, the distributions of the vector Y = Xβ + ε of response variables and of the
LS�estimator β̂ = (X⊤X)−1X⊤Y are given by

Y ∼ N(Xβ, σ2I) (26)

and
β̂ ∼ N

(
β, σ2(X⊤X)−1

)
, (27)

respectively.

2.2.1 Maximum�Likelihood Estimation

• A parametric model for the distribution of the vector Y = (Y1, . . . , Yn)
⊤ of the sampling variables Y1, . . . , Yn

is given by (26).

• This means that aside from the method of least squares, which was discussed in Section 2.1, we can now also
use maximum�likelihood estimation in order to construct estimators for the unknown model parameters β
and σ2.

• It follows from (1.13) and (26) that

fY(y) =
( 1

σ
√
2π

)n
exp
(
− 1

2σ2
(y −Xβ)⊤(y −Xβ)

)
(28)

for each y = (y1, . . . , yn)
⊤ ∈ Rn.

• Hence, we consider the likelihood function

L(y;β, σ2) =
( 1

σ
√
2π

)n
exp
(
− 1

2σ2
(y −Xβ)⊤(y −Xβ)

)
(29)

or the loglikelihood function

logL(y;β, σ2) = − n

2
log(2π)− n

2
log(σ2)− 1

2σ2
|y −Xβ|2 . (30)

• We want to �nd estimators β̂, σ̂2 for β, σ2, such that

L(Y; β̂, σ̂2) = sup
β∈Rm, σ2>0

L(Y;β, σ2) (31)

with probability 1 or equivalently such that

logL(Y; β̂, σ̂2) = sup
β∈Rm, σ2>0

logL(Y;β, σ2) (32)

with probability 1.

Remark The maximization in (31) or (32) can be carried out in two steps: �rst with respect to β and then
with respect to σ2. Due to (30), the �rst step is identical with the minimization method considered in
Section 2.1.1.
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Theorem 2.6 The solutions of the maximization problems (31) and (32) are uniquely determined and given by

β̂ = (X⊤X)−1X⊤Y (33)

and

σ̂2 =
1

n

(
Y −Xβ̂

)⊤(
Y −Xβ̂

)
, (34)

respectively.

Proof

• For arbitrary but �xed y ∈ Rn and σ2 > 0, we �rst consider the mapping

Rm ∋ β 7→ logL(y;β, σ2) . (35)

• In Theorem 2.1 we have shown that the mapping given in (35) has the uniquely determined global

maximum β̂(y) = (X⊤X)−1X⊤y, which does not depend on σ2.

• For each (�xed) y ∈ Rn, we now consider the mapping

(0,∞) ∋ σ2 7→ logL(y; β̂(y), σ2) . (36)

• This mapping is continuous and it obviously holds that

lim
σ2→∞

logL(y; β̂(y), σ2) = −∞ .

• As n > m is assumed, the n�dimensional absolutely continuous random vector Y only takes values in
the m�dimensional subset {Xz : z ∈ Rm} of Rn with probability 0.

• Therefore, we have that |Y −Xβ̂|2 > 0 with probability 1 and

lim
σ2→0

logL(y; β̂(y), σ2) = −∞

for almost every y ∈ Rn.

• Thus, for almost every y ∈ Rn, the mapping given in (36) has at least one global maximum in (0,∞).

• For each of these maxima, it holds that

∂ logL(y; β̂(y), σ2)

∂σ2
= − n

2σ2
+

1

2σ4
(y −Xβ̂(y))⊤(y −Xβ̂(y)) = 0 .

• The (uniquely determined) solution of this equation is

σ̂2(y) =
1

n
(y −Xβ̂(y))⊤(y −Xβ̂(y)) . �

Remark

• The ML�estimator β̂ for β derived in Theorem 2.6 coincides with the LS�estimator derived in Theo-
rem 2.1.

• In contrast, the ML�estimator σ̂2 for σ2 di�ers from the (unbiased) estimator S2 for σ2 considered in
Section 2.1.3 in a constant proportionality factor because

σ̂2 =
n−m

n
S2 .
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2.2.2 Distributional Properties of β̂ and S2

• Apart from the fact that β̂ ∼ N
(
β, σ2(X⊤X)−1

)
is normally distributed, which was already mentioned in

(27), it is also possible to determine the distribution of the estimator

S2 =
1

n−m
(Y −Xβ̂)⊤(Y −Xβ̂) . (37)

for the variance σ2 of the error terms.

• For this purpose we use the representation formula

Y −Xβ̂ = Gε , (38)

which we have shown in the proof of Theorem 2.5, where G = I−X(X⊤X)−1X⊤.

From the condition derived in Theorem 1.9, under which a quadratic form of normally distributed random vectors
follows a χ2�distribution, we obtain the following result.

Theorem 2.7 It holds that
(n−m)S2

σ2
∼ χ2

n−m , (39)

i.e., the random variable (n−m)S2/σ2 is distributed according to the (central) χ2�distribution with n−m degrees
of freedom.

Proof

• In Lemma 2.1 we have shown that the matrix G = I−X(X⊤X)−1X⊤ is idempotent and symmetric.

• Herefrom and from (38) it follows that

(n−m)S2

σ2
=

1

σ2
(Y −Xβ̂)⊤(Y −Xβ̂) =

1

σ2
(Gε)⊤Gε =

1

σ2
ε⊤G⊤Gε

=
(
σ−1ε

)⊤
G
(
σ−1ε

)
.

• As σ−1ε ∼ N(o, I) and as the matrix GI = G is idempotent, it su�ces to show that rk(G) = n−m
due to Theorem 1.9.

• This is a result of Lemma 1.3 and 2.2 because

rk(G)
Lemma 1.3

= sp(G)
Lemma 2.2

= n−m. �

Moreover, we use the criterion for the independence of linear and quadratic forms of normally distributed random
vectors, which has been derived in Theorem 1.10 in order to show the following result.

Theorem 2.8 The estimators β̂ and S2 for β and σ2, respectively, are independent.
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Proof

• From β̂ = (X⊤X)−1X⊤Y and Y = Xβ + ε it follows that

β̂ = (X⊤X)−1X⊤ε+ (X⊤X)−1X⊤Xβ = (X⊤X)−1X⊤ε+ β .

• Furthermore, we have shown in the proof of Theorem 2.7 that the estimator

S2 =
1

n−m
(Y −Xβ̂)⊤(Y −Xβ̂)

can be written as a quadratic form of ε:

S2 =
1

n−m
ε⊤Gε , where G = I−X(X⊤X)−1X⊤.

• Due to ε ∼ N(o, σ2I) and (
(X⊤X)−1X⊤

)(
I−X(X⊤X)−1X⊤

)
= 0 ,

it follows from Theorem 1.10 that the linear form (X⊤X)−1X⊤ε and the quadratic form ε⊤Gε are
independent.

• This implies that also the random variables β̂ and S2 are independent. �

2.2.3 Statistical Tests for the Regression Coe�cients

• By use of the distributional properties of linear and quadratic forms of normally distributed random vectors
which have been derived in Sections 1.3.3 and 2.2.2, we are able to construct statistical t�tests and F�tests
for the veri�cation of hypotheses about the regression coe�cients β1, . . . , βm.

• In doing so, we still consider the (independent) estimators β̂ and S2 for β and σ2, where

β̂ = (X⊤X)−1X⊤Y ∼ N
(
β, σ2(X⊤X)−1

)
(40)

and
(n−m)S2

σ2
=

1

σ2
(Y −Xβ̂)⊤(Y −Xβ̂) ∼ χ2

n−m . (41)

We �rst discuss the following F�test, which is also called a test of model signi�cance.

• Here, the null hypothesis H0 : β1 = . . . = βm = 0 is tested (against the alternative H1 : βj ̸= 0 for at least
one j ∈ {1, . . . ,m}).

• The choice of the test statistic is motivated by the following decomposition.

Theorem 2.9 With the notation Ŷ = Xβ̂, it holds that

Y⊤Y = Ŷ⊤Ŷ +
(
Y − Ŷ

)⊤(
Y − Ŷ

)
. (42)
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Proof

• We have that

Y⊤Y =
n∑

i=1

Y 2
i =

n∑
i=1

(
(Yi − Ŷi) + Ŷi

)2
=

n∑
i=1

Ŷ 2
i +

n∑
i=1

(Yi − Ŷi)
2 + 2

n∑
i=1

(Yi − Ŷi)Ŷi︸ ︷︷ ︸
=0

=
n∑

i=1

Ŷ 2
i +

n∑
i=1

(Yi − Ŷi)
2 = Ŷ⊤Ŷ +

(
Y − Ŷ

)⊤(
Y − Ŷ

)
.

• Here, the last but one equality holds due to the following consideration:

n∑
i=1

(Yi − Ŷi)Ŷi = (Y − Ŷ)⊤Ŷ = (Y⊤ − β̂
⊤
X⊤)Xβ̂ = Y⊤Xβ̂ − β̂

⊤
X⊤Xβ̂︸ ︷︷ ︸
=X⊤Y

= Y⊤Xβ̂ − β̂
⊤
X⊤Y =

(
Y⊤Xβ̂

)⊤ − β̂
⊤
X⊤Y = 0 . �

Remark

• The �rst summand Ŷ⊤Ŷ on the right side of (42) is the squared length of the vector Ŷ = Xβ̂ of the

estimated target values Ŷ1, . . . , Ŷn.

• The second component of the decomposition (42), i.e., the sum of the deviation squares
(
Y−Ŷ

)⊤(
Y−

Ŷ
)
, is called residual variance.

• Sometimes the so�called coe�cient of determination R2 is considered as well, which is given by

R2 = 1−
(
Y − Ŷ

)⊤(
Y − Ŷ

)
n∑

i=1

(Yi − Y )2
, where Y =

1

n

n∑
i=1

Yi .

Our model assumption that the design matrix X has full rank, i.e., rk(X) = m, implies that the inequality
(Xβ)⊤(Xβ) = β⊤(X⊤X)β > 0 holds if the hypothesis H0 : β1 = . . . = βm = 0 is not true.

• Therefore, it is natural to reject the hypothesis H0 if the squared length Ŷ⊤Ŷ of the random vector Ŷ = Xβ̂
is su�ciently large.

• In order to decide what �su�ciently large� means in this context, we also consider the variability σ2 of the
data.

� Assuming that H0 : β = o is true, it holds that

E
(
Y⊤Y

)
= E

(
ε⊤ε

)
= E

( n∑
i=1

ε2i

)
=

n∑
i=1

E ε2i = nσ2 .

� In this case, due to Theorem 2.9, one has

nσ2 = E
(
Ŷ⊤Ŷ

)
+ E

((
Y − Ŷ

)⊤(
Y − Ŷ

))
,

� which is the reason why the quotient of Ŷ⊤Ŷ and the sum of deviation squares
(
Y− Ŷ

)⊤(
Y− Ŷ

)
is

considered for testing the hypothesis H0 : β = o.
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• More precisely, we consider the following test statistic

Tmod =
β̂
⊤
(X⊤X)β̂

mS2
. (43)

For being able to construct a test of the hypothesis H0 : β1 = . . . = βm = 0 based on Tmod, the distribution of
the test statistic Tmod has to be determined.

Theorem 2.10 Assuming that H0 : β1 = . . . = βm = 0 is true, it holds that

Tmod ∼ Fm,n−m , (44)

i.e., the test statistic Tmod given in (43) has an F�distribution with (m,n−m) degrees of freedom.

Proof

• Assuming that H0 : β1 = . . . = βm = 0 is true, it holds that β̂ ∼ N(o, K) with K = σ2(X⊤X)−1.

• This implies that (σ−1X)⊤(σ−1X)K = (σ−1X)⊤(σ−1X)σ2(X⊤X)−1 = I, i.e., in particular, that the
matrix (σ−1X)⊤(σ−1X)K is idempotent.

• Now it follows from Theorem 1.9 that the quadratic form σ−2β̂
⊤
(X⊤X)β̂ has a (noncentral) χ2�

distribution with m degrees of freedom.

• Moreover, we have shown in Theorem 2.7 that the radom variable (n − m)S2/σ2 has a (central)
χ2�distribution with n−m degrees of freedom.

• In Theorem 2.8 we have shown that β̂ and S2 are independent.

• Thus, it follows from the transformation theorem for independent random vectors (cf. Theorem I�1.8)

that the random variables σ−2β̂
⊤
(X⊤X)β̂ and (n−m)S2/σ2 are independent as well.

• Now the statement follows from the de�nition of the F�distribution, cf. Section I�3.1.3. �

Remark

• When testing the hypothesis H0 : β1 = . . . = βm = 0 with a signi�cance level of α ∈ (0, 1) (against the
alternative H1 : βj ̸= 0 for at least one j ∈ {1, . . . ,m}), the null hypothesis H0 is rejected if

Tmod > Fm,n−m,1−α , (45)

where Fm,n−m,1−α denotes the 1−α quantile of the F�distribution with (m,n−m) degrees of freedom.

• In a similar way, an F�test for the veri�cation of the hypothesis H0 : β = β0 with signi�cance level
α ∈ (0, 1) (against the alternative H1 : β ̸= β0) for an arbitrary hypothetical parameter vector
β0 = (β01, . . . , β0m) can be constructed.

• Proceeding as in the proof of Theorem 2.10, one can show that if H0 : β = β0 is true, the test statistic

Tβ0
=

(β̂ − β0)
⊤(X⊤X)(β̂ − β0)

mS2
(46)

has an F�distribution with (m,n−m) degrees of freedom.

• Thus, the null hypothesis H0 : β = β0 is rejected if

Tβ0
> Fm,n−m,1−α . (47)

For the veri�cation of hypotheses about single components of β = (β1, . . . , βm)⊤, t�tests are used instead.
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• Let j ∈ {1, . . . ,m}. In order to test a hypothetical value β0,j of the j�th component βj of the parameter
vector β = (β1, . . . , βm)⊤, we consider the test statistic

Tj =
β̂j − βj

S
√
xjj

, (48)

where xij denotes the entry of the (inverse) matrix (X⊤X)−1 at position (i, j).

• From (40) � (41) and from the independence of β̂ and S2 it follows that Tj ∼ tn−m.

• When testing the hypothesis H0 : βj = β0,j with a signi�cance level of α ∈ (0, 1) (against the alternative
H1 : βj ̸= β0,j), the null hypothesis H0 is rejected if∣∣β̂j − β0,j

∣∣
S
√
xjj

> tn−m,1−α/2 , (49)

where tn−m,1−α/2 denotes the (1− α/2)�quantile of the t�distribution with n−m degrees of freedom.

Remark

• The test of the hypothesis H0 : βj = 0 (against the alternative H1 : βj ̸= 0) is particularly interesting
because by using it, one can verify how far the response variables Y1, . . . , Yn depend on the j�th
predictor at all.

• In this test of signi�cance of the j�th predictor, the null hypothesis H0 : βj = 0 is rejected if∣∣β̂j∣∣
S
√
xjj

> tn−m,1−α/2 . (50)

The tests we considered up to now in this section are special cases of the following ubiquitious test. Here, an
arbitrary part of the components of the parameter vector β is tested.

• For ℓ ∈ {1, . . . ,m} and β0ℓ, . . . , β0m ∈ R the hypothesis

H0 : βℓ = β0ℓ, . . . , βm = β0m versus H1 : βj ̸= β0j for at least one j ∈ {ℓ, . . . ,m} (51)

shall be tested.

• For this purpose, we consider the following (m − ℓ + 1) × (m − ℓ + 1)�dimensional submatrix Kuni of the
matrix (X⊤X)−1 = (xij) with

Kuni =


xℓℓ . . . xℓm

...
...

xmℓ . . . xmm

 .

� One can show that the inverse matrix K−1
uni is well�de�ned because Kuni = H(X⊤X)−1H⊤, where

H = (0, I), the null matrix 0 has the dimension (m− ℓ+1)× (ℓ− 1) and the identity matrix I has the
dimension (m− ℓ+ 1)× (m− ℓ+ 1).

� Herefrom and from Lemma 1.8 it follows that the matrix Kuni is positive de�nite and thus invertible.

• A possible approach to solve the testing problem given in (51) is then given by the test statistic

Tuni =

(
β̂uni − βuni

)⊤
K−1

uni

(
β̂uni − βuni

)
(m− ℓ+ 1)S2

, (52)

where β̂uni = (β̂ℓ, . . . , β̂m) and βuni = (β0ℓ, . . . , β0m).
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• The following Theorem 2.11 implies that, assuming that the null hypothesis H0 formulated in (51) is true,

Tuni ∼ Fm−ℓ+1,n−m . (53)

• Hence, the hypothesis H0 : βℓ = β0,ℓ, . . . , βm = β0m is rejected if

Tuni > Fm−ℓ+1,n−m,1−α . (54)

We now discuss one further test, a general test for linear forms of the parameter vector β = (β1, . . . , βm).

• Let r ∈ {1, . . . ,m}, let H be an r ×m matrix with full rank rk(H) = r, and let c ∈ Rr.

• The hypothesis to be tested is

H0 : Hβ = c versus H1 : Hβ ̸= c , (55)

where the following test statistic TH is considered:

TH =

(
Hβ̂ − c

)⊤(
H(X⊤X)−1H⊤)−1(

Hβ̂ − c
)

rS2
. (56)

Theorem 2.11 Assuming that H0 : Hβ = c is true, it holds that

TH ∼ Fr,n−m , (57)

i.e., the test statistic TH given in (56) has an F�distribution with (r, n−m) degrees of freedom.

Proof

• As the design matrix X has full rank, the symmetric matrix X⊤X is positive de�nite.

� Due to Lemma 1.8 the matrices (X⊤X)−1 and H(X⊤X)−1H⊤ are then positive de�nite as well,

� i.e., in particular, the matrix H(X⊤X)−1H⊤ has full rank and thus is invertible.

• Therefore, the quantity Z⊤(H(X⊤X)−1H⊤)−1Z considered in (56) is well�de�ned, where

Z = Hβ̂ − c with β̂ ∼ N
(
β, σ2(X⊤X)−1

)
.

• Theorem 1.3 implies that, assuming that H0 : Hβ = c is true, it holds that

Z ∼ N
(
o, σ2H(X⊤X)−1H⊤) .

• Furthermore, the r × r matrix A =
(
H(X⊤X)−1H⊤)−1

is symmetric because

A⊤ =
((
H(X⊤X)−1H⊤)−1)⊤

=
((
H(X⊤X)−1H⊤)⊤)−1

=
(
H
(
(X⊤X)−1

)⊤
H⊤)−1

=
(
H
(
(X⊤X)⊤

)−1
H⊤)−1

=
(
H(X⊤X)−1H⊤)−1

= A .

• As the matrix
(
σ−2A

)(
σ2H(X⊤X)−1H⊤) = I obviously is idempotent, Theorem 1.9 implies that

σ−2Z⊤AZ is a random variable having a χ2
r�distribution.

• The rest of the proof continues in the same way as the proof of Theorem 2.10. �

Remark The null hypothesis H0 : Hβ = c is rejected if TH > Fr,n−m,1−α, where TH is the test statistic given
in (56).
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2.2.4 Con�dence Regions; Prediction of Response Variables

• Recall: In Section 2.2.3 we have considered the test statistic Tj = (β̂j −βj)/(S
√
xjj), where xij denotes the

entry of the (inverse) matrix (X⊤X)−1 at position (i, j).

• In doing so, we have shown that Tj ∼ tn−m for each j ∈ {1, . . . ,m}.

• This leads to the following con�dence intervals with con�dence level 1−α ∈ (0, 1) for each single regression
coe�cient βj .

• It holds for each j ∈ {1, . . . ,m} with probability 1− α that

β̂j − tn−m,1−α/2S
√
xjj < βj < β̂j + tn−m,1−α/2S

√
xjj . (58)

Remark

• In the same way as in the proof of Theorem I�5.8 a common con�dence region with con�dence level
1 − α ∈ (0, 1) for all m regression coe�cients β1, . . . , βm can be derived by use of the Bonferroni
inequality (cf. Lemma I�5.4).

• Indeed, the probability that

β̂j − tn−m,1−α/2mS
√
xjj < βj < β̂j + tn−m,1−α/2mS

√
xjj (59)

for all j = 1, . . . ,m at the same time is at least equal to 1− α.

• Moreover, Theorem 2.10 leads to an exact common con�dence region with con�dence level 1 − α for
all m regression coe�cients β1, . . . , βm.

� It holds (cf. (46) � (47)) that

Pβ

( (β̂ − β)⊤(X⊤X)(β̂ − β)

mS2
< Fm,n−m,1−α

)
= 1− α .

� Here, the con�dence region E with

E =
{
β = (β1, . . . , βm) :

(β̂ − β)⊤(X⊤X)(β̂ − β)

mS2
< Fm,n−m,1−α

}
forms a (random) ellipsoid with center β̂ = (β̂1, . . . , β̂m).

• One can show that the ellipsoid E can be embedded into an m�dimensional paraxial cuboid E′ ⊃ E,
where

E′ =

m∏
j=1

(
β̂j − S

√
mxjjFm,n−m,1−α, β̂j + S

√
mxjjFm,n−m,1−α

)
.

• The con�dence region E′ has a simpler form than E. However, due to E′ ⊃ E it is clear that E′ is an
estimation, which is less accurate than E.

In a similar way, a con�dence interval for the expected target value

φ(x01, . . . , x0m) = β1x01 + . . .+ βmx0m

corresponding to a given vector x0 = (x01, . . . , x0m)⊤ ∈ Rm of values x01, . . . , x0m of the m predictor variables
can be derived.

• For this purpose, we consider the 1×m matrix H = (x01, . . . , x0m) (= x⊤
0 ).
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• Then, Theorem 2.11 implies that

√
TH =

|β̂
⊤
x0 − φ(x0)|

S
√
x⊤
0 (X

⊤X)−1x0

d
= |T | ,

where T is a random variable having a t�distribution with n−m degrees of freedom.

• Hence, it holds with probability 1− α that

β̂
⊤
x0 − Z0 < φ(x0) < β̂

⊤
x0 + Z0 , (60)

where

Z0 = tn−m,1−α/2S
√
x⊤
0 (X

⊤X)−1x0 .

Remark

• Analogously, one can derive a prediction interval for the response variable Y0 = β1x01+. . .+βmx0m+ε0,
where the error term ε0 is normally distributed and independent of the error terms ε1, . . . , εn; ε0 ∼
N(0, σ2).

• Indeed, it is β̂
⊤
x0 − Y0 ∼ N

(
0, σ2(1 + x⊤

0 (X
⊤X)−1x0)

)
and thus

β̂
⊤
x0 − Z ′

0 < Y0 < β̂
⊤
x0 + Z ′

0 , (61)

with probability 1− α, where Z ′
0 = tn−m,1−α/2S

√
1 + x⊤

0 (X
⊤X)−1x0.

2.2.5 Con�dence Band

In this section we assume that the design matrix X has the form

X =


1 x12 . . . x1m
...

...
...

1 xn2 . . . xnm

 , (62)

i.e., we consider the (multiple) linear regression model.

• In the de�nition of the regression function φ(x1, . . . , xm) = β1x1 + . . . + βmxm in (4), we now set x1 = 1
and determine a con�dence band for the regression hyperplane

y = φ(1, x2, . . . , xm) = β1 + β2x2 + . . .+ βmxm , ∀x2, . . . , xm ∈ R .

• This means that we need to �nd a number aγ > 0, such that with the given (coverage) probability γ =
1− α ∈ (0, 1) it holds that

β̂1 + β̂2x2 + . . .+ β̂mxm − aγZx < φ(1, x2, . . . , xm) < β̂1 + β̂2x2 + . . .+ β̂mxm + aγZx (63)

for each x = (1, x2, . . . , xm) ∈ Rm simultaneously, where

β̂ = (X⊤X)−1X⊤Y and Zx = S
√
x⊤(X⊤X)−1x .

For solving this problem, the following lemma is useful.
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Lemma 2.3 It holds with probability 1 that

max
x∈Rm−1

1

(
(X⊤ε)⊤(X⊤X)−1x

)2
x⊤(X⊤X)−1x

= (X⊤ε)⊤(X⊤X)−1(X⊤ε) , (64)

where Rm−1
1 denotes the set of all vectors x ∈ Rm with x = (1, x2, . . . , xm)⊤.

Proof

• From Lemmas 1.6 and 1.8 it follows that (X⊤X)−1 = HH⊤ for an invertible m×m matrix H.

• Therefore, the expression
(X⊤ε)⊤(X⊤X)−1x = ((XH)⊤ε)⊤H⊤x

can be perceived as the scalar product of the m�dimensional vectors (XH)⊤ε and H⊤x.

• Analogously, it holds that

(X⊤ε)⊤(X⊤X)−1X⊤ε = ((XH)⊤ε)⊤(XH)⊤ε and x⊤(X⊤X)−1x = (H⊤x)⊤H⊤x .

• From this result and from the inequality

|y⊤z| ≤
√

y⊤y
√
z⊤z ∀ y, z ∈ Rm (65)

together with y = (XH)⊤ε and z = H⊤x it follows that∣∣(X⊤ε)⊤(X⊤X)−1x
∣∣ ≤√(X⊤ε)⊤(X⊤X)−1(X⊤ε)

√
x⊤(X⊤X)−1x

and thus (
(X⊤ε)⊤(X⊤X)−1x

)2
x⊤(X⊤X)−1x

≤ (X⊤ε)⊤(X⊤X)−1(X⊤ε) . (66)

• As the random vector ε = (ε1, . . . , εn)
⊤ has independent and absolutely continuous components, we

get that
∑n

i=1 εi ̸= 0 with probability 1.

• Now let
∑n

i=1 εi ̸= 0. Then it follows from the form of the design matrix X considered in (62) that
the vector x = X⊤ε/

∑n
i=1 εi belongs to Rm−1

1 and that in this case the equality in (66) holds . �

The following result, which is a vectorial generalization of Theorem I�5.9, leads to the desired con�dence band.

Theorem 2.12 Let aγ =
√
mFm,n−m,γ . Then it holds that

Pβ

(
max

x∈Rm−1
1

(
β̂
⊤
x− φ(x)

)2
S2x⊤(X⊤X)−1x

≤ a2γ

)
= γ . (67)

Proof

• For each x ∈ Rm−1
1 it holds that

β̂
⊤
x− φ(x) = β̂

⊤
x− β⊤x =

(
(X⊤X)−1X⊤Y

)⊤
x− β⊤x =

(
β + (X⊤X)−1X⊤ε

)⊤
x− β⊤x

= (X⊤ε)⊤(X⊤X)−1x

and thus

max
x∈Rm−1

1

(
β̂
⊤
x− φ(x)

)2
S2x⊤(X⊤X)−1x

= max
x∈Rm−1

1

(
(X⊤ε)⊤(X⊤X)−1x

)2
S2x⊤(X⊤X)−1x

=
1

S2
max

x∈Rm−1
1

(
(X⊤ε)⊤(X⊤X)−1x

)2
x⊤(X⊤X)−1x

=
(X⊤ε)⊤(X⊤X)−1(X⊤ε)

S2
,

where the last equality follows from Lemma 2.3.
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• Therefore, one has

max
x∈Rm−1

1

(
β̂
⊤
x− φ(x)

)2
S2x⊤(X⊤X)−1x

=
(X⊤ε)⊤(X⊤X)−1(X⊤ε)

S2
. (68)

• Due to ε ∼ N(o, σ2I) and

X⊤
(
I−X(X⊤X)−1X⊤

)
= 0 ,

Theorem 1.10 implies that X⊤ε and ε⊤
(
I−X(X⊤X)−1X⊤)ε are independent.

• Hence, it follows from the representation formula

S2 =
1

n−m
ε⊤
(
I−X(X⊤X)−1X⊤)ε,

which has already been derived in Theorem 2.7, that also the random variables (X⊤ε)⊤(X⊤X)−1(X⊤ε)
and S2 are independent.

• In Theorem 2.7 we have shown that

(n−m)S2/σ2 ∼ χ2
n−m .

• Moreover, Theorem 1.9 implies that

(X⊤ε)⊤(X⊤X)−1(X⊤ε)/σ2 ∼ χ2
m

since the m ×m (covariance) matrix X⊤X of the normally distributed random vector X⊤ε has full
rank and since the matrix (X⊤X)−1(X⊤X) = I is idempotent.

• Due to (68) we have altogether shown that

1

m
max

x∈Rm−1
1

(
β̂
⊤
x− φ(x)

)2
S2x⊤(X⊤X)−1x

∼ Fm,n−m .

• For the threshold value considered in (63) and (67), we hence obtain aγ =
√
mFm,n−m,γ . �
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3 Arbitrary Design Matrix; Generalized Inverse

• We now consider the following generalization of the linear model discussed in Chapter 2,

Y = Xβ + ε , (1)

for which we have assumed so far that the design matrix

X =


x11 x12 . . . x1m
...

...
...

xn1 xn2 . . . xnm

 (2)

is an (n×m)�dimensional matrix with full (column) rank rk(X) = m, where n ≥ m.

• In contrast to this, in this chapter we will consider the case that rk(X) ≤ m, i.e., we allow that the design
matrix X does not have full rank.

• As we did in Section 2.1, we �rst assume for the random vector ε = (ε1, . . . , εn)
⊤ that

E εi = 0 , Var εi = σ2 , Cov (εi, εj) = 0 , ∀ i, j = 1, . . . , n with i ̸= j (3)

for a certain (unknown) σ2 > 0.

3.1 Analysis of Variance as a Linear Model

To begin with, we discuss two examples of problems leading to linear models whose design matrix does not have
full rank, cf. Section 3.4.

The term �analysis of variance� does not mean that variances of random variables are analyzed in this context, but
refers to the analysis of the variability of expectations. In literature, ANOVA is typically used as an abbreviation.

3.1.1 One�Factor Analysis of Variance; ANOVA Null Hypothesis

• In a one�factor analysis of variance, we assume that the random sampleY = (Y1, . . . , Yn)
⊤ can be partitioned

into k classes of subsamples (Yij , j = 1, . . . , ni), where

� ni > 1 for each i = 1, . . . , k and
∑k

i=1 ni = n

� and the sampling variables belonging to the same class have the same expectation θi.

• In other words: We assume that

Yij = θi + εij , ∀ i = 1, . . . , k, j = 1, . . . , ni , (4)

where θ1, . . . , θk ∈ R are (unknown) parameters and the error terms εij : Ω → R are uncorrelated with

E εij = 0 , Var εij = σ2 , ∀ i = 1, . . . , k, j = 1, . . . , ni . (5)

Remark

• The numbers i = 1, . . . , k of the classes (Yij , j = 1, . . . , ni) are interpreted as levels of a predictor
variable.
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• The model assumptions made above imply in particular that the observed values y1, . . . , yn of the
response variables Y1, . . . , Yn can be structured in table form as follows:

level 1 2 3 . . . k

y11 y21 y31 · · · yk1

y12 y22 y32 · · · yk2
...

...
... · · · yk3

y3n3

...

y1n1

y2n2 yknk

We show that the classical ANOVA null hypothesis H0 : θ1 = . . . = θk can be expressed by use of so�called
contrasts.

• For this purpose, we consider the following set A ⊂ Rk with

A =
{
a = (a1, . . . , ak)

⊤ : a ̸= o,

k∑
i=1

ai = 0
}
.

• Let t = (t1, . . . , tk)
⊤ ∈ Rk be an arbitrary vector of variables and let a = (a1, . . . , ak)

⊤ ∈ A be a vector of

(known) constants. The mapping t →
∑k

i=1 aiti is then called a contrast.

Lemma 3.1 Let θ1, . . . , θk ∈ R be arbitrary real numbers. For the validity of θ1 = . . . = θk it is then necessary
and su�cient that

k∑
i=1

aiθi = 0 ∀ a ∈ A . (6)

Proof

• If θ1 = . . . = θk = θ is true, we get for each a ∈ A that

k∑
i=1

aiθi = θ
k∑

i=1

ai = 0 .

• In order to show the su�ciency of the condition, we consider the vectors a1, . . . ,ak−1 ∈ A with

a1 = (1,−1, 0, . . . , 0)⊤ , a2 = (0, 1,−1, 0, . . . , 0)⊤ , . . . , ak−1 = (0, . . . , 0, 1,−1)⊤ .

• For each i ∈ {1, . . . , k−1} the validity of condition (6) for ai implies that −θi+θi+1 = 0, i.e., θi = θi+1.
Therefore, it follows that θ1 = . . . = θk. �

Remark

• Due to Lemma 3.1, the classical ANOVA null hypothesis H0 : θ1 = . . . = θk is equivalent to the
hypothesis H0 :

∑k
i=1 aiθi = 0 for each a = (a1, . . . , ak)

⊤ ∈ A.
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• Moreover, assuming that H0 is true, it is obvious that

�
∑k

i=1 aiY i · with Y i · =
∑ni

j=1 Yij/ni is an unbiased estimator for
∑k

i=1 aiθi = 0 for each a ∈ A,
� the variance of

∑k
i=1 aiY i · is given by Var

∑k
i=1 aiY i · = σ2

∑k
i=1 a

2
i /ni

� and

S2
p =

1

n− k

k∑
i=1

ni∑
j=1

(
Yij − Y i ·

)2
(7)

is an unbiased estimator for σ2, the so�called pooled sample variance.

• Hence, it is reasonable to reject H0 : θ1 = . . . = θk if the supremum over a ∈ A of the (suitably normed)

absolute values of
∑k

i=1 aiY i · exceeds a certain threshold value, where the test statistic supa∈A T
2
a is

considered with Ta =
(∑k

i=1 aiY i ·

)/√
S2
p

∑k
i=1 a

2
i /ni.

• In a similar way as in the proof of Lemma 2.3 one can show that, assuming that H0 : θ1 = . . . = θk is
true, it holds that

sup
a∈A

T 2
a =

k∑
i=1

ni
(
Y i · − Y · ·

)2
S2
p

, (8)

where Y · · =
∑k

i=1 niY i ·

/∑k
i=1 ni.

The following decomposition implies an intuitive interpretation of numerator and denominator of the test statistic
supa∈A T

2
a considered in (8), cf. also Theorem 2.9.

Theorem 3.1 It holds that

k∑
i=1

ni∑
j=1

(
Yij − Y ··

)2
=

k∑
i=1

ni
(
Y i· − Y ··

)2
+

k∑
i=1

ni∑
j=1

(
Yij − Y i·

)2
. (9)

Proof By expanding the left�hand side of (9), one obtains that

k∑
i=1

ni∑
j=1

(
Yij − Y ··

)2
=

k∑
i=1

ni∑
j=1

(
(Yij − Y i·) + (Y i· − Y ··)

)2
=

k∑
i=1

ni∑
j=1

(
(Yij − Y i·)

2 + 2(Yij − Y i·)(Y i· − Y ··) + (Y i· − Y ··)
2
)

=
k∑

i=1

ni∑
j=1

(Yij − Y i·)
2 + 2

k∑
i=1

(Y i· − Y ··)

ni∑
j=1

(Yij − Y i·)︸ ︷︷ ︸
=0

+
k∑

i=1

ni(Y i· − Y ··)
2 .

�

Remark

• The double sum on the left�hand side of (9) can be interpreted as a measure for the (total) variability
of the sampling variables {Yij , i = 1, . . . , k, j = 1, . . . , ni}.

• The �rst sum on the right�hand side of (9) is a measure for the variability between the levels of the
predictor variable, while the double sum on the right�hand side of (9) is a measure for the variability
within the levels of the predictor variable.

• So due to the de�nition of S2
p given in (7), the test statistic considered in (8) is proportional to the

ratio of the variability between the levels and the variability within the levels of the predictor variable.

• Therefore, the ANOVA null hypothesis H0 : θ1 = . . . = θk is rejected if the variability between the
levels is signi�cantly higher than the variability within the levels of the predictor variable.
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3.1.2 Reparametrization of the Expectations

The model of one�factor analysis of variance considered in Section 3.1.1 can be represented as a linear model in
two di�erent ways.

• In both cases, the random sample Y = (Y1, . . . , Yn)
⊤ is �structured�, i.e., we use the notation Y =(

Y11, . . . , Y1n1 , Y21, . . . , Y2n2 , . . . , Yk1, . . . , Yknk

)⊤
, where n1 + . . .+ nk = n.

• The random vector Y is represented in the form Y = Xβ+ε, where the design matrix X and the parameter
vector β are chosen di�erently in each case.

� While X has full rank in the �rst case, it does not have full rank in the second case.

� The second (reparametrized) representation is especially useful for the application of general estimation
and test methods, which are discussed in Sections 3.2 and 3.3.

� If the error terms are normally distributed, we can thus determine the distribution of the test statistic
supa∈A T

2
a considered in (8), assuming that H0 : θ1 = . . . = θk is true, cf. formula (89) in Section 3.4.1.

Case 1

• In this case the design matrix X is given by the n× k matrix

X =



1 0 0 . . . 0 0
...

...
...

...
...

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

...
...

0 1 0 . . . 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 . . . 0 1
...

...
...

...
...

0 0 0 . . . 0 1



, (10)

and the parameter vector β is given by β = (θ1, . . . , θk)
⊤.

Case 2

• We consider the following reparametrization of the expectations θ1, . . . , θk, which correspond to the
levels of the predictor variable.

• Let µ ∈ R and α1, . . . , αk ∈ R be real numbers, such that

θi = µ+ αi , ∀ i = 1, . . . , k (11)

and
k∑

i=1

niαi = 0 . (12)
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• Then the random sample Y of the model of one�factor analysis of variance can also be written in the
form Y = Xβ + ε, where the design matrix X, however, is now given by the n× (k + 1) matrix

X =



1 1 0 0 . . . 0 0
...

...
...

...
...

...

1 1 0 0 . . . 0 0

1 0 1 0 . . . 0 0
...

...
...

...
...

...

1 0 1 0 . . . 0 0

· · · · · · · · · · · · · · · · · · · · ·

1 0 0 0 . . . 0 1
...

...
...

...
...

...

1 0 0 0 . . . 0 1



, (13)

and the parameter vector β is given by β = (µ, α1, . . . , αk)
⊤.

Remark

• The linear additional condition (12) for the components α1, . . . , αk of the parameter vector β ensures
that the representation (11) � (12) of the expectations θ1, . . . , θk is unique.

• Furthermore, (11) and (12) imply that

1

n

k∑
i=1

ni∑
j=1

EYij = µ ,

where

� the parameter µ can be interpreted as general mean of the expectations EYij of the sampling
variables Yij and

� the (deviation) parameter αi is called the e�ect of the i-th level of the predictor variable.

• For the design matrix X given in (13) it holds that rk(X) = k, i.e., the n× (k+1)�dimensional matrix
X does not have full column rank.

Theorem 3.2 It holds that
EY ·· = µ and E

(
Y i · − Y ··

)
= αi (14)

for each i = 1, . . . , k, i.e., Y ·· and Y i · − Y ·· de�ne unbiased estimators for the model parameters µ and αi,
respectively.

Proof It follows from the de�nition of Y ·· that

EY ·· =
1∑k

i=1 ni

k∑
i=1

ni∑
j=1

EYij =
1∑k

i=1 ni

k∑
i=1

niθi = µ+
1∑k

i=1 ni

k∑
i=1

niαi = µ ,

where the last equality follows from the reparametrization condition (12). The second part of the statement
in (14) can be proved analogously. �
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3.1.3 Two�Factor Analysis of Variance

• We now modify the model of one�factor analysis of variance introduced in Section 3.1.1 and assume that
the response variables Y1, . . . , Yn depend on two predictor variables.

• Thus, we partition the random sample Y = (Y1, . . . , Yn)
⊤ into k1 · k2 subsamples (Yi1i2j , j = 1, . . . , ni1i2),

where ni1i2 > 1 for all i1 = 1, . . . , k1 and i2 = 1, . . . , k2 and

k1∑
i1=1

k2∑
i2=1

ni1i2 = n .

• We assume that the sampling variables belonging to the same class have the same expectation θi1i2 in each
case.

• In other words: We assume that

Yi1i2j = θi1i2 + εi1i2j , ∀ i1 = 1, . . . , k1, i2 = 1, . . . , k2, j = 1, . . . , ni1i2 , (15)

where θi1i2 ∈ R are (unknown) parameters and the error terms εi1i2j : Ω → R are uncorrelated with

E εi1i2j = 0 , Var εi1i2j = σ2 , ∀ i1 = 1, . . . , k1, i2 = 1, . . . , k2, j = 1, . . . , ni1i2 . (16)

Remark

• The representation (15) of the sampling variables Yi1i2j leads to the same form of linear model as it
was considered in Case 1 of Section 3.1.2.

• The numbers i1 = 1, . . . , k1 and i2 = 1, . . . , k2 of the classes (Yi1i2j , j = 1, . . . , ni1i2) are again inter-
preted as levels of the corresponding predictor variable.

• Here, the design matrix X has the dimension n× (k1 · k2) and full column rank k1 · k2.

Moreover, we consider a similar reparametrization of the expectations θi1i2 as in Section 3.1.2.

• In doing so, we only consider the so�called balanced case, i.e.,

� we additionally assume that all k1 · k2 subsamples (Yi1i2j , j = 1, . . . , ni1i2) have the same sample size.

� Hence, let ni1i2 = r for all i1 = 1, . . . , k1 and i2 = 1, . . . , k2, where r = n/(k1k2).

• Let µ ∈ R and for all i1 ∈ {1, . . . , k1} and i2 ∈ {1, . . . , k2} let α
(1)
i1

∈ R, α(2)
i2

∈ R and αi1i2 ∈ R be real
numbers, such that

θi1i2 = µ+ α
(1)
i1

+ α
(2)
i2

+ αi1i2 , ∀ i1 = 1, . . . , k1, i2 = 1, . . . , k2 (17)

and
k1∑

i1=1

α
(1)
i1

=

k2∑
i2=1

α
(2)
i2

=

k1∑
i1=1

αi1i2 =

k2∑
i2=1

αi1i2 = 0 . (18)

• Then, the random sample Y can be written in the form Y = Xβ + ε, where

� the design matrix X is given by a matrix of dimension n × (1 + k1 + k2 + k1k2), whose entries only
consist of zeros and ones and which does not have full rank.

� Therefore, the parameter vector β has the following form:

β =
(
µ, α

(1)
1 , . . . , α

(1)
k1
, α

(2)
1 , . . . , α

(2)
k2
, α11, . . . , αk1k2

)⊤
.
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Remark

• The additional linear conditions (18) for the components of the parameter vector β ensure, in a
similar way as in the model of one�factor analysis of variance considered in Section 3.1.2, that the
representation (17) � (18) of the expectations θ11, . . . , θk1k2 is unique.

• Here,

� µ can be perceived as general mean of the expectations EYi1i2j of the sampling variables Yi1i2j ,

� α
(1)
i1

is called main e�ect of the i1-th level of the �rst predictor variable,

� α
(2)
i2

is called main e�ect of the i2-th level of the second predictor variable and

� αi1i2 is called interaction between the levels i1 and i2 of the level combination (i1, i2).

For the construction of estimators for the model parameters µ, α
(1)
i1
, α

(2)
i2

and αi1i2 , we use the following notation:
Let

Yi1·· =

k2∑
i2=1

r∑
j=1

Yi1i2j , Y· i2· =

k1∑
i1=1

r∑
j=1

Yi1i2j , Yi1i2· =

r∑
j=1

Yi1i2j (19)

and

Y i1·· =
1

rk2
Yi1·· , Y · i2· =

1

rk1
Y· i2· , Y i1i2· =

1

r
Yi1i2· , Y ··· =

1

rk1k2

k1∑
i1=1

k2∑
i2=1

r∑
j=1

Yi1i2j (20)

Theorem 3.3 It holds that

EY ··· = µ , E
(
Y i1·· − Y ···

)
= α

(1)
i1
, E

(
Y · i2· − Y ···

)
= α

(2)
i2
, E

(
Y ··· + Y i1i2· − Y i1·· − Y · i2·

)
= αi1i2 (21)

for arbitrary i1 = 1, . . . , k1, i2 = 1, . . . , k2, i.e., Y ···, Y i1··−Y ···, Y · i2·−Y ··· and Y ···+Y i1i2·−Y i1··−Y · i2· de�ne

unbiased estimators for the model parameters µ, α
(1)
i1

, α
(2)
i2

and αi1i2 , respectively.

Proof It follows from the de�nition of Y ··· in (20) that

EY ··· =
1

rk1k2

k1∑
i1=1

k2∑
i2=1

r∑
j=1

EYi1i2j =
1

k1k2

k1∑
i1=1

k2∑
i2=1

θi1i2

= µ+
1

k1k2

k1∑
i1=1

k2∑
i2=1

(
α
(1)
i1

+ α
(2)
i2

+ αi1i2

)
= µ ,

where the last equality follows from the reparametrization conditions (18). The remaining three parts of
the statement in (21) can be proved analogously. �

Remark

• The conditions (18), i.e., the assumption that the parameter vector β belongs to a linear subspace of
R1+k1+k2+k1k2 , play a fundamental role in the proof of Theorem 3.3.

• Here, the conclusions of Theorem 3.3 can be interpreted as unbiasedness of the considered estimators
with respect to this restricted parameter space.

• However, if we allow that β is an arbitrary vector of dimension 1 + k1 + k2 + k1k2, there is no LS�
estimator for β, which is unbiased at the same time, cf. the discussion at the end of Section 3.2.1.

The following result contains a decomposition of sums of squared di�erences, cf. also Theorems 2.9 and 3.1.
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Theorem 3.4 It holds that

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y ···

)2
= rk2

k1∑
i1=1

(
Y i1·· − Y ···

)2
+ rk1

k2∑
i2=1

(
Y · i2· − Y ···

)2
+

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
+ r

k1∑
i1=1

k2∑
i2=1

(
Y i1i2· − Y i1·· − Y · i2· + Y ···

)2
. (22)

Proof Using the notation introduced in (19) and (20), we get that

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y ···

)2
=

k1∑
i1=1

k2∑
i2=1

r∑
j=1

((
Y i1·· − Y ···

)
+
(
Y · i2· − Y ···

)
+
(
Yi1i2j − Y i1i2·

)
+
(
Y i1i2· − Y i1·· − Y · i2· + Y ···

))2
=

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Y i1·· − Y ···

)2
+

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Y · i2· − Y ···

)2
+

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
+

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Y i1i2· − Y i1·· − Y · i2· + Y ···

)2
+R ,

where it can be shown in a similar way as in the proof of Theorem 3.1 that the sum R of the mixed products
is equal to zero. �

Remark

• The sum of squares on the left�hand side of (22) can be perceived as a measure for the (total) variability
of the sampling variables {Yi1i2j , i1 = 1, . . . , k1, i2 = 1, . . . , k2, j = 1, . . . , r}.

• The �rst and second sum of squares on the right�hand side of (22) are measures for the variability
between the levels of the �rst and second predictor variable, respectively, while the third sum of squares
on the right�hand side of (22) is a measure for the variability within the pairs of levels (i1, i2) of the
two predictor variables, the so�called residual variance.

• The fourth sum of squares on the right�hand side of (22) is a measure for the interactions between the
components of the pairs of levels (i1, i2) of the two predictor variables.

• By similar considerations as in the proof of Theorem 2.5 it can be shown that a suitably normalized
version of the residual variance is an unbiased estimator for the variance σ2 of the error terms.

• In particular, it holds that ES2 = σ2, where

S2 =
1

k1k2(r − 1)

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
.

3.2 Estimation of Model Parameters

Now we return to the analysis of the linear model with arbitrary design matrix X given in (1) � (3). In this
section, we assume that

• rk(X) = r < m, i.e., X has not full column rank and that

• β ∈ Rm is an arbitrary m�dimensional vector, i.e., at �rst we do not consider any additional conditions of
type (12) or (18).
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3.2.1 LS�Estimator for β

We �rst recall the following formula for the rank of quadratic matrices.

Lemma 3.2 Let A be an arbitrary n× n matrix. Then it holds that

rk(A) = n− dimker(A) , (23)

where ker(A) = {x ∈ Rn : Ax = o} and dimker(A) denotes the dimension of ker(A) ⊂ Rn.

Moreover, the following property of the rank of products of matrices is useful, which immediately follows from
Lemma 3.2.

Lemma 3.3 Let m,n, r ∈ N be arbitrary natural numbers and let A,B be arbitrary m × n and n × r matrices.
Then it holds that

rk(AB) ≤ min{ rk(A), rk(B)} . (24)

Remark

• As we now assume that the design matrix X does not have full rank, the m ×m matrix X⊤X is not
invertible because Lemma 3.3 implies that rk

(
X⊤X

)
≤ rk(X) < m.

• Therefore, the normal equation (2.9), i.e.,

X⊤Xβ = X⊤Y , (25)

does not have a uniquely determined solution.

• In order to specify the solution set of (25), we need the notion of the generalized inverse of a matrix.

De�nition An m× n matrix A− is called generalized inverse of the n×m matrix A if

AA−A = A . (26)

In order to show that there always is a solution A− of (26), we use the following general representation formula,
which we state without proof at this point.

Lemma 3.4 Let A be an n×m matrix with n ≥ m and rk(A) = r ≤ m. Then there are invertible n× n and
m×m matrices P and Q, such that

PAQ =

 Ir 0

0 0

 and A = P−1

 Ir 0

0 0

Q−1 . (27)

By use of Lemma 3.4 one can show how solutions A− of (26) can be found.

• Let P and Q be matrices with the properties considered in Lemma 3.4 and let B be an arbitrary m × n
matrix with

B = Q

 Ir R

S T

P , (28)

where R, S and T are arbitrary matrices with dimensions r × (n− r), (m− r)× r and (m− r)× (n− r),
respectively.
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• Then (27) and (28) imply that

ABA = P−1

 Ir 0

0 0

Q−1Q

 Ir R

S T

PP−1

 Ir 0

0 0

Q−1

= P−1

 Ir 0

0 0

 Ir R

S T

 Ir 0

0 0

Q−1

= A ,

i.e., the matrix B given in (28) is a generalized inverse of A.

• Let k ∈ {r, . . . ,m} be an arbitrary natural number. Let

R = 0 , S = 0 and T =

 Ik−r 0

0 0

 , (29)

then it is rk(B) = k.

Altogether, we obtain the following result.

Lemma 3.5 Let A be an n×m matrix with n ≥ m and rk(A) = r ≤ m. Let furthermore B be the m×n matrix
given in (28) � (29), for each k ∈ {r, . . . ,m}. Then it holds that rk(B) = k and A− = B is a solution of (26).

Moreover, the following properties of the generalized inverse are useful.

Lemma 3.6

• Let A be an arbitrary n×m matrix with n ≥ m and let
(
A⊤A

)−
be a generalized inverse of the symmetric

m×m matrix A⊤A.

• Then the transposed matrix
((
A⊤A

)−)⊤
is a generalized inverse of A⊤A as well.

• Besides, it holds that

A⊤A
(
A⊤A

)−
A⊤ = A⊤ . (30)

Proof

• By de�nition of the generalized inverse, we have A⊤A
(
A⊤A

)−
A⊤A = A⊤A.

• From this equation and from the symmetry of the matrix A⊤A it follows that

A⊤A =
(
A⊤A

)⊤
=
(
A⊤A

(
A⊤A

)−
A⊤A

)⊤
= A⊤A

((
A⊤A

)−)⊤
A⊤A ,

i.e., the transposed matrix
((
A⊤A

)−)⊤
is a generalized inverse of A⊤A as well.

• In order to prove (30), the second part of the statement, we consider the matrix

B = A⊤A
(
A⊤A

)−
A⊤ −A⊤ .
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• Then it holds that

BB⊤ =
(
A⊤A

(
A⊤A

)−
A⊤ −A⊤

)(
A⊤A

(
A⊤A

)−
A⊤ −A⊤

)⊤
= A⊤A

(
A⊤A

)−
A⊤A

((
A⊤A

)−)⊤
A⊤A

−A⊤A
(
A⊤A

)−
A⊤A−A⊤A

((
A⊤A

)−)⊤
A⊤A+A⊤A

= A⊤A−A⊤A−A⊤A+A⊤A = 0 .

• Therefore, we get that B = 0. �

By use of the generalized inverse (X⊤X)− of X⊤X and its properties (considered in Lemma 3.6), the solution set
of the normal equation (25) can be speci�ed.

Theorem 3.5 The general solution β of the normal equation X⊤Xβ = X⊤Y has the form

β = (X⊤X)−X⊤Y +
(
Im − (X⊤X)−X⊤X

)
z , (31)

where (X⊤X)− is an arbitrary solution of

X⊤X(X⊤X)−X⊤X = X⊤X (32)

and z ∈ Rm is an arbitrary m�dimensional vector.

Proof

• By plugging (31) into the left�hand side of the normal equation (25), one sees

� that for each z ∈ Rm equation (31) gives a solution of (25),

� as it holds that

X⊤Xβ = X⊤X
(
(X⊤X)−X⊤Y +

(
Im − (X⊤X)−X⊤X

)
z
)

= X⊤X(X⊤X)−X⊤Y = X⊤Y ,

where the last equality follows from Lemma 3.6.

• Let now β̃ be an arbitrary solution and β be a solution of the form (31) of equation (25).

� Then subtraction on each side of (25) yields

X⊤X(β̃ − β) = o . (33)

� Hence, for a z ∈ Rm it holds that

β̃ = β − (β − β̃)
(31)
= (X⊤X)−X⊤Y +

(
Im − (X⊤X)−X⊤X

)
z− (β − β̃)

= (X⊤X)−X⊤Y +
(
Im − (X⊤X)−X⊤X

)
(z− (β − β̃)) + (X⊤X)−X⊤X(β̃ − β)

(33)
= (X⊤X)−X⊤Y +

(
Im − (X⊤X)−X⊤X

)
(z− (β − β̃)) .

� This means that β̃ is a solution of the form (31) of equation (25) as well. �
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Example (one�factor analysis of variance)

• Recall: In the reparametrized model of one�factor analysis of variance (cf. case 2 of the example
considered in Section 3.1.2) the design matrix is given by the n× (k + 1) matrix

X =



1 1 0 0 . . . 0 0
...

...
...

...
...

...

1 1 0 0 . . . 0 0

1 0 1 0 . . . 0 0
...

...
...

...
...

...

1 0 1 0 . . . 0 0

· · · · · · · · · · · · · · · · · · · · ·

1 0 0 0 . . . 0 1
...

...
...

...
...

...

1 0 0 0 . . . 0 1



, (34)

and the parameter vector β is given by β = (µ, α1, . . . , αk)
⊤.

• One can easily see that in this case

X⊤X =



n n1 n2 n3 . . . nk−1 nk

n1 n1 0 0 . . . 0 0

n2 0 n2 0 . . . 0 0
...

...
...

...
...

...

nk 0 0 0 . . . 0 nk


(35)

and that a generalized inverse of X⊤X is given by

(
X⊤X

)−
=



1

n
0 0 0 . . . 0 0

− 1

n

1

n1
0 0 . . . 0 0

− 1

n
0

1

n2
0 . . . 0 0

...
...

...
...

...
...

− 1

n
0 0 0 . . . 0

1

nk


. (36)

• Therefore, the normal equation (25), i.e., X⊤Xβ = X⊤Y, has the following form:

nµ+

k∑
i=1

niαi = Y·· , niµ+ niαi = Yi · , ∀ i = 1, . . . , k .

• If we only consider solutions of this system of equations which are in the restricted parameter space
Θ ⊂ Rk+1, where

Θ =
{
β = (µ, α1, . . . , αk) :

k∑
i=1

niαi = 0
}
, (37)
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we obtain the (uniquely determined) solution β̂ = (µ̂, α̂1, . . . , α̂k) with

µ̂ = Y ·· , α̂i = Y i · − Y ·· , ∀ i = 1, . . . , k . (38)

• One can easily see that the solution β̂ of the normal equation (25) which is given in (38)

� has the form β̂ = (X⊤X)−X⊤Y, where the generalized inverse (X⊤X)− is given by (36), and

� is an unbiased estimator for β = (µ, α1, . . . , αk) with respect to the restricted parameter space Θ,
which has the form given in (37).

• Without the additional condition considered in (37), there is no LS�estimator which is unbiased at the
same time, cf. Theorem 3.8.

Now we consider the linear model with general design matrix X again, which is given in (1) � (3). In particular,
we consider the solutions of the normal equation (25) discussed in Theorem 3.5 and show that the mean squared
error e(β) given in (2.8) is minimized for z = o.

Theorem 3.6 Let (X⊤X)− be a generalized inverse of X⊤X. Then the sample function

β = (X⊤X)−X⊤Y (39)

minimizes the mean squared error e(β), i.e., β is an LS�estimator for β.

Proof

• For each m�dimensional vector β = (β1, . . . , βm)⊤ it holds that

n e(β) = (Y −Xβ)⊤(Y −Xβ) =
(
Y −Xβ +X(β − β)

)⊤(
Y −Xβ +X(β − β)

)
=

(
Y −Xβ

)⊤(
Y −Xβ

)
+ (β − β)⊤X⊤X(β − β) ≥

(
Y −Xβ

)⊤(
Y −Xβ

)
= n e

(
β
)

• because

(β − β)⊤X⊤X(β − β) =
(
X(β − β)

)⊤(
X(β − β)

)
≥ 0

and
(β − β)⊤X⊤(Y −Xβ

)
= (β − β)⊤

(
X⊤ −X⊤X(X⊤X)−X⊤)Y = 0 ,

where the last equality follows from Lemma 3.6. �

3.2.2 Expectation Vector and Covariance Matrix of the LS�Estimator β

The model assumptions (3) for ε1, . . . , εn and the general calculation rules for the expectation and covariance of
real�valued random variables imply that the expectation vector and the covariance matrix of the LS�estimator
β = (X⊤X)−X⊤Y have the following form.

Theorem 3.7 It holds that
Eβ = (X⊤X)−X⊤Xβ (40)

and
Covβ = σ2(X⊤X)−X⊤X

(
(X⊤X)−

)⊤
. (41)
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Proof

• It follows from Y = Xβ + ε and E ε = o that

Eβ = E
(
(X⊤X)−X⊤Y

)
= (X⊤X)−X⊤EY = (X⊤X)−X⊤Xβ .

• Moreover, it holds that

Cov
(
βi, βj

)
= Cov

( n∑
ℓ=1

(
(X⊤X)−X⊤)

iℓ
Yℓ,

n∑
r=1

(
(X⊤X)−X⊤)

jr
Yr

)
=

n∑
ℓ=1

n∑
r=1

(
(X⊤X)−X⊤)

iℓ

(
(X⊤X)−X⊤)

jr
Cov (Yℓ, Yr)

= σ2
n∑

ℓ=1

(
(X⊤X)−X⊤)

iℓ

(
(X⊤X)−X⊤)

jℓ

= σ2
n∑

ℓ=1

(
(X⊤X)−X⊤)

iℓ

(
X
(
(X⊤X)−

)⊤)
ℓj

= σ2
(
(X⊤X)−X⊤X

(
(X⊤X)−

)⊤)
ij

for arbitrary i, j ∈ {1, . . . ,m}.
�

Together with Lemma 3.3, Theorems 3.5 and 3.7 imply that there is no LS�estimator for β which is additionally
unbiased. In particular, the LS�estimator β for β given in (39) is biased.

Theorem 3.8 If rk(X) < m, there is no unbiased LS�estimator for β.

Proof

• Due to rk(X) < m, it follows from Lemma 3.3 that rk(X⊤X) < m and

rk
(
(X⊤X)−X⊤X

)
< m .

� Hence, there is a β ̸= o with (X⊤X)−X⊤Xβ = o, i.e., the equation

(X⊤X)−X⊤Xβ = β (42)

does not hold for each β ∈ Rm.

� So because of (40), the LS�estimator β für β given in (39) is biased.

• As (42) does not hold for each β ∈ Rm, one additionally obtains that for each arbitrary but �xed
z ∈ Rm the equation

(X⊤X)−X⊤X(β − z) = β − z

or equivalently
(X⊤X)−X⊤Xβ +

(
Im − (X⊤X)−X⊤X

)
z = β

does not hold for each β ∈ Rm.

• Due to Theorem 3.5, this means that there is no LS�estimator for β which is additionally unbiased. �
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3.2.3 Estimable Functions

• In Section 3.2.2 we have shown that if the design matrix X does not have full rank, there is no unbiased
LS�estimator for β in the linear model without additional conditions.

• Hence, instead of the vector β, one considers a class of (real�valued) linear functions a⊤β of the parameter
vector β, for which unbiased LS�estimators can be constructed.

• In other words: Instead of the (vectorial) linear transformation β = (X⊤X)−X⊤Y of the random sample
Y = (Y1, . . . , Yn)

⊤ one considers a class of (real�valued) linear functions c⊤Y of Y, which can be perceived
as estimators for a⊤β.

• This leads to the following conception.

De�nition

• Let a = (a1, . . . , am)⊤ ∈ Rm be an arbitrary m�dimensional vector.

• The linear function a⊤β of the parameter vector β is called estimable without bias or an estimable
function if there is an n�dimensional vector c = (c1, . . . , cn)

⊤ such that

E
(
c⊤Y

)
= a⊤β , ∀β ∈ Rm . (43)

Example (one�factor analysis of variance)

• For the reparametrized model of one�factor analysis of variance with parameter vector
β = (µ, α1, . . . , αk)

⊤ ∈ Rk+1 one can show that for example α1−α2 is an estimable function as de�ned
by (43).

• This is true because for

a⊤ = (0, 1,−1, 0, . . . , 0) and c⊤ = (0, . . . , 0︸ ︷︷ ︸
n1−1

, 1,−1, 0, . . . , 0)

it holds that
E
(
c⊤Y

)
= E (Y1n1 − Y21) = (µ+ α1)− (µ+ α2) = α1 − α2 = a⊤β

for each β = (µ, α1, . . . , αk)
⊤ ∈ Rk+1.

• In a similar way it can be shown that µ+ αi and αi − αi′ are estimable functions of β for i = 1, . . . , k
and i, i′ = 1, . . . , k with i ̸= i′, respectively.

Example (two�factor analysis of variance with balanced subsamples)

• For the model of two�factor analysis of variance with balanced subsamples, introduced in Section 3.1.3,
the normal equation (25) has the following form:

rk1k2µ+ rk2

k1∑
i1=1

α
(1)
i1

+ rk1

k2∑
i2=1

α
(2)
i2

+ r

k1∑
i1=1

k2∑
i2=1

αi1i2 = Y···

rk2µ+ rk2α
(1)
i1

+ r

k2∑
i2=1

α
(2)
i2

+ r

k2∑
i2=1

αi1i2 = Yi1 · · ∀ i1 = 1, . . . , k1

rk1µ+ r

k1∑
i1=1

α
(1)
i1

+ rk1α
(2)
i2

+ r

k1∑
i1=1

αi1i2 = Y· i2 · ∀ i2 = 1, . . . , k2

rµ+ rα
(1)
i1

+ rα
(2)
i2

+ rαi1i2 = Yi1i2 · ∀ i1 = 1, . . . , k1, i2 = 1, . . . , k2
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• In consideration of the additional condition (18), this system of equations can be solved uniquely. In
other words: If only parameter vectors

β =
(
µ, α

(1)
1 , . . . , α

(1)
k1
, α

(2)
1 , . . . , α

(2)
k2
, α11, . . . , αk1k2

)⊤
from the restricted parameter space

Θ =
{
β :

k1∑
i1=1

α
(1)
i1

=

k2∑
i2=1

α
(2)
i2

=

k1∑
i1=1

αi1i2 =

k2∑
i2=1

αi1i2 = 0
}

are considered, one obtains the unique solution

β̂ =
(
µ̂, α̂

(1)
1 , . . . , α̂

(1)
k1
, α̂

(2)
1 , . . . , α̂

(2)
k2
, α̂11, . . . , α̂k1k2

)⊤
(44)

of the normal equation, where

µ̂ = Y ··· , α̂
(1)
i1

= Y i1·· − Y ··· , α̂
(2)
i2

= Y · i2· − Y ··· , α̂i1i2 = Y ··· + Y i1i2· − Y i1·· − Y · i2· (45)

for arbitrary i1 = 1, . . . , k1, i2 = 1, . . . , k2.

• It can be shown that the solution β̂ of the normal equation given in (44) � (45) has the form

β̂ = (X⊤X)−X⊤Y,

where (X⊤X)− is a generalized inverse of X⊤X and X is the design matrix of the model of two�factor
analysis of variance with balanced subsamples.

• Remark: The sample function β̂ given in (44) � (45) was already discussed in Theorem 3.3, where we

have shown that β̂ is an unbiased estimator for β with respect to the parameter space Θ.

• Furthermore, one can show that the linear functions µ + α
(1)
i1

+ α
(2)
i2

+ αi1i2 of the parameter vector
β are estimable without bias as de�ned in (43) (without taking into account the additional conditions
(18)) for arbitrary i1 = 1, . . . , k1, i2 = 1, . . . , k2.

• In the model of two�factor analysis of variance without interactions, i.e., αi1i2 = 0 for arbitrary

i1 = 1, . . . , k1, i2 = 1, . . . , k2, also the linear functions α
(1)
i1

−α(1)
i′1

and α
(2)
i2

−α(2)
i′2

are estimable without

bias for arbitrary i1, i
′
1 = 1, . . . , k1 with i1 ̸= i′1 and for arbitrary i2, i

′
2 = 1, . . . , k2 with i2 ̸= i′2,

respectively.

The following lemma, which is an extension of Lemma 3.6, is needed to derive two general criteria for linear
functions a⊤β of the parameter vector β to be estimable without bias.

Lemma 3.7 Let
(
X⊤X

)−
be a generalized inverse of X⊤X. Then it holds that

X(X⊤X)−X⊤X = X . (46)

Proof In Lemma 3.6 we have shown that

• the transposed matrix
((
X⊤X

)−)⊤
is a generalized inverse ofX⊤X as well and thatX⊤X

(
X⊤X

)−
X⊤ =

X⊤.

• Hence, it is X⊤X
((
X⊤X

)−)⊤
X⊤ = X⊤.

• This leads to (46) by swapping columns and rows. �

Theorem 3.9 Let a = (a1, . . . , am)⊤ ∈ Rm be an arbitrary vector. The linear function a⊤β of the parameter
vector β is estimable without bias if and only if one of the following conditions is ful�lled:
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1. There is a c ∈ Rn, such that
a⊤ = c⊤X . (47)

2. The vector a ful�lls the following system of equations:

a⊤(X⊤X)−X⊤X = a⊤ . (48)

Proof

• Let a⊤β be an estimable function of the parameter vector β.

� Then it follows from (43) that

a⊤β = E
(
c⊤Y

)
= c⊤EY = c⊤Xβ and hence

(
c⊤X− a⊤

)
β = 0

for each β ∈ Rm.

� Therefore, we get that a⊤ = c⊤X.

• Conversely, let c be a vector satisfying condition (47).

� Then
E
(
c⊤Y

)
= c⊤EY = c⊤Xβ = a⊤β , ∀β ∈ Rm .

� Thus, also the su�ciency of condition (47) is proved.

• In order to show the necessity of condition (48), we use the result of Lemma 3.7.

� Let a⊤β be an estimable function of the parameter vector β.

� Then it follows from (47) and (46) that

a⊤(X⊤X)−X⊤X = c⊤X(X⊤X)−X⊤X = c⊤X = a⊤ .

• In order to show the su�ciency of condition (48), one only has to observe

� that (48) implies a⊤ = c⊤X for c⊤ = a⊤(X⊤X)−X⊤.

� Now the �rst part of the statement implies that a⊤β is estimable without bias. �

Remark

• If the design matrix X has full rank, i.e., (X⊤X)− = (X⊤X)−1, then condition (48) is obviously
ful�lled for each a ∈ Rm.

• In this case, every linear function of the parameter vector β is estimable without bias, which has
already been shown in Theorem 2.2.

In the case that the design matrix X = (xij) does not have full rank, we show

• how the second part of the statement in Theorem 3.9 implies that the following linear functions a⊤β of β
are estimable without bias.

• In doing so, the vector (of weights) c of the linear unbiased estimator c⊤Y for a⊤β can be chosen as in the
proof of Theorem 3.9, i.e.,

c⊤ = a⊤(X⊤X)−X⊤ . (49)

Theorem 3.10 The following linear functions of the parameter vector β are estimable without bias:

1. the components
∑m

j=1 x1jβj , . . . ,
∑m

j=1 xnjβj of the expectation vector EY = Xβ,

2. each linear function of estimable functions,
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3. the components β′
1, . . . , β

′
m of the so�called projected parameter vector β′ = (β′

1, . . . , β
′
m)⊤, where

β′ = (X⊤X)−X⊤Xβ . (50)

Proof

• Let ai = (xi1, . . . , xim)⊤ for each i ∈ {1, . . . , n}. Then it holds that
a⊤1
...

a⊤n

 (X⊤X)−X⊤X = X(X⊤X)−X⊤X = X =


a⊤1
...

a⊤n

 ,

where the last but one equality follows from Lemma 3.7. Now Theorem 3.9 implies that every linear
combination

∑m
j=1 x1jβj , . . . ,

∑m
j=1 xnjβj is an estimable function.

• In order to prove the second part of the statement, we consider a (�nite) family a⊤1 β, . . . ,a
⊤
s β of s

estimable functions, which we write in the form Aβ, where A =
(
a1, . . . ,as

)⊤
is an s×m�dimensional

matrix and s ∈ N is an arbitrary natural number.

• Theorem 3.9 implies that
A(X⊤X)−X⊤X = A .

� Thus, for each s�dimensional vector b = (b1, . . . , bs)
⊤ ∈ Rs it holds that

b⊤A(X⊤X)−X⊤X = b⊤A .

� Therefore, it follows by use of Theorem 3.9 that the linear function b⊤Aβ of the estimable functions
Aβ is an estimable function itself.

• In the third part of the statement the family Aβ of linear functions of the parameter vector β is
considered, where the m×m matrix A is given by A = (X⊤X)−X⊤X.

� Hence,
A(X⊤X)−X⊤X = (X⊤X)−X⊤X(X⊤X)−X⊤X = (X⊤X)−X⊤X = A ,

where the last but one equality follows from the de�nition of the generalized inverse in (26).

� Now Theorem 3.9 implies that the components β′
1, . . . , β

′
m of the projected parameter vector

β′ = Aβ = (X⊤X)−X⊤Xβ

are estimable functions. �

3.2.4 Best Linear Unbiased Estimator; Gauss�Markov Theorem

• In this section we show how BLUE�estimators for estimable functions of the parameter vector β can be
constructed.

• Recall: A linear unbiased estimator is called BLUE�estimator if there is no linear unbiased estimator with
lower variance (BLUE = best linear unbiased estimator).

• In the theory of linear models, the following result is called Gauss�Markov theorem.



3 ARBITRARY DESIGN MATRIX; GENERALIZED INVERSE 63

Theorem 3.11

• Let a⊤β be an estimable function of the parameter vector β, let (X⊤X)− be an arbitrary generalized inverse
of the m×m matrix X⊤X and let β = (X⊤X)−X⊤Y.

• Then a⊤β is a BLUE�estimator for a⊤β, where

Var
(
a⊤β

)
= σ2a⊤(X⊤X)−a . (51)

Proof

• First, we show that a⊤β is a linear unbiased estimator for a⊤β.

� It is clear that
a⊤β = a⊤(X⊤X)−X⊤Y

is a linear function of the random sample Y = (Y1, . . . , Yn).

� As we assume that a⊤β is an estimable function of the parameter vector β, Theorem 3.9 implies
that there is a c ∈ Rn such that

a⊤ = c⊤X . (52)

� Hence, it holds that

E
(
a⊤β

)
= c⊤XEβ = c⊤X(X⊤X)−X⊤EY = c⊤X(X⊤X)−X⊤Xβ = c⊤Xβ = a⊤β

for each β ∈ Rm, where the last but one equality follows from Lemma 3.7.

� Therefore, we have shown that a⊤β is a linear unbiased estimator for a⊤β.

• It follows from the calculation rules for the variance of random variables (cf. Theorem WR-4.13) that

Var
(
a⊤β

)
= Var

( m∑
i=1

aiβi

)
=

m∑
i=1

m∑
j=1

aiaj Cov (βi, βj) .

� Moreover, we have shown in Theorem 3.7 that

Cov (βi, βj) = σ2
(
(X⊤X)−X⊤X

(
(X⊤X)−

)⊤)
ij
.

� This leads to

Var
(
a⊤β

)
= σ2

m∑
i=1

m∑
j=1

aiaj
(
(X⊤X)−X⊤X

(
(X⊤X)−

)⊤)
ij

= σ2a⊤(X⊤X)−X⊤X
(
(X⊤X)−

)⊤
a

= σ2a⊤(X⊤X)−X⊤X
(
(X⊤X)−

)⊤
X⊤c

= σ2a⊤(X⊤X)−X⊤c ,

where the last but one equality follows from (52) and the last equality follows from Lemma 3.6.

� Applying (52) again yields the variance formula (51).

• It remains to show that the estimator a⊤β has minimum variance in the class of all linear unbiased
estimators for a⊤β.

� Let b ∈ Rn, such that b⊤Y is a linear unbiased estimator for a⊤β. Then it holds that

a⊤β = E
(
b⊤Y

)
= b⊤Xβ, ∀ β ∈ Rm

and thus
b⊤X = a⊤ . (53)
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� For the covariance of a⊤β and b⊤Y it holds that

Cov
(
a⊤β, b⊤Y

)
= Cov

(
a⊤(X⊤X)−X⊤Y, b⊤Y

)
= σ2a⊤(X⊤X)−X⊤b = σ2a⊤(X⊤X)−a ,

where the last equality follows from (53).

� This result and the variance formula (51) imply that

0 ≤ Var
(
a⊤β − b⊤Y

)
= Var

(
a⊤β

)
+Var

(
b⊤Y

)
− 2Cov

(
a⊤β, b⊤Y

)
= σ2a⊤(X⊤X)−a+Var

(
b⊤Y

)
− 2σ2a⊤(X⊤X)−a

= Var
(
b⊤Y

)
− σ2a⊤(X⊤X)−a = Var

(
b⊤Y

)
−Var

(
a⊤β

)
. �

Remark

• In the proof of Theorem 3.11 it has never explicitely been used that rk(X) < m.

• In other words: If the design matrix X has full rank, i.e., rk(X) = m, then a⊤β is estimable without

bias for each m�dimensional vector a⊤ ∈ Rm and a⊤β̂ = a⊤(X⊤X)−1X⊤Y is a BLUE�estimator for
a⊤β.

The following invariance property of the generalized inverse (X⊤X)− of X⊤X implies that the BLUE�estimator
a⊤β, considered in Theorem 3.11, does not depend on the speci�c choice of (X⊤X)−.

Lemma 3.8 Let A and A′ be arbitrary generalized inverses of the matrix X⊤X. Then it holds that

XAX⊤ = XA′X⊤ . (54)

Proof

• In Lemma 3.7 we have shown that

XAX⊤X = X = XA′X⊤X (55)

for arbitrary generalized inverses A and A′ of the matrix X⊤X.

• If this chain of equations is multiplied by AX⊤ from the right, one obtains

XAX⊤XAX⊤ = XA′X⊤XAX⊤ . (56)

• formula (55) implies for the left�hand side of the last equality that XAX⊤XAX⊤ = XAX⊤.

• Furthermore, we have shown in Lemma 3.6 that X⊤XAX⊤ = X⊤ for each generalized inverse A of
X⊤X.

• If this is plugged into the right�hand side of (56), one obtains (54). �

By using Lemma 3.8, we can now prove the invariance property of the BLUE�estimator a⊤β considered in
Theorem 3.11 which was already mentioned above.

Theorem 3.12 Let a⊤β be an estimable function of the parameter vector β. Then the BLUE�estimator
a⊤β = a⊤(X⊤X)−X⊤Y does not depend on the choice of the generalized inverse (X⊤X)−.
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Proof

• Recall: It follows from Theorem 3.9 that for each estimable function a⊤β of β there is a c ∈ Rn, such
that a⊤ = c⊤X.

• Together with Lemma 3.8 this implies that

a⊤β = a⊤(X⊤X)−X⊤Y = c⊤X(X⊤X)−X⊤Y

does not depend on the choice of the generalized inverse (X⊤X)−. �

Example (one�factor analysis of variance)

• For the reparametrized model of one�factor analysis of variance µ + αi and αi − αi′ are estimable
functions of β for i = 1, . . . , k and i, i′ = 1, . . . , k, respectively, cf. Theorem 3.10.

• Theorem 3.11 implies that µ̂+α̂i and α̂i−α̂i′ are BLUE�estimators for µ+αi and αi−αi′ , respectively,
where

β = (X⊤X)−X⊤Y = (µ̂, α̂1, . . . , α̂k)
⊤

with µ̂ = Y ·· and α̂i = Y i · − Y ·· is the solution of the normal equation (25), which was already
considered in Section 3.2.1.

Example (two�factor analysis of variance with balanced subsamples)

• For the model of two�factor analysis of variance with balanced subsamples introduced in Section 3.1.3

the linear functions µ+ α
(1)
i1

+ α
(2)
i2

+ αi1i2 of the parameter vector

β =
(
µ, α

(1)
1 , . . . , α

(1)
k1
, α

(2)
1 , . . . , α

(2)
k2
, α11, . . . , αk1k2

)
are estimable without bias for arbitrary i1 = 1, . . . , k1, i2 = 1, . . . , k2, cf. Theorem 3.10.

• Theorem 3.11 implies that µ̂+ α̂
(1)
i1

+ α̂
(2)
i2

+ α̂i1i2 is a BLUE�estimator for µ+α
(1)
i1

+α
(2)
i2

+αi1i2 , where

β = (X⊤X)−X⊤Y =
(
µ̂, α̂

(1)
1 , . . . , α̂

(1)
k1
, α̂

(2)
1 , . . . , α̂

(2)
k2
, α̂11, . . . , α̂k1k2

)
with

µ̂ = Y ··· , α̂
(1)
i1

= Y i1·· − Y ··· , α̂
(2)
i2

= Y · i2· − Y ··· , α̂i1i2 = Y ··· + Y i1i2· − Y i1·· − Y · i2·

is the solution of the normal equation (25) already considered in Section 3.2.3.

• Furthermore, it follows from Theorem 3.10 that in the model of two�factor analysis of variance without

interactions, i.e., αi1i2 = 0 for arbitrary i1 = 1, . . . , k1, i2 = 1, . . . , k2, also α
(1)
i1

−α(1)
i′1

and α
(2)
i2

−α(2)
i′2

are

estimable without bias for arbitrary i1, i
′
1 = 1, . . . , k1 with i1 ̸= i′1 and i2, i

′
2 = 1, . . . , k2 with i2 ̸= i′2,

respectively.

• Therefore, Theorem 3.11 implies that α̂
(1)
i1

− α̂
(1)
i′1

and α̂
(2)
i2

− α̂
(2)
i′2

are BLUE�estimators for α
(1)
i1

− α
(1)
i′1

and α
(2)
i2

− α
(2)
i′2
, respectively.

3.3 Normally Distributed Error Terms

In addition to the model assumptions made at the beginning of Chapter 3, we now assume again that n > m and
that the random error terms ε1, . . . , εn : Ω → R are independent and (identically) normally distributed, i.e., in
particular, that εi ∼ N(0, σ2) for each i = 1, . . . , n.
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3.3.1 Maximum�Likelihood Estimation

• In the same way as in the case of a design matrix with full column rank, which has been discussed in
Section 2.2.1, Theorem 1.3 implies that the vector Y = Xβ+ε of response variables is normally distributed
with

Y ∼ N(Xβ, σ2I) . (57)

• In other words: The distribution of the random vector Y is absolutely continuous with density

fY(y) =
( 1

σ
√
2π

)n
exp
(
− 1

2σ2
(y −Xβ)⊤(y −Xβ)

)
(58)

for each y = (y1, . . . , yn)
⊤ ∈ Rn.

• Therefore, the loglikelihood function logL(y;β, σ2) = log fY(y) has the form

logL(y;β, σ2) = − n

2
log(2π)− n

2
log(σ2)− 1

2σ2
|y −Xβ|2 . (59)

• In order to specify a maximum�likelihood estimator for the parameter vector (β, σ2), we �rst consider the
mapping

Rm ∋ β 7→ logL(y;β, σ2) (60)

for arbitrary but �xed y ∈ Rn and σ2 > 0 (just as in the proof of Theorem 2.6).

• It follows from (59) and (60) that the following expression e(β) has to be minimized, where

e(β) =
1

n
|y −Xβ|2 =

1

n
(y −Xβ)⊤(y −Xβ) .

• Hence, Theorem 3.6 implies that the LS�estimator β = (X⊤X)−X⊤Y simultaneously is an ML�estimator
for β (which does not depend on σ2).

• Moreover, one obtains just as in the proof of Theorem 2.6 that an ML�estimator for (β, σ2) is given by
(β, σ2), where

β = (X⊤X)−X⊤Y and σ2 =
1

n

(
Y −Xβ

)⊤(
Y −Xβ

)
. (61)

Remark

• In Section 3.2.2 we have shown that in general β is not an unbiased estimator for β.

• Similarly, σ2 is not an unbiased estimator for σ2; however, an unbiased estimator for σ2 can be derived
by a simple modi�cation of σ2.

• In order to show this statement, the following properties of the matrix

G = I−X(X⊤X)−X⊤ (62)

are useful, which can be perceived as a generalization of the corresponding matrix properties derived
in Lemmas 2.1 and 2.2 for the case of a design matrix X with full column rank.

Lemma 3.9 Let rk(X) = r ≤ m. Then for the matrix G given in (62) it holds that

1) G is idempotent and symmetric,

2) GX = 0 and 3) tr(G) = rk(G) = n− r.
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Proof

• Lemma 3.6 implies that

G2 =
(
I−X(X⊤X)−X⊤)(I−X(X⊤X)−X⊤)

= I− 2X(X⊤X)−X⊤ +X(X⊤X)− X⊤X(X⊤X)−X⊤︸ ︷︷ ︸
=X⊤

= I− 2X(X⊤X)−X⊤ +X(X⊤X)−X⊤ = G .

• In Lemma 3.6 we have shown that
(
(X⊤X)−

)⊤
is a generalized inverse of X⊤X. Hence, it follows

from Lemma 3.8 that

G⊤ =
(
I−X(X⊤X)−X⊤)⊤ = I−X

(
(X⊤X)−

)⊤
X⊤ = I−X(X⊤X)−X⊤ = G .

• Thus, the �rst part of the statement is proved. In order to prove the second part of the statement, it
su�ces to observe that

GX =
(
I−X(X⊤X)−X⊤)X = X−X(X⊤X)−X⊤X = X−X = 0 ,

where the last but one equality follows from Lemma 3.7.

• The third part of the statement can be proved as follows:

� Lemmas 3.3 and 3.7 imply that

r = rk(X) = rk
(
X(X⊤X)−X⊤X

)
≤ rk

(
X(X⊤X)−X⊤) ≤ rk(X) = r ,

i.e.,
rk
(
X(X⊤X)−X⊤) = r . (63)

� It follows from Lemma 3.6 that the matrix X(X⊤X)−X⊤ is idempotent because it holds that(
X(X⊤X)−X⊤)(X(X⊤X)−X⊤) = X(X⊤X)− X⊤X(X⊤X)−X⊤︸ ︷︷ ︸

=X⊤

= X(X⊤X)−X⊤ .

� Since additionally X(X⊤X)−X⊤ is symmetric, Lemma 1.3 together with (63) implies that

tr(G) = tr
(
In −X(X⊤X)−X⊤)

= tr(In)− tr
(
X(X⊤X)−X⊤)

= n− rk
(
X(X⊤X)−X⊤) = n− r . �

By use of Lemma 3.9 one now obtains a formula for the expectation of the ML�estimator σ2 considered in (61).

Theorem 3.13 It holds that

Eσ2 =
n− r

n
σ2 . (64)

Proof Due to the properties of the matrix G = I − X(X⊤X)−X⊤ derived in Lemma 3.9, it holds for the

ML�estimator σ2 =
(
Y −Xβ

)⊤(
Y −Xβ

)
/n considered in (61) that

Eσ2 =
1

n
E
((

Y −Xβ
)⊤(

Y −Xβ
))

=
1

n
E
(
Y⊤(I−X(X⊤X)−X⊤)⊤(I−X(X⊤X)−X⊤)Y)

=
1

n
E
(
Y⊤G⊤GY

)
=

1

n
E
(
|GY|2

)
=

1

n
E
(
|G(Xβ + ε)|2

)
=

1

n
E
(
|Gε|2

)
=

1

n
E
(
ε⊤G⊤Gε

)
=

1

n
E
(
ε⊤Gε

)
=

σ2

n
tr(G) =

n− r

n
σ2 .
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�

Remark By using the notation

S2 =
1

n− r

(
Y −Xβ

)⊤(
Y −Xβ

)
and S2 =

1

n− r
ε⊤Gε, (65)

Theorem 3.13 implies that ES2 = σ2, i.e., S2 is an unbiased estimator for σ2.

For being able to specify the distributions of the estimators β and S2, we need the notion of the degenerate
multivariate normal distribution, cf. Section 1.2.5.

Theorem 3.14 Let rk(X) = r ≤ m. Then it holds that

β ∼ N
(
(X⊤X)−X⊤Xβ, σ2(X⊤X)−X⊤X

(
(X⊤X)−

)⊤)
(66)

and
(n− r)S2

σ2
∼ χ2

n−r , (67)

where the random variables β and S2 are independent.

Proof

• For the estimator β given in (61) it holds that

β = (X⊤X)−X⊤Y =
(
(X⊤X)−X⊤)(Xβ + ε

)
= µ+Bε ,

where
µ = (X⊤X)−X⊤Xβ , B = (X⊤X)−X⊤ , ε ∼ N(o, σ2In) .

• Now the de�nition of the (degenerate) multivariate normal distribution implies that β ∼ N(µ, K),
where

K = σ2BB⊤ = σ2(X⊤X)−X⊤X
(
(X⊤X)−

)⊤
.

• Thus, (66) is proved. In order to prove (67), we use the identity derived in the proof of Theorem 3.13,
i.e.,

S2 =
1

n− r
ε⊤Gε , where G = I−X(X⊤X)−X⊤. (68)

• As ε ∼ N(o, σ2In) and as we have shown in Lemma 3.9 that

� the matrix G is idempotent and symmetric

� with rk(G) = n− r,

it follows from Theorem 1.9 that the quadratic form (n− r)S2/σ2 has a (central) χ2�distribution with
n− r degrees of freedom, i.e., (n− r)S2/σ2 ∼ χ2

n−r.

• Since every idempotent and symmetric matrix simultaneously is positive semide�nite and since

BG = (X⊤X)−X⊤(I−X(X⊤X)−X⊤) = (X⊤X)−X⊤ − (X⊤X)− X⊤X(X⊤X)−X⊤︸ ︷︷ ︸
=X⊤

= 0

due to Lemma 3.6, it follows from Theorem 1.10 that the random variables Bε and ε⊤Gε are inde-
pendent. Thus, also the random variables β and S2 are independent. �
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3.3.2 Testing Linear Hypotheses

In this section we discuss a generalized version of the test for linear forms of β which we considered in Section 2.2.3
for the case of a design matrix X with full column rank, cf. Theorem 2.11. However, we now assume that
rk(X) = r < m.

• Let s ∈ {1, . . . ,m}, let H be an s×m matrix with full rank rk(H) = s and let d ∈ Rs.

• The hypothesis to be tested is

H0 : Hβ = d versus H1 : Hβ ̸= d , (69)

where we assume that the entries of the matrix H = (h1, . . . ,hs)
⊤ and the components of the vector

d = (d1, . . . , ds)
⊤ are known.

• In order to verify the null hypothesis H0 : Hβ = d considered in (69), we construct a test statistic whose
distribution does not depend on the unknown parameter vector (β, σ2) (in a similar way as in Theorem 2.11).

• For this purpose, we introduce the following term for assuming that the components of the vector Hβ are
estimable without bias.

De�nition The hypothesis H0 : Hβ = d is called testable if all components h⊤
1 β, . . . ,h

⊤
s β of the vector Hβ

are estimable functions of the parameter vector β.

Remark Theorem 3.9 implies that the hypothesis H0 : Hβ = d is testable if and only if

• there is an s× n matrix C, such that
H = CX , (70)

or

• the matrix H ful�lls the following equation:

H(X⊤X)−X⊤X = H . (71)

In order to construct a test statistic for the veri�cation of the null hypothesis H0 : Hβ = d considered in (69),
the following lemma is useful.

Lemma 3.10

• Let s ≤ m, let H be an s×m matrix with full rank rk(H) = s which ful�lls (70) or (71) and let (X⊤X)−

be an arbitrary generalized inverse of X⊤X.

• Then the s× s matrix H(X⊤X)−H⊤ is positive de�nite (and thus invertible).

Proof

• One can show that the symmetric m×m matrix X⊤X with rk(X⊤X) = r < m can be represented in
the form:

X⊤X = P−1

 Ir 0

0 0

P−1 ,

where the m×m matrix P is invertible and symmetric; cf. also Lemma 3.4.
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• In the proof of Lemma 3.5 we have shown that in this case

P

 Ir 0

0 Im−r

P = PP

de�nes a generalized inverse of X⊤X, which obviously is positive de�nite.

• Now it follows from Lemma 1.8 that also the matrix HPPH⊤ is positive de�nite.

• This implies that H(X⊤X)−H⊤ is positive de�nite for any arbitrary generalized inverse (X⊤X)− of
X⊤X as it follows from (70) that

H(X⊤X)−H⊤ = CX(X⊤X)−X⊤C⊤ = CXPPX⊤C⊤ = HPPH⊤ ,

where the second equality holds due to Lemma 3.8. �

Remark

• Lemma 3.10 implies that the test statistic TH with

TH =

(
Hβ − d

)⊤(
H(X⊤X)−H⊤)−1(

Hβ − d
)

sS2
(72)

is well�de�ned, where β and S2 are the estimators for β and σ2 which are given in (61) and (65),
respectively.

• This test statistic is a generalization of the corresponding test statistic TH considered in Section 2.2.3
for a design matrix X with full rank. The distribution of the test statistic TH given in (72) can be
speci�ed as follows.

Theorem 3.15 Let the hypothesis H0 : Hβ = d be testable. Then, assuming that H0 : Hβ = d is true, it holds
that TH ∼ Fs,n−r, i.e., the test statistic TH given in (72) has an F�distribution with (s, n− r) degrees of freedom.

Proof Assuming that H0 : Hβ = d is true, the following statements hold.

• The de�nition of β in (61) implies that

Hβ − d = H(X⊤X)−X⊤Y − d = H
(
(X⊤X)−X⊤)(Xβ + ε

)
− d = µ+Bε ,

where
µ = H(X⊤X)−X⊤Xβ − d = CX(X⊤X)−X⊤X︸ ︷︷ ︸

=X

β − d = Hβ − d = o,

B = H(X⊤X)−X⊤ and ε ∼ N(o, σ2In).

• Hence, or the numerator Z =
(
Hβ−d

)⊤(
H(X⊤X)−H⊤)−1(

Hβ−d
)
of the test statistic TH given in

(72) it holds that

Z = ε⊤B⊤(H(X⊤X)−H⊤)−1
Bε

= ε⊤
(
H(X⊤X)−X⊤)⊤(H(X⊤X)−H⊤)−1

H(X⊤X)−X⊤ε

= ε⊤Aε ,

� where the matrix A = X(X⊤X)−H⊤(H(X⊤X)−H⊤)−1
H(X⊤X)−X⊤ is idempotent as due to

(71) it holds that

A2 = X(X⊤X)−H⊤(H(X⊤X)−H⊤)−1

× H(X⊤X)−X⊤X︸ ︷︷ ︸
=H

(X⊤X)−H⊤(H(X⊤X)−H⊤)−1
H(X⊤X)−X⊤

= X(X⊤X)−H⊤(H(X⊤X)−H⊤)−1
H(X⊤X)−X⊤ = A .
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� Since A is also symmetric with rk(A) = s, Theorem 1.9 implies that the quadratic form Z/σ2 has
a χ2�distribution with s degrees of freedom.

• Furthermore, it has been shown in Theorem 3.14 that (n − r)S2/σ2 ∼ χ2
n−r and that the random

variables β and S2 are independent.

• Therefore, the random variables Z and S2 are also independent and it holds that

TH =
Z/sσ2

S2/σ2
∼ Fs,n−r . �

Remark

• The choice of the test statistic TH in (72) can be motivated in the following way: Theorem 1.9 implies
(in a similar way as in the proof of Theorem 3.15) that the quadratic form Z/σ2 with

Z =
(
Hβ − d

)⊤(
H(X⊤X)−H⊤)−1(

Hβ − d
)

in general (i.e., without assuming that H0 : Hβ = d is true) has a noncentral χ2�distribution χ2
s,λ

with

λ =

(
Hβ − d

)⊤(
H(X⊤X)−H⊤)−1(

Hβ − d
)

σ2
.

• This implies that

E
( Z
σ2

)
=

d

dt
E exp

( tZ
σ2

)∣∣∣
t=0

= s+ λ ,

where the last equality follows from the formula for the moment generating function of the χ2
s,λ�

distribution which has been derived in Theorem 1.8.

� In other words: It holds that

E
(Z
s

)
= σ2 +

(
Hβ − d

)⊤(
H(X⊤X)−H⊤)−1(

Hβ − d
)

s
(73)

and Theorem 3.13 implies that E (S2) = σ2.

� Hence, assuming that the null hypothesis H0 : Hβ = d is true, the expectations of numerator and
denominator of the test statistic TH are equal.

• On the other hand, Lemmas 1.8 and 3.10 imply that the inverse matrix
(
H(X⊤X)−H⊤)−1

is positive
de�nite and thus, (

Hβ − d
)⊤(

H(X⊤X)−H⊤)−1(
Hβ − d

)
> 0

if the hypothesis H0 : Hβ = d is false. In this case, it follows from (73) that

E
(Z
s

)
> σ2 = E (S2) . (74)

• In general, we have ETH = E
(
Z/s

)
E (1/S2) (due to the independence of Z and S2) and the Jensen

inequality implies that E (1/S2) > 1/E (S2).

• So (74) implies that

ETH >
E
(Z
s

)
E (S2)

> 1

in the case that H0 is false.

• Therefore, it is reasonable to reject the null hypothesis H0 : Hβ = d if the test statistic TH takes
values which are signi�cantly larger than 1.
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• Thus, due to the distributional property of the test statistic TH which has been derived in Theorem 3.15,
the null hypothesis H0 is rejected if TH > Fs,n−r,1−α.

In some cases it is more convenient to consider an alternative representation of the test statistic TH given in (72).
For this purpose, we de�ne the following sums of squared errors SSE and SSEH by

SSE = (Y −Xβ)⊤(Y −Xβ) , where β = (X⊤X)−X⊤Y, (75)

and

SSEH = (Y −XβH)⊤(Y −XβH) , where βH = β − (X⊤X)−H⊤(H(X⊤X)−H⊤)−1(
Hβ − d

)
. (76)

Theorem 3.16 For the test statistic TH given in (72) it holds that

TH =
(SSEH − SSE)/s

SSE/(n− r)
. (77)

Proof

• It holds that

SSEH = (Y −XβH)⊤(Y −XβH)

=
(
Y −Xβ +X(β − βH)

)⊤(
Y −Xβ +X(β − βH)

)
= (Y −Xβ)⊤(Y −Xβ) + (β − βH)⊤X⊤X(β − βH)

because parts 1 and 2 of the statement in Lemma 3.9 imply that

X⊤(Y −Xβ) = X⊤(I−X(X⊤X)−X⊤)Y = X⊤G︸ ︷︷ ︸
= 0

Y = o .

• Furthermore, it follows from (70), i.e., H = CX, and from Lemmas 3.6 and 3.7 that

SSEH = (Y −Xβ)⊤(Y −Xβ)

+
(
Hβ − d

)⊤(
H(X⊤X)−H⊤)−1

H
(
(X⊤X)−

)⊤
X⊤X(X⊤X)−H⊤︸ ︷︷ ︸

=H(X⊤X)−H⊤

×
(
H(X⊤X)−H⊤)−1(

Hβ − d
)

= SSE +
(
Hβ − d

)⊤(
H(X⊤X)−H⊤)−1(

Hβ − d
)
. �

Remark

• From the de�nition of βH in (76) it follows that

HβH = H
(
β − (X⊤X)−H⊤(H(X⊤X)−H⊤)−1(

Hβ − d
))

= d ,

i.e., the random vector βH given in (76) only takes values in the restricted parameter space ΘH =
{
β ∈

Rm : Hβ = d
}
.

• Furthermore, it can easily be shown that βH minimizes the mean squared error e(β) for all β ∈ ΘH ,
where

e(β) =
1

n

n∑
i=1

(
Yi − (β1xi1 + β2xi2 + . . .+ βmxim)

)2
.
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3.3.3 Con�dence Regions

• For the construction of con�dence regions we proceed in a similar way as in Section 2.2.4, where we considered
the case that the design matrix X has full rank, i.e., rk(X) = m. However, in doing so we now assume that
rk(X) = r < m as we did in Section 3.3.2.

• Let s ∈ {1, . . . ,m} and let H be an s×m matrix with full rank rk(H) = s whose entries are known, where
H = (h1, . . . ,hs)

⊤.

• Then Theorem 3.15 immediately leads to the following con�dence region for the vector Hβ with con�dence
level 1− α ∈ (0, 1).

Theorem 3.17 Let all components h⊤
1 β, . . . ,h

⊤
s β of the vector Hβ be estimable functions of β. Then the

(random) ellipsoid

E =
{
d ∈ Rs :

(
Hβ − d

)⊤(
H(X⊤X)−H⊤)−1(

Hβ − d
)

sS2
≤ Fs,n−r,1−α

}
(78)

is a con�dence region for Hβ with con�dence level 1 − α ∈ (0, 1), where β and S2 are the estimators for β and
σ2 given in (61) and (65), respectively.

In particular, Theorem 3.17 implies the following result.

Corollary 3.1 For each i ∈ {1, . . . , s} the (random) interval

(θ, θ) =
(
h⊤
i β − tn−r,1−α/2S

√
h⊤
i (X

⊤X)−hi , h
⊤
i β + tn−r,1−α/2S

√
h⊤
i (X

⊤X)−hi

)
(79)

is a con�dence interval for h⊤
i β with con�dence level 1− α ∈ (0, 1).

Example

• We consider the following linear model, cf. N. Ravishanker und D.K. Dey (2002) A First Course in
Linear Model Theory, Chapman & Hall/CRC, S. 235:

Y1

Y2

Y3

 =


1 1 0

1 0 1

1 1 0




β1

β2

β3

+


ε1

ε2

ε3

 ,

where ε = (ε1, ε2, ε3)
⊤ ∼ N(o, σ2I).

• By means of Corollary 3.1, a con�dence interval for β1+β2/3+2β3/3 with con�dence level 1−α = 0.95
shall be speci�ed.

• As rk(X) = 2 < m = 3, we �rst need to check whether the function

h⊤β = β1 + β2/3 + 2β3/3 (80)

of β⊤ = (β1, β2, β3) with h⊤ = (1, 1/3, 2/3) is estimable without bias.

� Due to criterion 1 in Theorem 3.9, this is the case if and only if there is a c⊤ = (c1, c2, c3) ∈ R3,
such that h⊤ = c⊤X, i.e., if

1 = c1 + c2 + c3

1/3 = c1 + c3

2/3 = c2 .
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� Since this system of equations obviously is solvable, h⊤β is estimable without bias.

• Moreover, it holds that

X⊤X =


3 2 1

2 2 0

1 0 1


and a generalized inverse of X⊤X is given by

(X⊤X)− =


1 −1 0

−1 3/2 0

0 0 0

 .

• This yields that h⊤(X⊤X)−h = 1/2. Thus,

(X⊤X)−X⊤ =


0 1 0

1/2 −1 1/2

0 0 0

 and β = (X⊤X)−X⊤Y =


Y2

(Y1 − 2Y2 + Y3)/2

0

 .

• Hence, one obtains that (Xβ)⊤ =
(
(Y1 + Y3)/2, Y2, (Y1 + Y3)/2

)
and

h⊤β = (Y1 + 4Y2 + Y3)/6 and S2 = (Y1 − Y3)
2/2 .

• Therefore, a con�dence interval (θ, θ) for h⊤β with con�dence level 1 − α = 0.95 is obtained, which
has the form

(θ, θ) =
(
(Y1 + 4Y2 + Y3)/6− Z , (Y1 + 4Y2 + Y3)/6 + Z

)
,

where Z = t1,0.975|Y1 − Y3|/2.

By generalizing Theorem 2.12, we now derive a so�called Sche�é con�dence band, i.e., simultaneous con�dence
intervals for a whole class of estimable functions of the parameter vector β.

• Let s ∈ {1, . . . ,m}, let H once more be an s×m matrix with full rank, i.e., rk(H) = s, where
H = (h1, . . . ,hs)

⊤, and let all components h⊤
1 β, . . . ,h

⊤
s β of the vector Hβ be estimable functions of β.

• As H has full (row) rank, the vectors h1, . . . ,hs are linearly independent and form the basis of an s�
dimensional linear subspace in Rm, which we denote by L = L(h1, . . . ,hs).

• Due to Theorem 3.10, the function h⊤β of β is estimable without bias for each h ∈ L.

• We are looking for a number aγ > 0, such that

h⊤β − aγZh ≤ h⊤β ≤ h⊤β + aγZh (81)

holds for each h ∈ L simultaneously with the (given) probability γ ∈ (0, 1), where Zh = S
√
h⊤(X⊤X)−h

and β, S2 are the estimators for β and σ2 given in (61) and (65), respectively.

Theorem 3.18 Let aγ =
√
sFs,n−r,γ . Then it holds that

Pβ

(
max
h∈L

(
h⊤β − h⊤β

)2
S2h⊤(X⊤X)−h

≤ a2γ

)
= γ . (82)
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Proof

• In a similar way as in the proof of Theorem 2.12, the Cauchy�Schwarz inequality for scalar products,
cf. (65), implies that

(
Hβ −Hβ

)⊤(
H(X⊤X)−H⊤)−1(

Hβ −Hβ
)
= max

x̸=o

(
x⊤(Hβ −Hβ

))2
x⊤
(
H(X⊤X)−H⊤

)
x
,

where the maximum extends over all vectors x ∈ Rs with x ̸= o.

• By means of Theorem 3.15 we now get that

γ = Pβ

((
Hβ −Hβ

)⊤(
H(X⊤X)−H⊤)−1(

Hβ −Hβ
)
≤ sS2 Fs,n−r,γ

)
= Pβ

(
max
x̸=o

(
x⊤(Hβ −Hβ

))2
x⊤
(
H(X⊤X)−H⊤

)
x

≤ sS2 Fs,n−r,γ

)

= Pβ

(
max
x̸=o

(
(H⊤x)⊤β − (H⊤x)⊤β

)2
(H⊤x)⊤(X⊤X)−(H⊤x)

≤ sS2 Fs,n−r,γ

)

= Pβ

(
max
h∈L

(
h⊤β − h⊤β

)2
h⊤(X⊤X)−h

≤ sS2 Fs,n−r,γ

)
. �

3.4 Examples

3.4.1 F�Test for the ANOVA Null Hypothesis

• We consider the reparametrized model of one�factor analysis of variance, i.e., the design matrix X is the
n× (k + 1) matrix given in (13) with rk(X) = k < m = k + 1, where

X =



1 1 0 0 . . . 0 0
...

...
...

...
...

...

1 1 0 0 . . . 0 0

1 0 1 0 . . . 0 0
...

...
...

...
...

...

1 0 1 0 . . . 0 0

· · · · · · · · · · · · · · · · · · · · ·

1 0 0 0 . . . 0 1
...

...
...

...
...

...

1 0 0 0 . . . 0 1



(83)

and the parameter vector β has the form β = (µ, α1, . . . , αk)
⊤.

• It shall be tested whether the levels of the predictor variable are signi�cant, i.e., the hypothesis to be
tested is the ANOVA null hypothesis H0 : α1 = . . . = αk (against the alternative H1 : αi ̸= αj for some
pair i, j ∈ {1, . . . , k} with i ̸= j). For this purpose, we use the general testing approach introduced in
Theorems 3.15 and 3.16.
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• An equivalent formulation of the null hypothesis H0 : α1 = . . . = αk is given by

H0 : α1 − α2 = 0, . . . , α1 − αk = 0 or H0 : Hβ = o , (84)

where H is a (k − 1)× (k + 1) matrix with

H =



0 1 −1 0 . . . 0 0

0 1 0 −1 . . . 0 0
...

...
...

...
...

...

0 1 0 0 . . . −1 0

0 1 0 0 . . . 0 −1


. (85)

• Obviously, H is a matrix with full row rank, i.e., rk(H) = k − 1. Furthermore, Theorem 3.10 implies that
all components α1 − α2, . . . , α1 − αk of the vector Hβ are estimable functions of β.

• In other words, the matrix H ful�lls the requirements of Theorems 3.15 and 3.16. Thus, the test statistic

TH =
(SSEH − SSE)/(k − 1)

SSE/(n− k)

considered in Theorem 3.16 may be used for the veri�cation of the hypothesis H0 : Hβ = o, where the sums
of squares SSE and SSEH de�ned in (75) and (76), respectively, can be determined as follows.

• Recall: In Section 3.2.1 we have shown that a generalized inverse of X⊤X is given by (36), i.e.,

(
X⊤X

)−
=



1

n
0 0 0 . . . 0 0

− 1

n

1

n1
0 0 . . . 0 0

− 1

n
0

1

n2
0 . . . 0 0

...
...

...
...

...
...

− 1

n
0 0 0 . . . 0

1

nk


. (86)

• Together with (83) this implies that

β =
(
X⊤X

)−
X⊤Y =

(
Y · · , Y 1 · − Y · · , . . . , Y k · − Y · ·

)⊤
and

Xβ = X
(
X⊤X

)−
X⊤Y =

(
Y 1 · , . . . , Y 1 ·︸ ︷︷ ︸

n1

, . . . , Y k · , . . . , Y k ·︸ ︷︷ ︸
nk

)⊤
.

• Hence, one gets for the sum of squares SSE = (Y −Xβ)⊤(Y −Xβ) that

SSE =
k∑

i=1

ni∑
j=1

(
Yij − Y i ·

)2
. (87)
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Remark

• Due to the special form (83) of the design matrix X, formula (87) can also be derived directly from
the fact that β is an LS�estimator. Indeed, it holds that

SSE = (Y −Xβ)⊤(Y −Xβ) = min
β∈Rk+1

(Y −Xβ)⊤(Y −Xβ)

=

k∑
i=1

{
min
x∈R

ni∑
j=1

(
Yij − x

)2}
=

k∑
i=1

ni∑
j=1

(
Yij − Y i ·

)2
.

• Moreover, it follows from the remark at the end of Section 3.3.2 that

SSEH = (Y −XβH)⊤(Y −XβH) = min
β∈ΘH

∣∣Y −Xβ
∣∣2 ,

where ΘH = {β ∈ Rk+1 : Hβ = o} and {Xβ : β ∈ ΘH} ⊂ Rn is the set of those n�dimensional vectors
whose components are all equal.

• Then one gets that

SSEH = min
x∈R

k∑
i=1

ni∑
j=1

(
Yij − x

)2
=

k∑
i=1

ni∑
j=1

(
Yij − Y · ·

)2
(88)

because the mean Y · · minimizes the sum of squares
∑k

i=1

∑ni

j=1

(
Yij − x

)2
.

• Together with (87) this implies that

SSEH − SSE =
k∑

i=1

ni∑
j=1

(
Yij − Y · ·

)2 − k∑
i=1

ni∑
j=1

(
Yij − Y i ·

)2
=

k∑
i=1

ni
(
Y i· − Y ··

)2
,

where the last equality follows from the decomposition

k∑
i=1

ni∑
j=1

(
Yij − Y · ·

)2
=

k∑
i=1

ni∑
j=1

(
Yij − Y i ·

)2
+

k∑
i=1

ni
(
Y i· − Y ··

)2
,

cf. formula (9) in Theorem 3.1.

• Therefore, for the test statistic TH considered in Theorem 3.16 it holds that

TH =
(SSEH − SSE)/(k − 1)

SSE/(n− k)
=

(n− k)
k∑

i=1

ni
(
Y i· − Y ··

)2
(k − 1)

k∑
i=1

ni∑
j=1

(
Yij − Y i ·

)2 ∼ Fk−1,n−k . (89)

3.4.2 F�Tests for the Two�Factor Analysis of Variance

Now we construct F�tests for the model of two�factor analysis of variance with balanced subsets, which has been
introduced in Section 3.1.3, i.e.,

• the parameter vector β has the form

β =
(
µ, α

(1)
1 , . . . , α

(1)
k1
, α

(2)
1 , . . . , α

(2)
k2
, α11, . . . , αk1k2

)⊤
,

• the design matrix X has the dimension n×m, where n = rk1k2 and m = 1 + k1 + k2 + k1k2,
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• the entries of X only consist of zeros and ones and it holds that rk(X) = k1k2 < m.

Signi�cance of the Predictor Variables

We �rst construct a test to investigate the question whether the levels of the �rst predictor variable are
signi�cant. For this purpose, we verify the hypothesis that the e�ects

α
(1)∗
i1

= α
(1)
i1

+
1

k2

k2∑
i2=1

αi1i2

of the �rst predictor variable plus their interactions, averaged over all levels of the second predictor variable,
are equal. In other words: The hypothesis to be tested is

H0 : α
(1)∗
1 − α

(1)∗
i1

= 0 ∀ i1 ∈ {1, . . . , k1} vs. H1 : α
(1)∗
1 − α

(1)∗
i1

̸= 0 for some i1 ∈ {1, . . . , k1} , (90)

where it is actually su�cient to consider the pair of hypotheses

H0 : α
(1)∗
1 − α

(1)∗
i1

= 0 ∀ i1 ∈ {2, . . . , k1} vs. H1 : α
(1)∗
1 − α

(1)∗
i1

̸= 0 for some i1 ∈ {2, . . . , k1}.

• It can easily be shown that the null hypothesis in (90) has the form H0 : Hβ = o,

� where

H =


0 1 −1 0 . . . 0 0 . . . 0 1

k2
. . . 1

k2

−1
k2

. . . −1
k2

0 . . . 0

0 1 0 −1 0 0 . . . 0 1
k2

. . . 1
k2

0 . . . 0 0 . . . 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

0 1 0 −1 0 . . . 0 1
k2

. . . 1
k2

0 . . . 0 −1
k2

. . . −1
k2


is a (k1 − 1)×m matrix with full row rank rk(H) = k1 − 1 and with blocks of rows of the lengths
1, 1, k1 − 1, k2, k2 and (k1 − 1)k2, respectively,

� and where all components of the vector Hβ are estimable functions of β because of

α
(1)∗
1 − α

(1)∗
i1

=
1

k2

k2∑
i2=1

(
θ1i2 − θi1i2

)
.

• In order to verify the hypothesis H0 : Hβ = o we can now again use the test statistic TH considered
in Theorem 3.16, where

TH =
(SSEH − SSE)/(k1 − 1)

SSE/(k1k2(r − 1))
∼ Fk1−1, k1k2(r−1)

with

SSE =

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
(91)

and

SSEH − SSE = rk2

k1∑
i1=1

(
Y i1·· − Y ···

)2
. (92)

• The formulas (91) and (92) for the sums of squares SSE and SSEH de�ned in (75) and (76), respec-
tively, can be derived in a similar way as in Section 3.4.1.

• Indeed, the same minimization technique that has been used for the direct derivation of (87) yields
(91). Moreover, the sum of squares SSEH can be determined as follows.
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� Just as before, ΘH = {β ∈ R1+k1+k2+k1k2 : Hβ = o} is the restricted parameter space.

� Due to the special form of the matrices X and H, the minimization in

SSEH = (Y −XβH)⊤(Y −XβH) = min
β∈ΘH

∣∣Y −Xβ
∣∣2

with respect to the set {Xβ : β ∈ ΘH} ⊂ Rrk1k2 can (in a similar way as in formula (88)) be
replaced by a minimization with respect to the set R×Rk2

H ×Rk1k2

H ⊂ R1+k2+k1k2 of those vectors
x = (x, x1, . . . , xk2 , x11, . . . , xk1k2) ∈ R1+k2+k1k2 which ful�ll the following conditions:

k2∑
i2=1

xi2 =

k1∑
i1=1

k2∑
i2=1

xi1i2 = 0 .

• In more detail, it holds that

SSEH = min
x∈R×Rk2

H ×Rk1k2
H

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − (x+ xi2 + xi1i2)

)2
= min

x∈R×Rk2
H ×Rk1k2

H

{
k1∑

i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
+ k1k2r

(
Y ··· − x

)2
+ k2r

k1∑
i1=1

(
Y i1·· − Y ···

)2
+k1r

k2∑
i2=1

(
Y · i2· − Y ··· − xi2

)2
+ r

k1∑
i1=1

k2∑
i2=1

(
Y i1i2· − Y i1·· − Y · i2· + Y ··· − xi1i2

)2}
,

i.e.,

SSEH =

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
+ k2r

k1∑
i1=1

(
Y i1·· − Y ···

)2
.

• Together with (91) this implies (92).

Remark

• In the same way, one can construct a test to investigate the question whether the levels of the second
predictor variable are signi�cant. For this purpose, we verify the hypothesis that the e�ects

α
(2)∗
i2

= α
(2)
i2

+
1

k1

k1∑
i1=1

αi1i2

of the second predictor variable plus their interactions, averaged over all levels of the �rst predictor
variable, are equal.

• Thus, the hypothesis to be tested is

H0 : α
(2)∗
1 − α

(2)∗
2 = 0 , . . . , α

(2)∗
1 − α

(2)∗
k2

= 0 vs. H1 : α
(2)∗
1 − α

(2)∗
i2

̸= 0 for some i2 ∈ {1, . . . , k2} .

• In this case, one obtains the test statistic

TH =

k1k2(r − 1)rk1
k2∑

i2=1

(
Y · i2· − Y ···

)2
(k2 − 1)

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2 ∼ Fk2−1, k1k2(r−1).
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Interactions between both Predictor Variables

Now we construct a test to check whether there are signi�cant interactions between the two predictor
variables. For this purpose, the hypothesis

H0 : α∗
11 − α∗

i1i2 = 0 ∀ (i1, i2) ∈ {1, . . . , k1} × {1, . . . , k2} (93)

is tested, where
α∗
i1i2 = αi1i2 − αi1 · − α· i2 + α· ·

and

αi1 · =
1

k2

k2∑
i2=1

αi1i2 , α· i2 =
1

k1

k1∑
i1=1

αi1i2 , α· · =
1

k1k2

k1∑
i1=1

k2∑
i2=1

αi1i2 .

• In a similar way as before, one can show that the hypothesis considered in (93) can be written in the
form H0 : Hβ = o, where

� H is a (k1k2 − 1)×m matrix with full row rank, i.e., rk(H) = k1k2 − 1 and

� all components of the vector Hβ are estimable functions of β as it holds that

α∗
i1i2 = θi1i2 −

1

k2

k2∑
i2=1

θi1i2 −
1

k1

k1∑
i1=1

θi1i2 +
1

k1k2

k1∑
i1=1

k2∑
i2=1

θi1i2 .

• For the veri�cation of the hypothesis H0 : Hβ = o we can thus consider the test statistic

TH =
(SSEH − SSE)/(k1k2 − 1)

SSE/(k1k2(r − 1))

considered in Theorem 3.16, where SSE is given by (91) as before while the sum of squares SSEH

results from the following considerations.

• Due to the special form of the matricesX and H, the set {Xβ : β ∈ ΘH} ⊂ Rrk1k2 in the minimization
in

SSEH = (Y −XβH)⊤(Y −XβH) = min
β∈ΘH

∣∣Y −Xβ
∣∣2

can (in a similar way as before) be replaced by the set R× Rk1

H × Rk2

H ⊂ R1+k1+k2 of those vectors

x = (x, x
(1)
1 , . . . , x

(1)
k1
, x

(2)
1 , . . . , x

(2)
k2

) ∈ R1+k1+k2

which ful�ll the following conditions:

k1∑
i1=1

x
(1)
i1

=

k2∑
i2=1

x
(2)
i2

= 0 .

• Indeed, it holds that

SSEH = min
x∈R×Rk1

H ×Rk2
H

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − (x+ x

(1)
i1

+ x
(2)
i2

)
)2

and

SSEH = min
x∈R×Rk1

H ×Rk2
H

{
k1∑

i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
+k1k2r

(
Y ··· − x

)2
+ k2r

k1∑
i1=1

(
Y i1·· − Y ··· − x

(1)
i1

)2
+ k1r

k2∑
i2=1

(
Y · i2· − Y ··· − x

(2)
i2

)2
+r

k1∑
i1=1

k2∑
i2=1

(
Y i1i2· − Y i1·· − Y · i2· + Y ···

)2}

=

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
+ r

k1∑
i1=1

k2∑
i2=1

(
Y i1i2· − Y i1·· − Y · i2· + Y ···

)2
.
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• Together with (91) this implies that

SSEH − SSE = r

k1∑
i1=1

k2∑
i2=1

(
Y i1i2· − Y i1·· − Y · i2· + Y ···

)2
. (94)

• Therefore, for the test statistic TH considered in Theorem 3.16 it holds that

TH =
(SSEH − SSE)/(k1k2 − 1)

SSE/
(
k1k2(r − 1)

)
=

k1k2(r − 1)r
k1∑

i1=1

k2∑
i2=1

(
Y i1i2· − Y i1·· − Y · i2· + Y ···

)2
(k1k2 − 1)

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2 ∼ Fk1k2−1, k1k2(r−1) .

3.4.3 Two�Factor Analysis of Variance with Hierarchical Classi�cation

• Instead of the model of two�factor analysis of variance with interactions, introduced in Section 3.1.3, one
sometimes considers the following model of two�factor analysis of variance with hierarchical classi�cation
of the pairs of levels i1, i2 of the two predictor variables.

• Here we consider the representation

θi1i2 = µ+ α
(1)
i1

+ α
(2|1)
i2|i1 , ∀ i1 = 1, . . . , k1, i2 = 1, . . . , k2 (95)

of the expectations θi1i2 = EYi1i2j of the sampling variables Yi1i2j .

• In other words: Into each of the k1 levels of the �rst, i.e., superior, predictor variable k2 levels of the second
(inferior) predictor variable are embedded.

• This situation can occur, e.g., in clinical trials which are carried out in k1 countries (superior predictor
variable) and k2 hospitals in each country (inferior predictor variable).

• Then the parameter vector β has the dimension m = 1 + k1 + k1k2 with

β =
(
µ, α

(1)
1 , . . . , α

(1)
k1
, α

(2|1)
1|1 , . . . , α

(2|1)
k2|k1

)⊤
• and

� µ is again perceived as general mean of the expectations EYi1i2j of the sampling variables Yi1i2j ,

� α
(1)
i1

is called the e�ect of the i1�th level of the superior predictor variable and

� α
(2|1)
i2|i1 is called the e�ect of the i2�th level of the inferior predictor variable in the case that the i1�th

level of the superior predictor variable is on hand.

• Again, we only consider the balanced case, i.e., we assume that all k1 ·k2 subsamples (Yi1i2j , j = 1, . . . , ni1i2)
have the same sample size.

• Hence, it holds that ni1i2 = r for all i1 = 1, . . . , k1 and i2 = 1, . . . , k2 with r = n/(k1k2), the design matrix
X has the dimension n ×m with n = rk1k2 and m = 1 + k1 + k1k2, and the entries of X only consist of
zeros and ones; rk(X) = k1k2 < m.
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Signi�cance of the Superior Predictor Variable

• Just in the same way as in Section 3.4.2 one can construct a test to investigate the question whether
the levels of the superior predictor variable are signi�cant. For this purpose, we verify the hypothesis

that the mean e�ects α
(1)∗
i1

are equal, where

α
(1)∗
i1

= α
(1)
i1

+
1

k2

k2∑
i2=1

α
(2|1)
i2|i1 .

• In other words: The hypothesis to be tested is

H0 : α
(1)∗
1 −α(1)∗

i1
= 0 ∀ i1 ∈ {1, . . . , k1} versus H1 : α

(1)∗
1 −α(1)∗

i1
̸= 0 for some i1 ∈ {1, . . . , k1} .

• One can show that the null hypothesis has the form H0 : Hβ = o, where H is a (k1 − 1)×m matrix
with full row rank, i.e., rk(H) = k1 − 1, and all components of the vector Hβ are estimable functions
of β.

• For the veri�cation of the hypothesis H0 : Hβ = o we can thus use the test statistic

TH =
(SSEH − SSE)/(k1 − 1)

SSE/(k1k2(r − 1))
∼ Fk1−1, k1k2(r−1)

considered in Theorem 3.16 with

SSE =

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
, SSEH − SSE = rk2

k1∑
i1=1

(
Y i1·· − Y ···

)2
, (96)

where the formulas in (96) are proved in the same way as in (91) and (92), respectively.

Signi�cance of the Inferior Predictor Variable

• In order to check whether the levels of the inferior predictor variable are signi�cant, one can proceed in
a similar way as in the last test in Section 3.4.2 (test for signi�cance of interactions). For this purpose,
the hypothesis

H0 : α
(2|1)∗
1|1 − α

(2|1)∗
i2|i1 = 0 ∀ (i1, i2) ∈ {1, . . . , k1} × {1, . . . , k2} (97)

is tested, where

α
(2|1)∗
i2|i1 = α

(2|1)
i2|i1 − αi1 + α , αi1 =

1

k2

k2∑
i2=1

α
(2|1)
i2|i1 , α =

1

k1k2

k1∑
i1=1

k2∑
i2=1

α
(2|1)
i2|i1 .

• It can be shown that the hypothesis considered in (93) can be written in the form H0 : Hβ = o, where
H is a k1(k2 − 1)×m matrix with full row rank, i.e., rk(H) = k1(k2 − 1), and all components of the
vector Hβ are estimable functions of β.

• For the veri�cation of the hypothesis H0 : Hβ = o one can thus use the test statistic

TH =
(SSEH − SSE)/(k1(k2 − 1))

SSE/(k1k2(r − 1))

considered in Theorem 3.16, where the sums of squares SSE and SSEH de�ned in (75) and (76),
respectively, can be determined as follows.

• Just as before, it holds that

SSE =

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
, (98)
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and the set {Xβ : β ∈ ΘH} in the minimization in

SSEH = (Y −XβH)⊤(Y −XβH) = min
β∈ΘH

∣∣Y −Xβ
∣∣2

can be replaced by the set R× Rk1

H ⊂ R1+k1 of those vectors x = (x, x
(1)
1 , . . . , x

(1)
k1

) ∈ R1+k1 for which∑k1

i1=1 x
(1)
i1

= 0 holds, leading to

SSEH = min
x∈R×Rk1

H

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − (x+ x

(1)
i1

)
)2

= min
x∈R×Rk1

H

{
k1∑

i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
+ k1k2r

(
Y ··· − x

)2
+k2r

k1∑
i1=1

(
Y i1·· − Y ··· − x

(1)
i1

)2
+ r

k1∑
i1=1

k2∑
i2=1

(
Y i1i2· − Y i1··

)2}

=

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2
+ r

k1∑
i1=1

k2∑
i2=1

(
Y i1i2· − Y i1··

)2
.

• Together with (98) this implies that

SSEH − SSE = r

k1∑
i1=1

k2∑
i2=1

(
Y i1i2· − Y i1··

)2
.

• Therefore, it holds that

TH =

k1k2(r − 1)r
k1∑

i1=1

k2∑
i2=1

(
Y i1i2· − Y i1··

)2
k1(k2 − 1)

k1∑
i1=1

k2∑
i2=1

r∑
j=1

(
Yi1i2j − Y i1i2·

)2 ∼ Fk1(k2−1), k1k2(r−1) .
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4 Generalized Linear Models

• In Chapters 2 and 3 we always assumed for the linear model Y = Xβ + ε

� that E ε = o, i.e.,
(
EY1, . . . ,EYn

)⊤
= Xβ,

� where furthermore Y ∼ N(Xβ, σ2I) holds if ε ∼ N(o, σ2I).

• Now, we generalize this model and allow that the expectations EY1, . . . ,EYn of the sampling variables
Y1, . . . , Yn

� can be expressed by the components of the vector Xβ by using an arbitrary monotone function
g : G→ R, the so�called link function, such that(

g(EY1), . . . , g(EYn)
)⊤

= Xβ , (1)

� where the domain G ⊂ R of g will be speci�ed more precisely.

• Moreover, the (independent) sampling variables Y1, . . . , Yn do not have to be normally distributed since we
just assume that the distributions of Y1, . . . , Yn belong to an exponential family.

• In this chapter we will always assume (as in Chapter 2) that the design matrix X has full column rank, i.e.,
rk(X) = m.

In the same way as in the linear models, which have been investigated in Chapters 2 and 3, the goal is to estimate
the parameter vector β from the observation of the random sample Y = (Y1, . . . , Yn)

⊤, where we assume that
the link function g : G→ R is known.

4.1 De�nition and Basic Properties

4.1.1 Exponential Family

We assume that the sample variables Y1, . . . , Yn are independent (but in general not identically distributed),

• where their distributions belong to a one-parametric exponential family, i.e., their densities or probability
mass functions, respectively, have the following form: For each i ∈ {1, . . . , n} it holds that

� in the absolutely continuous case

f(y; θi) = exp
( 1

τ2
(
yθi + a(y, τ)− b(θi)

))
, ∀ y ∈ R , (2)

� in the discrete case

Pθi(Yi = y) = exp
( 1

τ2
(
yθi + a(y, τ)− b(θi)

))
, ∀ y ∈ C , (3)

where a : R × (0,∞) → R and b : Θ → R are certain functions and C ⊂ R is the smallest countable
subset of R, for which it holds that Pθi(Yi ∈ C) = 1.

• τ2 > 0 is a so�called nuisance parameter, which does not depend on the index i, where it is often assumed
that τ2 is known.

• Then

Θ =
{
θ ∈ R :

∫ ∞

−∞
exp
(yθ + a(y, τ)

τ2

)
dy <∞

}
(4)

or

Θ =
{
θ ∈ R :

∑
y∈C

exp
(yθ + a(y, τ)

τ2

)
<∞

}
(5)

is the natural parameter space, where we always assume that the integrability condition in (4) or (5),
respectively, is ful�lled for at least two di�erent θ1, θ2 ∈ R.
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Remark In the absolutely continuous case the nuisance parameter τ2 can be seen as an additional variance
parameter, while τ2 usually is set to 1 in the discrete case.

Lemma 4.1 The parameter space Θ ⊂ R, given in (4) and (5), respectively, is an interval in R.

Proof

• We only consider the absolutely continuous case since the proof of the discrete case proceeds analo-
gously.

• One can easily see that for arbitrary x1, x2 ∈ R and α ∈ (0, 1) we have(
ex1
)α (

ex2
)1−α ≤ max

i=1,2,

(
exi
)α (

exi
)1−α

= max
i=1,2,

exi ≤ ex1 + ex2 .

• This and the notation θ = αθ1 + (1− α)θ2 imply that for arbitrary θ1, θ2 ∈ Θ and α ∈ (0, 1)∫ ∞

−∞
exp
(yθ + a(y, τ)

τ2

)
dy =

∫ ∞

−∞

(
exp
(yθ1 + a(y, τ)

τ2

))α(
exp
(yθ2 + a(y, τ)

τ2

))1−α

dy

≤
∫ ∞

−∞

(
exp
(yθ1 + a(y, τ)

τ2

)
+ exp

(yθ2 + a(y, τ)

τ2

))
dy <∞ .

• Therefore, it also holds that θ ∈ Θ. �

Because of Lemma 4.1 we will always assume in this chapter that Θ ⊂ R is an open interval such that the
integrability condition in (4) and (5), respectively, is ful�lled for each θ ∈ Θ.

Lemma 4.2

• Let the distribution of the random variable Y : Ω → R be given by (2) or (3) for an arbitrary θ ∈ Θ such
that

E (Y 2) <∞ ∀ θ ∈ Θ (6)

holds and the function b : Θ → R is twice continuously di�erentiable.

• Then it holds that
EY = b(1)(θ) and VarY = τ2 b(2)(θ) . (7)

Proof

• Once more, we only treat the absolutely continuous case since the proof of the discrete case proceeds
analogously. It holds that

EY =

∫ ∞

−∞
y exp

( 1

τ2
(
yθ + a(y, τ)− b(θ)

))
dy = e−b(θ)/τ2

∫ ∞

−∞
y exp

( 1

τ2
(
yθ + a(y, τ)

))
dy

= e−b(θ)/τ2

τ2
∫ ∞

−∞

d

dθ
exp
( 1

τ2
(
yθ + a(y, τ)

))
dy

= e−b(θ)/τ2

τ2
d

dθ

∫ ∞

−∞
exp
( 1

τ2
(
yθ + a(y, τ)

))
dy

= e−b(θ)/τ2

τ2
d

dθ
eb(θ)/τ

2

∫ ∞

−∞
exp
( 1

τ2
(
yθ + a(y, τ)− b(θ)

))
dy︸ ︷︷ ︸

=1

= b(1)(θ) .

• In a similar way we get that E (Y 2) = τ2 b(2)(θ) + (EY )2. �
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4.1.2 Link of the Parameters; Natural Link Function

• Now, we assume that the function b : Θ → R is twice continuously di�erentiable with b(2)(θ) > 0 for each
θ ∈ Θ.

• Furthermore, let G = {b(1)(θ) : θ ∈ Θ} and the link function g : G→ R be twice continuously di�erentiable,
such that g(1)(x) ̸= 0 for each x ∈ G. The inverse function of g is denoted by h = g−1.

• We consider the generalized linear model (GLM) given in (1), i.e., it holds that(
g(EY1), . . . , g(EYn)

)⊤
= Xβ . (8)

� By using the notation X = (xij), xi = (xi1, . . . , xim)⊤ and η = (η1, . . . , ηn)
⊤, where ηi = x⊤

i β ,
formula (8) implies for the expectations µi = EYi (i = 1, . . . , n) that

µi = h(ηi) = h
(
x⊤
i β
)

and thus µ =
(
h(η1), . . . , h(ηn)

)⊤
, (9)

where µ = (µ1, . . . , µn)
⊤.

� Because of (7) and (8) the parameters β = (β1, . . . , βm)⊤ and θ = (θ1, . . . , θn)
⊤ are related as follows:

It holds that (
g
(
b(1)(θ1)

)
, . . . , g

(
b(1)(θn)

))⊤
= Xβ . (10)

• Together with (9) this implies that(
b(1)(θ1), . . . , b

(1)(θn)
)
=
(
h(x⊤

1 β), . . . , h(x
⊤
nβ)

)
and, equivalently,

(θ1, . . . , θn) =
(
ψ
(
h(x⊤

1 β)
)
, . . . , ψ

(
h(x⊤

nβ)
))
, (11)

where ψ =
(
b(1)
)−1

is the inverse function of b(1).

• Furthermore, it is possible to express the variance σ2
i = VarYi of the sample variables Yi as a function σ

2
i (β)

of β for each i = 1, . . . , n as it follows from Lemma 4.2 and (11) that

σ2
i (β) = τ2 b(2)

(
ψ
(
h(x⊤

i β)
))

∀ i = 1, . . . , n . (12)

Remark The link function g : G → R is called natural if g = ψ. In this case it holds that θi = ψ(µi) and,
therefore, θi = x⊤

i β for each i = 1, . . . , n, i.e.,

(θ1, . . . , θn)
⊤ = Xβ . (13)

4.2 Examples

4.2.1 Linear Model with Normally Error Terms

• For the linear model
Y = Xβ + ε (14)

with normally distributed error terms ε = (ε1, . . . , εn)
⊤ ∼ N(o, σ2I) , considered in Section 2.2, it holds

that
Yi ∼ N(µi, σ

2) with µi = x⊤
i β , ∀ i = 1, . . . , n, (15)

where we assume that σ2 is known.

• Then the distribution of Yi belongs to the one�parametric exponential family considered in Section 4.1.1
since the density f(y; θi) of Yi can be written in the following form, where θi = µi for each i = 1, . . . , n:
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� It holds that

f(y; θi) =
1√
2πσ2

exp
(
− 1

2σ2
(y − µi)

2
)

= exp
( 1

τ2
(
yθi + a(y, τ)− b(θi)

))
∀ y ∈ R ,

� where

τ2 = σ2 , a(y) = − y2

2
and b(θi) =

θ2i
2

+ σ2 log
√
2πσ2 . (16)

• Because of (15) the link function g : R → R ful�lls g(x) = x for each x ∈ R.

� Moreover, (16) yields x = b(1)(x) for each x ∈ R.
� Therefore, it holds that g(x) = x = ψ(x) for each x ∈ R, i.e., the natural link function is given by
g(x) = x.

4.2.2 Binary Categorical Regression

• In this section we consider the case that the sample variables Y1, . . . , Yn are Bernoulli�distributed, i.e., they
can only take the values 0 and 1 with positive probability.

� Here, we use the notation

πi = P(Yi = 1)
(
= µi = EYi

)
∀ i = 1, . . . , n ,

where it is assumed that 0 < πi < 1 for each i = 1, . . . , n.

� In this case the probabilities π1, . . . , πn are linked to the parameter vector β by using a link function
g : (0, 1) → R, i.e., (

g(π1), . . . , g(πn)
)⊤

= Xβ . (17)

• For each i = 1, . . . , n the Bin(1, πi)�distribution belongs to the exponential family introduced in Sec-
tion 4.1.1, where θi = log(πi/(1− πi)).

� Because for y = 0, 1 it holds that

Pθi(Yi = y) = πy
i (1− πi)

1−y = exp
(
y log

( πi
1− πi

)
+ log(1− πi)

)
= exp

( 1

τ2
(
yθi + a(y, τ)− b(θi)

))
,

� where
τ2 = 1 , a(y) = 0 and b(θi) = log(1 + eθi) . (18)

Remark

• From (18) it follows that (b(1))−1(x) = log(x/(1− x)) for each x ∈ (0, 1), i.e., the natural link function
g : (0, 1) → R is given by

g(x) = log
( x

1− x

)
∀ x ∈ (0, 1) . (19)

� The GLM, considered in (17), with the natural link function, given in (19), is then called (binary)
logistic regression model.

� In this case the dependency of the probabilities πi = πi(β) of the linear combinations x
⊤
i β is given

by

πi =
1

1 + exp(−x⊤
i β)

∀ i = 1, . . . , n . (20)

• Another (nonnatural) link function g : (0, 1) → R, which is considered in this context, is given by

g = Φ−1 , (21)

� where Φ : R → (0, 1) denotes the distribution function of the N(0, 1)�distribution.

� Then it holds that πi = Φ(x⊤
i β) for each i = 1, . . . , n and the GLM is called the model of the

probit analysis.
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4.2.3 Poisson�Distributed Sample Variables with Natural Link Function

• Now, let the sample variables Y1, . . . , Yn be Poisson�distributed, i.e., let Yi ∼ Poi(λi) with 0 < λi < ∞ for
each i = 1, . . . , n.

• The Poi(λi)�distribution also belongs to the exponential family introduced in Section 4.1.1, where θi = log λi

� because it holds for each y = 0, 1, . . . that

Pθi(Yi = y) =
λyi e

−λi

y!
= exp

(
y log λi − log(y!)− λi

)
= exp

( 1

τ2
(
yθi + a(y, τ)− b(θi)

))
,

� where
τ2 = 1 , a(y) = − log(y!) and b(θi) = eθi .

• The natural link function g : (0,∞) → R is given by

g(x) = log x ∀ x > 0 . (22)

4.3 Maximum�Likelihood Estimator for β

• Since we assumed, that the distributions of the sample variables Y1, . . . , Yn belong to an exponential family,
it is possible to estimate the parameter vector β by using the maximum�likelihood method.

• In order to show this, we �rst discuss some properties of the loglikelihood function logL(Y,θ) of the random
sample Y = (Y1, . . . , Yn)

⊤ and its partial derivatives with respect to the components β1, . . . , βm of β.

4.3.1 Loglikelihood Function and its Partial Derivatives

• From (2) � (3) and from (11) it follows that the loglikelihood function logL(Y,θ) of the random sample
Y = (Y1, . . . , Yn)

⊤ can be written as a function logL(Y,β) of β.

� From (2) � (3) it follows that

logL(Y,θ) =
n∑

i=1

1

τ2
(
Yiθi + a(Yi, τ)− b(θi)

)
. (23)

� This and (11) imply that

logL(Y,β) =

n∑
i=1

1

τ2

(
Yiψ

(
h(x⊤

i β)
)
+ a(Yi, τ)− b

(
ψ
(
h(x⊤

i β)
)))

. (24)

• For generalized linear models with natural link function, (13) and (23) imply that

logL(Y,β) =
n∑

i=1

1

τ2
(
Yix

⊤
i β + a(Yi, τ)− b

(
x⊤
i β
))
. (25)

For the computation of the maximum�likelihood estimators, the knowledge of the so�called score function, i.e.,
the partial derivative of the loglikelihood function, is useful, as well as the Fisher�information matrix, which is
de�ned as follows.
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De�nition For arbitrary i, j = 1, . . . ,m let

Ui(β) =
∂

∂βi
logL(Y,β) and Iij(β) = E

(
Ui(β)Uj(β)

)
.

Then the m�dimensional random vector U(β) =
(
U1(β), . . . , Um(β)

)⊤
is called the score vector and the

(deterministic) m×m�matrix I(β) =
(
Iij(β)

)
is called the Fisher�information matrix.

By using the notation
dµi

dηi
(β) =

dh(s)

ds

∣∣
s=ηi

=
(dg(t)

dt

)−1∣∣
t=h(ηi)

(26)

we get the following result.

Theorem 4.1 For arbitrary j, k = 1, . . . ,m it holds that

Uj(β) =
n∑

i=1

xij
(
Yi − µi(β)

) dµi

dηi
(β)

1

σ2
i (β)

(27)

and

Ijk(β) =
n∑

i=1

xijxik

(dµi

dηi
(β)
)2 1

σ2
i (β)

(28)

or in matrix notation

U(β) = X⊤V−1(β)
dµ

dη
(β) (Y − µ(β)) and I(β) = X⊤V−1(β)

(dµ
dη

(β)
)2

X , (29)

where

V(β) = diag
(
σ2
i (β)

)
and

dµ

dη
(β) = diag

(dµi

dηi
(β)
)
.

Proof

• The loglikelihood function, given in (23) or (24), respectively, can be written in the form

logL(Y,β) =

n∑
i=1

1

τ2
ℓ(i)(θi),

where ℓ(i)(θi) = Yiθi + a(Yi, τ)− b(θi) and θi = ψ
(
h(x⊤

i β)
)
.

• Therefore, it holds for each j = 1, . . . ,m that

Uj(β) =

n∑
i=1

1

τ2
∂ℓ(i)

∂βj
(θi) , (30)

where multiple use of the chain rule yields

∂ℓ(i)

∂βj
=

∂ℓ(i)

∂θi

∂θi
∂µi

∂µi

∂ηi

∂ηi
∂βj

. (31)

� On the other hand, it obviously holds that ∂ηi/∂βj = xij and from Lemma 4.2 it follows that

∂ℓ(i)

∂θi
= Yi − b(1)(θi)

Lemma 4.2
= Yi − µi

or ( ∂θi
∂µi

)−1

=
∂µi

∂θi

Lemma 4.2
= b(2)(θi)

Lemma 4.2
=

1

τ2
σ2
i .
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� This and (30) � (31) imply (27).

• In order to show (28) it is enough to notice that for arbitrary i, j = 1, . . . , n

E
(
(Yi − µi)(Yj − µj)

)
=


σ2
i für i = j,

0 for i ̸= j.

because of the independence of the sample variables Y1, . . . , Yn.

� From this and (27) it follows that

Ijk(β) = E
(
Uj(β)Uk(β)

)
=

n∑
i=1

xijxik

(dµi

dηi
(β)
)2 1

σ4
i (β)

E
(
(Yi − µi)

2
)

=

n∑
i=1

xijxik

(dµi

dηi
(β)
)2 1

σ2
i (β)

.

� Therefore, (28) is proved. �

Corollary 4.1 Let
(
g(EY1), . . . , g(EYn)

)⊤
= Xβ be a GLM with natural link function g : G → R. Then it

holds for arbitrary j, k = 1, . . . ,m that

Uj(β) =
1

τ2

n∑
i=1

xij
(
Yi − µi(β)

)
or U(β) =

1

τ2
X⊤(Y − µ(β)) (32)

and

Ijk(β) =
1

τ4

n∑
i=1

xijxikσ
2
i (β) or I(β) =

1

τ4
X⊤V(β)X . (33)

Proof Since g : G → R is a natural link function, we have θi = ηi for each i = 1, . . . , n. This and Lemma 4.2
imply that

dµi

dηi
= b(2)(θi) =

1

τ2
σ2
i .

Now, the statement follows from Theorem 4.1. �

4.3.2 Hessian Matrix

Besides the (score) vector U(β), which consists of the �rst partial derivatives of the loglikelihood function
logL(Y,β), also the Hessian matrix, i.e., the m×m�matrix

W(β) =
(
Wij(β)

)
=

(
∂2

∂βi∂βj
logL(Y,β)

)
,

consisting of the second partial derivatives of the loglikelihood function, is needed.



4 GENERALIZED LINEAR MODELS 91

Theorem 4.2

• For each GLM it holds that

W(β) = X⊤R(β)diag
(
Yi − µi(β)

)
X− I(β) , (34)

where I(β) is the Fisher�information matrix, given in (29), and R(β) = diag
(
vi(β)

)
is an (n×n)�diagonal

matrix with

vi(β) =
1

τ2
d2u(s)

ds2
∣∣
s=x⊤

i β
and u = ψ ◦ h .

• For a GLM with natural link function it particularly holds that

W(β) = −I(β) . (35)

Proof

• From formula (27) in Theorem 4.1 it follows that for arbitrary j, k = 1, . . . ,m

Wjk(β) =
∂

∂βk
Uj(β)

(27)
=

∂

∂βk

n∑
i=1

xij
(
Yi − µi(β)

) dµi

dηi
(β)

1

σ2
i (β)

=
n∑

i=1

xij

((
Yi − µi(β)

) ∂

∂βk

(dµi

dηi
(β)

1

σ2
i (β)

)
− dµi

dηi
(β)

1

σ2
i (β)

∂µi

∂βk
(β)

)
.

� Here with the notation ηi = x⊤
i β we get from Lemma 4.2 that

dµi

dηi
(β)

1

σ2
i (β)

= b(2)
(
ψ ◦ h(ηi)

)
(ψ ◦ h)(1)(ηi)

1

τ2 b(2)
(
ψ ◦ h(ηi)

) =
1

τ2
(ψ ◦ h)(1)(ηi)

and therefore
∂

∂βk

(dµi

dηi
(β)

1

σ2
i (β)

)
=

1

τ2
(ψ ◦ h)(2)(ηi)xik .

� Furthermore, it holds that
∂µi

∂βk
=

dµi

dηi

∂ηi
∂βk

.

• Altogether, it follows that

Wjk(β) =
n∑

i=1

xijxik(Yi − µi)vi −
n∑

i=1

xijxik

(dµi

dηj

)2 1

σ2
i

.

• This and the representation formula (29) for the Fisher�information matrix I(β) yield (34).

• Since the superposition u = ψ ◦h of a GLM with natural link function is the identity function, it holds
in this case that R(β) = 0. Therefore, (35) follows from (34). �

Remark For the examples of GLM considered in Section 4.2, we get the following formulas for U(β) and W(β)
from Theorems 4.1 and 4.2 or from Corollary 4.1, respectively.

1. For the linear model EY = Xβ with normally distributed sample variables (and with the link function
g(x) = x), one has that (dµ/dη)(β) is the identity matrix. Therefore, it holds that

U(β) =
1

σ2
X⊤(Y −Xβ) , W(β) = − 1

σ2
X⊤X , (36)

cf. Section 2.2.
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2. For the logistic regression model (with the natural link function) it holds that

U(β) = X⊤(Y − π) , W(β) = −X⊤diag
(
πi(1− πi)

)
X , (37)

where π = (π1, . . . , πn)
⊤ and the probabilities πi can be expressed by β (cf.(20)).

3. For Poisson�distributed sample variables with natural link function it holds that

U(β) = X⊤(Y − λ) , W(β) = −X⊤diag
(
λi)
)
X , (38)

where λ = (λ1, . . . , λn)
⊤ and λi = ex

⊤
i β.

4.3.3 Maximum�Likelihood Equation and Numerical Approach

• In order to determine the maximum�likelihood estimator for β, the maximum�likelihood equation

U(β) = o (39)

is considered, which in general is nonlinear and therefore often can be solved only by using iterative methods.

• Because of Theorem 4.1 the equation (39) is equivalent to

X⊤V−1(β)
dµ

dη
(β) (Y − µ(β)) = o . (40)

Remark

• From Corollary 4.1 it follows that, in the case of a natural link function, (40) simpli�es to:

X⊤ (Y − µ(β)) = o . (41)

• Since we furthermore assume that 0 < σ2
i (β) < ∞ for each i = 1, . . . , n and that the design matrix

X has full column rank, the matrix W(β) = − τ−4X⊤V(β)X of the second partial derivatives is
negative de�nite.

• Hence, it holds that if (41) has a solution, then the solution is a uniquely determined maximum�

likelihood estimator β̂ for β.

Now, we discuss the basic ideas of two numerical iteration methods for solving the maximum�likelihood equation
(39). We consider a sequence of random vectors β̂0, β̂1, . . . : Ω → Rm, which converge under certain conditions

to a random vector β̂ such that β̂ is a solution of (39).

1. Newton's Method

• Let β̂0 : Ω → Rm be a suitably chosen start vector and let the iterations β̂1, . . . , β̂k be already
computed.

• For the computation of the (k+1)�th iteration β̂k+1 from β̂k, the left hand sideU(β) of the maximum�
likelihood equation (39) is replaced by

� the �rst two terms U(β̂k) +W(β̂k)(β − β̂k) of the Taylor series expansion of U(β) at β = β̂k.

� The (k + 1)�th iteration β̂k+1 is also a solution of the equation

U(β̂k) +W(β̂k)(β − β̂k) = o . (42)
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• If the matrix W(β̂k) is invertible, then it follows from (42) that

β̂k+1 = β̂k −W−1(β̂k)U(β̂k) , (43)

• For the constructed sequence β̂0, β̂1, . . . to converge to β̂, this vector β̂ has to be a solution of (39)

and the start vector β̂0 has to be close enough to β̂.

2. Fisher�Scoring

• Now we consider a variation of Newton's method, the so�called scoring�method of Fisher, where the
Hessian matrix W(β) in (42) is replaced by the expectation matrix EW(β).

� This has the advantage that the (m×m)�matrix EW(β) is invertible.

� From Theorems 4.1 and 4.2 it follows that

EW(β)
(34)
= E

(
X⊤R(β)diag

(
Yi − µi(β)

)
X− I(β)

)
= − I(β)

(29)
= −X⊤V−1(β)

(dµ
dη

(β)
)2

X ,

where the second equality follows from the identity EYi = µi(β).

� The last term is an invertible (m×m)�matrix because we assumed that the design matrix X has
full column rank and that (dµi/dηi)(β) ̸= 0 for each i = 1, . . . , n.

• Therefore, instead of (43) the following iteration equation is considered:

β̂k+1 = β̂k +
(
X⊤Z(β̂k)X

)−1

(
X⊤Z(β̂k)

(dη
dµ

)
(β̂k)

(
Y − µ(β̂k)

))
, (44)

where

Z(β) = V−1(β)
(dµ
dη

(β)
)2

and
(dη
dµ

)
(β) =

(dµ
dη

)−1

(β) .

• In the case of a natural link function it follows from Lemma 4.2 that

dµi

dηi
= b(2)(θi) =

1

τ2
σ2
i or Z(β) =

1

τ4
V(β) .

• Then the iteration equation (44) has the form:

β̂k+1 = β̂k + τ2
(
X⊤V(β̂k)X

)−1
(
X⊤(Y − µ(β̂k)

))
.

Remark

• If the random sample Y in (44) is replaced by the so�called pseudorandom variable

Y(β) = Xβ +
(dη
dµ

)
(β)
(
Y − µ(β)

)
,

the iteration equation (44) can be written in the following form:(
X⊤Z(β̂k)X

)
β̂k+1 = X⊤Z(β̂k)Y(β̂k) .

• This equation can be considered as a weighted normal equation for β̂k+1 with respect to the pseudo-

random sample Y(β̂k), where the weights, i.e., the entries of the diagonal matrix Z(β̂k) also depend

on the k-th iteration β̂k.
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4.3.4 Asymptotic Normality of ML Estimators; Asymptotic Tests

• The notion of the convergence in distribution of random vectors is de�ned as follows.

� Let m ∈ N be an arbitrary natural number and let Z,Z1,Z2, . . . : Ω → Rm be arbitrary random
vectors. We say that {Zn} converges in distribution to Z if

lim
n→∞

P(Zn ≤ x) = P(Z ≤ x) (45)

for each x ∈ Rm with P(Z = x) = 0. Notation: Zn
d−→ Z.

• Now, we discuss asymptotic (distributional) properties of maximum�likelihood estimators β̂ for β or asymp-
totic tests if the sample size n tends to in�nity.

� Here we only consider the case of the natural link function g : G→ R
� and index the random sample Y, the loglikelihood function logL(Y,β), the score vector U(β), the

Fisher�information matrix I(β) and the ML estimator β̂ each with n.

1. Asymptotic distributional properties

Under certain conditions (cf. Section VII.2.6 in Pruscha (2000)) one can show that: For each β ∈ Rm with
x⊤
i β ∈ Θ for i = 1, 2, . . . there exists

• a consistent ML estimator β̂n for β, i.e., for each ε > 0 it holds that

lim
n→∞

Pβ

(
|β̂n − β| ≤ ε,Un(β̂n) = o

)
= 1 , (46)

• a sequence {Γn} of invertible (m ×m)�matrices, which can depend on β and for which it holds that
limn→∞ Γn = 0,

• as well as a symmetric and positive de�nite (m×m)�matrix K(β), such that

lim
n→∞

Γ⊤
n In(β)Γn = K−1(β) (47)

and
Γ−1
n

(
β̂n − β

) d−→ N
(
o,K(β)

)
or 2

(
logLn(Yn, β̂n)− logLn(Yn,β)

) d−→ χ2
m . (48)

2. Asymptotic tests

• For large n the test statistic

Tn = 2
(
logLn(Yn, β̂n)− logLn(Yn,β0)

)
can be considered for the construction of an asymptotic test for the pair of hypotheses

H0 : β = β0 vs. H1 : β ̸= β0.

Because of (48), H0 is rejected if Tn > χ2
m,1−α.

• The null hypothesis H0 : β = o is particularly interesting. If it is rejected, more speci�c hypotheses
can be tested, e.g., for each i = 1, . . . ,m the hypothesis H0 : βi = 0.
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Remark

• If In(β) is positive de�nite for each su�ciently large n and if

lim
n→∞

I−1
n (β) = 0 , (49)

then we can put Γn = I
−1/2
n in (47) and (48), which implies that K(β) is the identity matrix.

• In (37) we have already shown that in the logistic regression model it holds that
In(β) = X⊤diag

(
πi(1− πi)

)
X.

� Since we assume that 0 < πi(β) < 1 for each i = 1, 2, . . . and that the design matrix X has full
column rank, the matrix In(β) is positive de�nite in this case.

� If furthermore infi≥1 πi(1−πi) > 0 and if the entries xij of the design matrix X are chosen in such

a way that limn→∞
(
X⊤X

)−1
= 0, then (49) also holds.

• Now, let K(β) be the identity matrix. Because of (47) and (48), H0 : βi = 0 is rejected if∣∣(β̂n

)
i

∣∣√(
I−1
n (β̂n)

)
ii

> z1−α/2 , (50)

where z1−α/2 is the (1− α/2)�quantile of the N(0, 1)�distribution.

4.4 Weighted LS Estimator for Categorical Regression

Instead of the maximum-likelihood approach to estimate the parameter vector β, discussed in Section 4.3, we
now consider a weighted LS estimator for β for the categorical regression model.

4.4.1 Estimation of the Expectation Vector

Recall (cf. Section 4.2.2): In the binary categorical regression model all sample variables Y1, . . . , Yn are Bernoulli�
distributed, i.e., they can only take the values 0 and 1 with positive probability.

• We use the notation
πi = P(Yi = 1)

(
= µi = EYi

)
∀ i = 1, . . . , n ,

where it is assumed that 0 < πi < 1 for each i = 1, . . . , n.

• In this case the probabilities π1, . . . , πn are linked to the parameter vector β by using a link function
g : (0, 1) → R, i.e., (

g(π1), . . . , g(πn)
)⊤

= Xβ . (51)

• In order to estimate the vectors π = (π1, . . . , πn)
⊤ or g(π) =

(
g(π1), . . . , g(πn)

)⊤
, we assume that we

are able to observe ni > 0 independent and identically distributed �copies� Yi1, . . . , Yini of Yi for each
i = 1, . . . , n. The total sample size is then equal to

∑n
i=1 ni.

• For each i = 1, . . . , n

π̂i =
1

ni

ni∑
j=1

Yij (52)

is a natural estimator for πi.

• This leads to the estimators π̂ = (π̂1, . . . , π̂n)
⊤ or g(π̂) =

(
g(π̂1), . . . , g(π̂n)

)⊤
for π or g(π), respectively.
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One can easily see that the estimator π̂ is unbiased for π and that its covariance matrix K(π̂) =
(
Cov (π̂i, π̂j)

)
has the following form.

Lemma 4.3 It holds that
E π̂ = π , Var π̂i = πi(1− πi)/ni (53)

and
K(π̂) = diag

(
Var π̂i

)
. (54)

Proof The statement follows directly from the fact that the random variables n1π̂1, . . . , nnπ̂n are independent
and binomially distributed with niπ̂i ∼ B(ni, πi) for each i = 1, . . . , n. �

Furthermore, the following central limit theorem implies that the estimator g(π̂) =
(
g(π̂1), . . . , g(π̂n)

)⊤
is asymp-

totically normally distributed.

Theorem 4.3 If ni → ∞ for each i = 1, . . . , n, such that∑n
j=1 nj

ni
→ λi ∈ [1,∞) ∀ i = 1, . . . , n , (55)

then it holds that (∑n

j=1
nj

)1/2(
g(π̂)− g(π)

) d−→ N(o,K) , (56)

where
K = diag(αi) and αi = λi(g

(1)(πi))
2πi(1− πi) . (57)

Proof

• Since we assume that the link function g : (0, 1) → R is twice continuously di�erentiable, by Taylor
series expansion we get that for each i = 1, . . . , n

g(π̂i)− g(πi) = g(1)(πi)
(
π̂i − πi

)
+ g(2)(Zi)

(
π̂i − πi

)2
= g(1)(πi)

(
π̂i − πi

)
+Ri ,

where Ri = g(2)(Zi)
(
π̂i − πi

)2
and Zi : Ω → R is a random variable taking values between π̂i and πi.

• From the central limit theorem for sums of independent and identically distributed random variables
(cf. Theorem WR-5.16) it follows that

n
1/2
i

(
π̂i − πi

) d−→ N(0, πi(1− πi)) ∀ i = 1, . . . , n . (58)

• Since π̂i−πi → 0 and therefore also Zi−πi → 0 or g(2)(Zi) → g(2)(πi) with probability 1, it also holds

that n
1/2
i Ri

P−→ 0 or (∑n

j=1
nj

)1/2
Ri =

(∑n
j=1 nj

ni

)1/2

n
1/2
i Ri

P−→ 0 .

• Altogether, Slutsky's theorem (cf. Theorems WR-5.9 und WR-5.11) implies

(∑n

j=1
nj

)1/2(
g(π̂i)− g(πi)

)
=

(∑n
j=1 nj

ni

)1/2

g(1)(πi)n
1/2
i

(
π̂i − πi

)
+
(∑n

j=1
nj

)1/2
Ri

d−→ N
(
0, λi(g

(1)(πi))
2πi(1− πi)

)
.

• As the random variables g(π̂1)− g(π1), . . . , g(π̂i)− g(πi) are independent, the statement is proved. �
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4.4.2 Asymptotic Normality of the LS�Estimator

The following approach for the estimation of the parameter vector β is motivated by the form of the asymptotic
covariance matrix K in Theorem 4.3.

• In a similar way as is Section 2.1 we now consider the method of least squares for getting an estimator β̂
for the unknown regression coe�cients β1, . . . , βm.

• A random vector β̂ = (β̂1, . . . , β̂m)⊤ shall be determined, such that the weighted squared error

e(β) =

n∑
i=1

(
g(π̂i)− x⊤

i β
)2

σ̂2
ii

(59)

gets minimal for β = β̂, where σ̂2
ii =

(∑n
j=1 nj/ni

)
(g(1)(π̂i))

2π̂i(1− π̂i) and it is assumed that the weights

σ̂2
ii are positive.

Remark

• The weighted sum e(β) of the squared residuals
(
g(π̂i)− x⊤

i β
)2

in (59) can be written as follows: By

using the notation K̂ = diag
(
σ̂2
ii

)
it holds that

e(β) =
(
g(π̂)−Xβ

)⊤
K̂−1

(
g(π̂)−Xβ

)
. (60)

• In the same way as in the proof of Theorem 2.1 one can show that the weighted squared error e(β) is
minimal if and only if β is a solution of the following normal equation:

X⊤K̂−1Xβ = X⊤K̂−1g(π̂) . (61)

• Since the matrix X⊤K̂−1X is invertible, (61) has the uniquely determined solution

β̂ = (X⊤K̂−1X)−1X⊤K̂−1g(π̂) . (62)

Now we show that the weighted LS�estimator β̂ in (62) is asymptotically normally distributed if the (sub�) sample
sizes ni grow unboundedly for each i = 1, . . . , n.

Here we need the following vectorial versions of Slutsky's theorem (cf. Theorems WR�5.9 and WR�5.11) and of
the �continuous mapping theorem� (cf. Theorem WR�5.12).

Lemma 4.4

• Let m ∈ N, let Y,Yn,Zn : Ω → Rm be arbitrary random vectors over the very same probability space and
let c ∈ Rm.

• If Yn
d−→ Y and Zn

d−→ c, then Yn + Zn
d−→ Y + c and Y⊤

nZn
d−→ c⊤Y.

Lemma 4.5

• Let m ∈ N, let Z,Z1,Z2, . . . : Ω → Rm be arbitrary random vectors and let φ : Rm → R be a continuous
function.

• Then it holds that φ(Zn)
d−→ φ(Z) provided that Zn

d−→ Z.

The proofs of Lemmas 4.4 and 4.5 are similar to the proofs of Theorems WR�5.9, WR�5.11 and WR�5.12.
Therefore, they are omitted.
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Theorem 4.4 If ni → ∞ for each i = 1, . . . , n, such that∑n
j=1 nj

ni
→ λi ∈ [1,∞) ∀ i = 1, . . . , n , (63)

then it holds that (∑n

j=1
nj

)1/2(
β̂ − β

) d−→ N
(
o,
(
X⊤K−1X

)−1)
, (64)

where K = diag(αi) is the diagonal matrix considered in Theorem 4.3.

Proof

• It follows from the de�nition of β̂ in (62) that

β̂ − β = (X⊤K̂−1X)−1X⊤K̂−1g(π̂)− β = (X⊤K̂−1X)−1X⊤K̂−1
(
g(π̂)−Xβ

)
= (X⊤K̂−1X)−1X⊤K̂−1

(
g(π̂)− g(π)

)
,

where in the last equality we used that g(π) = Xβ; cf. (51).

• In Theorem 4.3 we have already shown that(∑n

j=1
nj

)1/2(
g(π̂)− g(π)

) d−→ N(o,K) ,

where the asymptotic covariance matrix K is given in (57).

• Moreover, it holds that K̂
P−→ K if ni → ∞ for each i = 1, . . . , n.

• Altogether with

� Slutsky's theorem (cf. Lemma 4.4),

� the �continuous mapping theorems� (cf. Lemma 4.5) as well as

� Theorem 1.3 about linear transformations of normally distributed random vectors,

it follows that(∑n

j=1
nj

)1/2(
β̂ − β

)
=

(∑n

j=1
nj

)1/2
(X⊤K̂−1X)−1X⊤K̂−1

(
g(π̂)− g(π)

)
=

(∑n

j=1
nj

)1/2
(X⊤K̂−1X)−1X⊤K̂−1

(
(X⊤K−1X)−1X⊤K−1

)−1︸ ︷︷ ︸
P−→ I

× (X⊤K−1X)−1X⊤K−1
(
g(π̂)− g(π)

)
d−→ N

(
o,
(
(X⊤K−1X)−1X⊤K−1

)
K
(
(X⊤K−1X)−1X⊤K−1

)⊤)
= N

(
o,
(
X⊤K−1X

)−1)
. �

Remark

• If n1 + . . .+ nn is a large number, the test statistic

T =
(∑n

j=1
nj

)1/2
β̂i

/√
k̃ii

can be considered for the construction of an asymptotic test for the pair of hypotheses H0 : βi = 0 vs.

H1 : β ̸= 0, where k̃ii is the i-th diagonal entry of the matrix K̃ =
(
X⊤K̂−1X

)−1
.

• Because of Theorem 4.4, H0 is rejected if |T | > z1−α/2.
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4.4.3 Evaluation of the Goodness of Fit

An important problem is the choice of a suitable design matrix X in order to �t the model g(π) = Xβ in the
best possible way to given data. It is possible to answer this question by using the following result.

Theorem 4.5 Under the conditions of Theorem 4.3 it holds that

n∑
j=1

nj
(
g(π̂)−Xβ̂

)⊤
K̂−1

(
g(π̂)−Xβ̂

) d−→ χ2
n−m . (65)

Proof

• In Theorem 4.3 we have already shown that the random vector
(∑n

j=1 nj
)1/2(

g(π̂)−Xβ
)
is approxi-

mately N(o,K) distributed.

• Since β̂
P−→ β and K̂

P−→ K, the statement follows with

� Slutsky's Theorem (cf. Lemma 4.4),

� the �continuous mapping theorems� (cf. Lemma 4.5) as well as

� Theorem 1.9 about quadratic forms of normally distributed random vectors. �

Remark

• Because of Theorem 4.5 the quantity
∑n

j=1 nj
(
g(π̂)−Xβ̂

)⊤
K̂−1

(
g(π̂)−Xβ̂

)
can be seen as a measure

for the goodness of �t of the model g(π) = Xβ to given data.

• The goodness of �t is appraised as su�ciently good if

n∑
j=1

nj
(
g(π̂)−Xβ̂

)⊤
K̂−1

(
g(π̂)−Xβ̂

)
< χ2

n−m,1−α .

• On the other hand, the dimensions of X should be as small as possible, which means in particular that
for each i = 1, . . . ,m the null hypothesis of the test H0 : βi = 0 vs. H1 : βi ̸= 0 should be clearly
rejected.
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5 Goodness�of�Fit Tests

• In this chapter the sample variables are denoted by X1, . . . , Xn, where we will assume from now on that
X1, . . . , Xn : Ω → R is a sequence of independent and identically distributed random variables.

• The assumptions, we made so far regarding the distribution P of the sample variables X1, . . . , Xn, either
have been strictly qualitative (discrete or absolutely continuous distribution) or parametric, where in the
latter case it has been assumed

� that P belongs to a parametric family {Pθ, θ ∈ Θ} of distributions with Θ ⊂ Rm for some integer
m ≥ 1,

� and that merely the parameter vector θ = (θ1, . . . , θm)⊤ or some of its components, respectively, are
unknown.

• In the following, we discuss so�called goodness�of��t tests.

� To begin with, we consider a test to verify the hypothesis H0 : P = P0 that the distribution P of the
sample variables is equal to a given (hypothetical) distribution P0.

� Afterwards, we construct tests to check if P belongs to a given (parametric) class of distributions
{Pθ, θ ∈ Θ}.

5.1 Kolmogorov�Smirnov Test

5.1.1 Empirical Distribution Function; KS Test Statistic

• There are di�erent tests suggested in literature to verify the hypothesis H0 : P = P0 that the distribution P
of the independent and identically distributed random variables X1, . . . , Xn is equal to a given distribution
P0.

• This kind of null hypothesis is considered for the Kolmogorov�Smirnov test, which is based on the analysis
of the empirical distribution function F̂n : R× Rn → [0, 1], introduced in Section I�1.5, where

F̂n(t;x1, . . . , xn) =
#{i : 1 ≤ i ≤ n, xi ≤ t}

n
. (1)

• The sample function Tn : Rn → [0,∞) is considered with

Tn(x1, . . . , xn) =
√
n sup

t∈R
| F̂n(t;x1, . . . , xn)− F0(t)| . (2)

• In Section I�1.5.3 we have already shown that the distribution of the KS test statistic Tn(X1, . . . , Xn) does
not depend on P0 if it is assumed that the distribution function F0 : R → [0, 1], which corresponds to P0,
is continuous, cf. Theorem I�1.19.

• Let sn,1−α be the (1 − α)�quantile of the distribution of Tn(X1, . . . , Xn) under an arbitrary continuous
distribution function F0. The Kolmogorov�Smirnov test rejects the null hypothesis H0 : P = P0 if

Tn(x1, . . . , xn) > sn,1−α . (3)

Remark

• The quantiles sn,1−α can be determined using Monte Carlo simulation, where the distribution function
F0 of the standard�uniform distribution on [0, 1] can be taken as a basis, cf Corollary I�1.3.

• If it is not assumed that F0 is continuous, then the decision rule, considered in (3), provides a test
whose level can be smaller than α.

• However, if it is possible to determine the quantile s′n,1−α of Tn(X1, . . . , Xn) under F0, e.g., using MC
simulation, then Tn(x1, . . . , xn) > s′n,1−α is a test, which taps the full level α even if F0 is discontinuous.
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5.1.2 Asymptotic Distribution

We now analyze the asymptotic distribution of the KS test statistic Tn(X1, . . . , Xn), introduced in (2), as n→ ∞.
To begin with, we provide some auxiliary tools.

In particular we need the following continuity theorem for characteristic functions of random vectors, which is a
multidimensional generalization of Theorem WR�5.20 and which we will state without proof.

Lemma 5.1 Let m ∈ N and let Z,Z1,Z2, . . . : Ω → Rm be arbitrary random vectors with characteristic functions

φZn and φZ. It holds that Zn
d−→ Z if and only if

lim
n→∞

φZn(t) = φZ(t) ∀ t ∈ Rm . (4)

Moreover, we need amultivariate central limit theorem for sums of independent and identically distributed random
vectors,

• whose proof can be reduced, using Lemma 5.1, to the corresponding central limit theorem for real�valued
random variables (cf. Theorem WR�5.16).

• In literature this approach is sometimes called theCramèr�Wold device.

Lemma 5.2

• Let m ∈ N and let Z1,Z2, . . . : Ω → Rm be a sequence of independent and identically distributed random
vectors with expectation vector µ = (µ1, . . . , µm)⊤ and covariance matrix K.

• Then it holds that

lim
n→∞

P
( (Z1 + . . .+ Zn)− nµ√

n
≤ x

)
= ΦK(x) ∀x ∈ Rm , (5)

where ΦK : Rm → [0, 1] denotes the distribution function of the N(o,K)�distribution.

Proof

• Let Zn = (Zn1, . . . , Znm)⊤. Because of Lemma 5.1 the convergence in distribution stated in (5) is
equivalent to

lim
n→∞

φn(t) = φ(t) ∀ t ∈ Rm, (6)

� where φn(t) is the characteristic function of (Z1 + . . .+ Zn − nµ)/
√
n with

φn(t) = E exp
(
i

m∑
j=1

tj
(Z1j + . . .+ Znj)− nµj√

n

)
� and φ(t) is the characteristic function of the N(o,K)�distribution with

φ(t) = exp
(
− 1

2
t⊤Kt

)
. (7)

• Furthermore, one can easily see that

φn(t) = E exp
(
i

n∑
k=1

m∑
j=1

tj(Zkj − µj)

√
n

)
∀ t = (t1, . . . , tm)⊤ ∈ Rm (8)

and

E
( m∑
j=1

tj(Zkj − µj)
)
= 0 , Var

( m∑
j=1

tj(Zkj − µj)
)
= t⊤Kt ∀ k ∈ N . (9)
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• If t⊤Kt = 0, then it follows from (9)

� that
∑m

j=1 tj(Zkj − µj) = 0 with probability 1 for arbitrary k = 1, . . . , n and n ≥ 1.

� This and (7) � (8) imply that φn(t) = 1 = φ(t) for each n ≥ 1, i.e., (6).

• Now let t⊤Kt > 0.

� From (8) it follows that φn(t) is equal to the value of the characteristic function of the real�valued
random variable

∑n
k=1

∑m
j=1 tj(Zkj − µj)/

√
n at 1.

� Moreover, it follows from (7) that φ(t) is the value of the characteristic function of the one�
dimensional normal distribution N(0, t⊤Kt) at 1.

� On the other hand, Theorem WR�5.16, i.e., the (1�dimensional) central limit theorem for sums of
independent and identically distributed (real�valued) random variables, implies that for n→ ∞

n∑
k=1

m∑
j=1

tj(Zkj − µj)

√
n

d−→ N(0, t⊤Kt) . (10)

� This, (7) � (8) and Theorem WR-5.20, i.e., the continuity theorem for characteristic functions of
real�valued random variables, imply the validity of (6). �

The following limit theorem, already mentioned in Section I�1.5.3, provides an approximation formula for the
distribution function of Tn(X1, . . . , Xn) for a large sample size n.

Theorem 5.1 Let the distribution function F0 : R → [0, 1] be continuous. Assuming that H0 : P = P0 is true,
it holds that

lim
n→∞

P
(
Tn(X1, . . . , Xn) ≤ x

)
= K(x) ∀x ∈ R ,

where K : R → [0, 1] is the distribution function of the so�called Kolmogorov distribution with

K(x) =


1− 2

∞∑
k=1

(−1)k−1 exp(−2k2x2) , if x > 0,

0 , if x ≤ 0.

(11)

Proof

• We only sketch the idea of the proof since the full proof of Theorem 5.1 (cf., e.g., A. van der Vaart and
J. Wellner (1996)) exceeds the scope of these lecture notes

� as it requires profound tools from the theory of stochastic processes.

� In particular, the term of convergence in distribution in function spaces as well as a so�called
functional central limit theorem is needed,

� which can be seen as an (in�nite dimensional) generalization of the classical central limit theorems
for sums of real�valued random variables (cf. Section WR�5.3) or of �nite�dimensional random
vectors (cf. Lemma 5.2).

• As the distribution of Tn(X1, . . . , Xn) does not depend on F0 (cf. Theorem I�1.19), we can w.l.o.g
assume that F0 is the distribution function of the uniform distribution on [0, 1], i.e., F0(t) = t for each
t ∈ [0, 1].

� In order to analyze the asymptotic distribution of Tn(X1, . . . , Xn) for n → ∞, we use the abbre-
viating notation

Bn(t) =
√
n
(
F̂n(t;X1, . . . , Xn)− F0(t)

)
∀ t ∈ [0, 1] , (12)

� where the family of random variables {Bn(t), t ∈ [0, 1]} is a stochastic process, which is called an
empirical process in literature.
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• For arbitrary t1, . . . , tm ∈ [0, 1] it then holds that

√
n
(
Bn(t1), . . . , Bn(tm)

)
=

n∑
i=1

(
Yi(t1)− t1, . . . , Yi(tm)− tm

)
,

where

Yi(tj) =

 1 , if Xi ≤ tj ,

0 , if Xi > tj .

� For each n ≥ 1 the random vector
√
n
(
Bn(t1), . . . , Bn(tm)

)
can be written as a sum of n inde-

pendent and identically distributed random vectors with expectation vector o, whose covariance
matrix K = (σ2

ij) is given by σ2
ij = min{ti, tj} − titj .

� From Lemma 5.2 it now follows that for n→ ∞(
Bn(t1), . . . , Bn(tm)

) d−→
(
B(t1), . . . , B(tm)

)
, (13)

where
(
B(t1), . . . , B(tm)

)
is a normally distributed random vector with(

B(t1), . . . , B(tm)
)
∼ N(o,K).

� This and the continuous mapping theorem for random vectors (cf. Lemma 4.5) imply that

max
i=1,...,m

√
n
∣∣F̂n(ti;X1, . . . , Xn)− F0(ti)

∣∣ d−→ max
i=1,...,m

∣∣B(ti)
∣∣ . (14)

• It is easy to see that the distribution N(o,K) of the random vector
(
B(t1), . . . , B(tm)

)
� can be considered as the �nite-dimensional distribution of the so�called Brownian bridge process

{B(t), t ∈ [0, 1]} with B(t) = X(t) − tX(1), where {X(t), t ∈ [0, 1]} is a (standard�) Wiener�
process,

� i.e., {X(t), t ∈ [0, 1]} is a stochastic process with continuous trajectories and independent incre-
ments, such thatX(0) = 0 andX(t2)−X(t1) ∼ N(0, t2−t1) for arbitrary t1, t2 ∈ [0, 1] with t1 < t2,
cf. Section 2.4 of the lecture notes �Elementare Wahrscheinlichkeitsrechnung und Statistik�.

• Using the theory of convergence in distribution in function spaces as well as a corresponding functional
central limit theorem, it is possible to show that not only the ��nite�dimensional� convergences (13)
and (14) hold but also (

Bn(t), t ∈ [0, 1]
) d−→

(
B(t), t ∈ [0, 1]

)
(15)

and
max
t∈[0,1]

√
n
∣∣F̂n(t;X1, . . . , Xn)− F0(t)

∣∣ d−→ max
t∈[0,1]

∣∣B(t)
∣∣ . (16)

• Furthermore, one can show that the distribution function of the maximum maxt∈[0,1]

∣∣B(t)
∣∣ of the

Brownian bridge {B(t), t ∈ [0, 1]} is given by (11). �

Remark

• Because of Theorem 5.1 the hypothesis H0 : P = P0 is rejected for a su�ciently large sample size (as
a rule of thumb it holds that n > 40, cf. the remark at the end of Section I�1.5.3) if

Tn(x1, . . . , xn) > ξ1−α ,

• where ξ1−α denotes the (1− α)�quantile of the Kolmogorov�distribution, given in (11), i.e., ξ1−α is a
solution of the equation K(ξ1−α) = 1− α.
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5.1.3 Pointwise and Uniform Consistency

In this section we consider some properties of the Kolmogorov�Smirnov test.

In order to show the (pointwise) consistency of the KS test, we need the Glivenko�Cantelli theorem (cf. Theorem I�
1.18), i.e.,

PF0

(
lim
n→∞

sup
t∈R

∣∣F̂n(t;X1, . . . , Xn)− F0(t)
∣∣ = 0

)
= 1 . (17)

Theorem 5.2 Let the distribution function F0 : R → [0, 1] be continuous. Then the Kolmogorov�Smirnov test
is pointwise consistent for each distribution function F of the sample variables with F ̸= F0, i.e., it holds that

lim
n→∞

PF

(
Tn(X1, . . . , Xn) > sn,1−α

)
= 1 . (18)

Proof

• From (17) it follows that for each F ̸= F0

PF

(
lim

n→∞
sup
t∈R

∣∣F̂n(t;X1, . . . , Xn)− F0(t)
∣∣ > 0

)
= 1 .

• This implies that Tn(X1, . . . , Xn) → ∞ with probability 1 under F ̸= F0.

• Since sn,1−α → ξ1−α <∞ for n→ ∞, where ξ1−α is the (1− α)�quantile of the Kolmogorov distribu-

tion, given in (11), it also holds that Tn(X1, . . . , Xn)− (sn,1−α − ξ1−α)
a.s.−→ ∞ and therefore

lim
n→∞

PF

(
Tn(X1, . . . , Xn) > sn,1−α

)
= lim

n→∞
PF

(
Tn(X1, . . . , Xn)− (sn,1−α − ξ1−α) > ξ1−α

)
= lim

n→∞
PF

(
Tn(X1, . . . , Xn) > ξ1−α

)
= 1 . �

Remark

• As an strengthening of Theorem 5.2 one can show that the KS test is also uniformly consistent if the
Kolmogorov distance

dK(∆n;F0) = inf
F∈∆n

sup
t∈R

|F (t)− F0(t)| (19)

of the family ∆n of alternative distribution functions and the (hypothetical) distribution function F0

does not converge too fast to 0 as the sample size n increases.

• In this context, we need the following strengthening of Glivenko�Cantelli's theorem, which is called
inequality of Dworetsky�Kiefer�Wolfowitz in literature and which we state without proof.

Lemma 5.3 For arbitrary c > 0 and n ≥ 1 it holds that

PF

(
sup
t∈R

∣∣F̂n(t;X1, . . . , Xn)− F (t)
∣∣ > c

)
≤ C exp

(
−2nc2

)
, (20)

where C ≤ 2 is an universal constant, which does not depend on F .

Remark

• From Lemma 5.3 it follows that for each ε > 0 there is a c′ > 0 which does not depend on F and which
ful�lls

inf
n≥1

PF

(√
n sup

t∈R

∣∣F̂n(t;X1, . . . , Xn)− F (t)
∣∣ ≤ c′

)
≥ 1− ε . (21)
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• In order to see this, it is su�cient to choose the threshold value c in (20) for ε ∈ (0, 1) in such a way
that c = c′/

√
n, where

c′ =

√
− 1

2
log
( ε

C

)
.

• Since c′ does not depend on F , it also holds that for each ε > 0 there is a c′ > 0 such that

inf
n≥1

PFn

(√
n sup

t∈R

∣∣F̂n(t;X1, . . . , Xn)− Fn(t)
∣∣ ≤ c′

)
≥ 1− ε , (22)

where {Fn} is an arbitrary sequence of distribution functions.

With these tools it is possible to show the uniform consistence property of the KS test for the case that the
Kolmogorov distance dK(∆n;F0) of the family ∆n of the alternative distribution functions and the (hypothetical)
distribution function F0 does not converge too fast to 0 as the sample size n increases.

Theorem 5.3 If there is a sequence {δn} of positive numbers with δn → ∞ such that

√
n dK(∆n;F0) ≥ δn ∀n ≥ 1 , (23)

then it holds that
lim
n→∞

inf
F∈∆n

PF

(
Tn(X1, . . . , Xn) > sn,1−α

)
= 1 . (24)

Proof

• Let {δn} be a sequence of positive numbers with δn → ∞, which ful�lls (23), and let {Fn} be an
arbitrary sequence of distribution functions such that for n ≥ 1

Fn ∈ ∆n and therefore
√
n dK(Fn;F0) ≥ δn , (25)

where dK(Fn;F0) = supt∈R |Fn(t)− F0(t)|.
• It is su�cient to show that

lim
n→∞

PFn

(
Tn(X1, . . . , Xn) > sn,1−α

)
= 1 . (26)

� From the triangle inequality it follows that

dK(Fn, F0) ≤ dK(Fn, F̂n) + dK(F̂n, F0) .

� This and (25) imply that

Tn(X1, . . . , Xn) ≥ δn −
√
n dK(Fn, F̂n) .

� Therefore, it holds that

PFn

(
Tn(X1, . . . , Xn) > sn,1−α

)
≥ PFn

(√
n dK(Fn, F̂n) < δn − sn,1−α

)
. (27)

• Since sn,1−α → ξ1−α < ∞ and therefore δn − sn,1−α → ∞ for n → ∞, formulas (22) and (27) imply
the validity of (26) . �

Remark

• In particular, condition (23) is ful�lled if dK(∆n;F0) ≥ δ for each n ≥ 1 and δ > 0 is a constant, which
does not depend on n.
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• If
√
n dK(Fn;F0) ≥ δn and δn > sn,1−α, then (27) implies that for each n ≥ 1 holds the following

(non�asymptotic) lower threshold for the power of the KS test:

PFn

(
Tn(X1, . . . , Xn) > sn,1−α

)
≥ 1− 2 exp

(
−2(δn − sn,1−α)

2
)
, (28)

where we have obtained a lower bound of the right�hand side of the inequality in (27) by applying
Lemma 5.3 (for F = Fn).

• However, notice that for a given (�nite) sample size n <∞ it is possible that the �rejection probability�
PF0

(
Tn(X1, . . . , Xn) > sn,1−α

)
is smaller than α.

On the other hand, the (asymptotic) power of the KS test can become arbitrarily small, i.e., arbitrarily close
to α, if the Kolmogorov distance dK(∆n;F0) of the family ∆n of alternative distribution functions and the
(hypothetical) distribution function F0 converges su�ciently fast to 0 as the sample size n increases.

Theorem 5.4

• Let {Fn} be an arbitrary sequence of continuous distribution functions such that

lim
n→∞

√
n dK(Fn;F0) = 0 . (29)

• Then it holds that
lim sup
n→∞

PFn

(
Tn(X1, . . . , Xn) > sn,1−α

)
≤ α . (30)

Proof

• From the triangle inequality it follows that

PFn

(
Tn(X1, . . . , Xn) > sn,1−α

)
≤ PFn

(√
n dK(F̂n;Fn) +

√
n dK(Fn;F0) > sn,1−α

)
.

• From this and (29) the validity of (30) follows because the distribution of
√
n dK(F̂n;Fn) under Fn

does not depend on n. �

5.2 χ2�Goodness�of�Fit Test

We now discuss an asymptotic goodness�of��t test, where a test statistic is considered, which is approximately
χ2�distributed for a large sample size. However, in this context the hypothesis

H0 : P = P0

(
versus H1 : P ̸= P0

)
, (31)

analyzed in Section 5.1, is usually not considered since we �coarsen� the model of the random sample (X1, . . . , Xn)
by use of aggregation.

5.2.1 Aggregation; Pearson�Statistic

• For a (su�ciently large) natural number r we partition the range of the random variables X1, . . . , Xn into
r classes (a1, b1], . . . , (ar, br] with

−∞ ≤ a1 < b1 = a2 < b2 = . . . = ar < br ≤ ∞ .

• Instead of the sample variables X1, . . . , Xn we consider the �class sizes� Z1, . . . , Zr, where

Zj = #{i : 1 ≤ i ≤ n, aj < Xi ≤ bj} ∀ j = 1, . . . , r . (32)
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To begin with, we show that the random vector (Z1, . . . , Zr) has a multinomial distribution with parameters
n ≥ 1 and

p = (p1, . . . , pr−1)
⊤ ∈ [0, 1]r−1 , where pj = P(aj < X1 ≤ bj) ∀ j = 1, . . . , r − 1 .

Lemma 5.4 For arbitrary natural numbers k1, . . . , kr ≥ 0 with k1 + . . .+ kr = n it holds that

P(Z1 = k1, . . . , Zr = kr) =
n!

k1! · . . . · kr!
pk1
1 . . . pkr

r , (33)

where pr = 1− (p1 + . . .+ pr−1).

Proof

• Since the random variables X1, . . . , Xn are independent and identically distributed, it holds that

P
(
X1 ∈ (ai1 , bi1 ], . . . , Xn ∈ (ain , bin ]

)
=

n∏
j=1

P(aij < X1 ≤ bij ) = pk1
1 . . . pkr

r (34)

for each sequence of intervals (ai1 , bi1 ], . . . , (ain , bin ], which contains k1-times the interval (a1, b1], . . . ,
kr-times the interval (ar, br].

• The statement (33) follows from summation of the probabilities, considered in (34), over all permuta-
tions of sequences (ai1 , bi1 ], . . . , (ain , bin ] of this kind. �

Remark

• We denote the multinomial distribution with the parameters n ≥ 1 and p = (p1, . . . , pr−1)
⊤ ∈ [0, 1]r−1

by Mr−1(n,p). It is easy to see that for r = 2 the multinomial distribution M1(n, p1) coincides with
the binomial distribution Bin(n, p1).

• Instead of analyzing the test problem (31), we verify the hypothesisH0 : p = p0 (against the alternative
H1 : p ̸= p0) for a given (hypothetical) parameter vector

p0 = (p01, . . . , p0,r−1)
⊤ ∈ (0, 1)r−1 with

r−1∑
i=1

p0i < 1.

� We thus partition the family ∆ of all considered distributions of the sample variables X1, . . . , Xn

into the subsets

∆0 = {P : PP (aj < X1 ≤ bj) = p0j ∀j = 1, . . . , r − 1} and ∆1 = ∆ \∆0 . (35)

� In this context we consider the sample function Tn : Rn → [0,∞) with

Tn(x1, . . . , xn) =

r∑
j=1

(
Zj(x1, . . . , xn)− np0j

)2
np0j

, (36)

� where Zj(x1, . . . , xn) denotes the number of the sample values x1, . . . , xn, which belong to (aj , bj ].

• Assuming H0 : p = p0 is true, it holds that EZj(X1, . . . , Xn) = np0j for each j ∈ {1, . . . , r}.
� Therefore, it makes sense to reject the hypothesis H0 : p = p0 if Tn(x1, . . . , xn) is signi�cantly
larger than 0.

� In order to make a decision, we need knowledge of the distribution of the test statistic Tn(X1, . . . , Xn),
introduced in (36), which is called the Pearson�statistic.
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5.2.2 Asymptotic Distribution

We show that Tn(X1, . . . , Xn) converges in distribution to a χ2�distribution with r − 1 degrees of freedom if
n→ ∞. This is the base of the χ2-goodness�of��t test, which has been introduced by Karl Pearson (1857�1936).

Theorem 5.5 For each P ∈ ∆0 it holds that

lim
n→∞

PP

(
Tn(X1, . . . , Xn) > χ2

r−1,1−α

)
= α , ∀α ∈ (0, 1) , (37)

where χ2
r−1,1−α denotes the (1− α)�quantile of the χ2�distribution with r − 1 degrees of freedom.

Proof

• In Lemma 5.4 we have shown that the random vector Zn = (Zn1, . . . , Znr)
⊤, given in (32), where

Znj = Zj(X1, . . . , Xn), has a multinomial distribution under P ∈ ∆0 with parameters n ∈ N and

p0 = (p01, . . . , p0,r−1)
⊤ ∈ [0, 1]r−1 , where p0j = PP (aj < X1 ≤ bj) ∀ j = 1, . . . , r − 1 .

� This in particular implies that for arbitrary i, j ∈ {1, . . . , r}

EZni = np0i , Cov (Zni, Znj) =

 −np0ip0j , if i ̸= j,

np0i(1− p0i) , if i = j.
(38)

� Moreover, it follows from (32) that Zj =
∑n

i=1 1I{aj<Xi≤bj}, i.e., Zn can be written as a sum of n
independent and identically distributed random vectors, where 1I{aj<Xi≤bj} is the indicator of the
event {aj < Xi ≤ bj}.

• With the notation

Z′
n =

(Zn1√
n

−
√
np01, . . . ,

Zn,r−1√
n

−
√
np0,r−1

)⊤
(39)

it therefore follows from Lemma 5.2 that for n→ ∞ it holds that

Z′
n

d−→ Z′ ∼ N(o,K) , (40)

� where the (r − 1)�dimensional random vector Z′ has a (nondegenerate) multivariate normal dis-
tribution,

� whose covariance matrix K = (σ2
ij) is given by

σ2
ij =

 −p0ip0j , if i ̸= j,

p0i(1− p0i) , if i = j.
(41)

• It is easy to see that K is invertible, where the entries aij of the inverse matrix A = K−1 are given by

aij =


1

p0r
, if i ̸= j,

1

p0i
+

1

p0r
, if i = j.

(42)

� From (40) and the properties of linear transformations of normally distributed random vectors

(cf. Theorem 1.3) it now follows with Lemma 4.5 that A1/2Z′
n

d−→ N(o, Ir−1), where Ir−1 is the
(r − 1)× (r − 1)�dimensional identity matrix.

� The repeated application of Lemma 4.5 yields(
A1/2Z′

n

)⊤(
A1/2Z′

n

) d−→ χ2
r−1 .
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• Now it is su�cient to note that(
A1/2Z′

n

)⊤(
A1/2Z′

n

)
= Tn(X1, . . . , Xn) .

� It namely holds that(
A1/2Z′

n

)⊤(
A1/2Z′

n

)
=

(
Z′

n

)⊤
AZ′

n

= n
r−1∑
j=1

1

p0j

(Znj

n
− p0j

)2
+

n

p0r

r−1∑
i=1

r−1∑
j=1

(Zni

n
− p0i

)(Znj

n
− p0j

)
,

� where the second summand of the last term can be written in the form

n

p0r

r−1∑
i=1

r−1∑
j=1

(Zni

n
− p0i

)(Znj

n
− p0j

)
=

n

p0r

(r−1∑
j=1

(Znj

n
− p0j

))2
=

n

p0r

(Znr

n
− p0r

)2
,

� because it obviously holds that
∑r−1

j=1 Znj = n− Znr and
∑r−1

j=1 p0j = 1− p0r. �

Remark

• In order to practically use the χ2-goodness�of��t test for the veri�cation of the hypothesis H0 : p = p0,
�rst the value of the test statistic Tn(x1, . . . , xn), de�ned in (36), has to be computed.

� For su�ciently large sample sizes n the hypothesis H0 : p = p0 is rejected if

Tn(x1, . . . , xn) > χ2
r−1,1−α ,

� where χ2
r−1,1−α denotes the (1−α)�quantile of the χ2�distribution with (r−1) degrees of freedom.

• A rule of thumb for n being su�ciently large, is the validity of the inequality np0,j ≥ a for each
j ∈ {1, . . . , r} and for a constant a > 0.

� In literature there are di�erent opinions about the required size of a > 0, which range from a = 2
to a = 5. Some authors even demand a = 10.

� Other authors think that for a large number of classes (about r ≥ 10) the approximation is
su�ciently good, even for a = 1.

5.2.3 Goodness�of�Fit; Local Alternatives

It is not di�cult to show the following (pointwise) consistency of the χ2�goodness�of��t test.

Theorem 5.6 The χ2�goodness�of��t test is pointwise consistent for each vector p = (p1, . . . , pr−1)
⊤ ∈ [0, 1]r−1

with p ̸= p0, i.e., it holds that
lim

n→∞
Pp

(
Tn(X1, . . . , Xn) > χ2

r−1,1−α

)
= 1 . (43)

Proof

• From p ̸= p0 it follows that
pj ̸= p0,j (44)

for some j ∈ {1, . . . , r − 1}.

• Furthermore, it follows from the strong law of large numbers (cf. TheoremWR�5.15) that Znj/n
a.s.−→ pj

for n→ ∞ under Pp.
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• This and (44) imply that under Pp

Tn(X1, . . . , Xn) ≥ n
( Znj

n
− p0,j

)2 a.s.−→ ∞ .

• Hence, the validity of (43) is shown. �

Remark

• Instead of considering a �xed vector p ̸= p0, there are also local alternatives pn = (pn1, . . . , pn,r−1)
⊤

possible of the form

pnj = p0j +
hj√
n

∀ j = 1, . . . , r − 1 , (45)

which may depend on the sample size n, where

r∑
j=1

hj = 0 . (46)

• Then one can show that for n → ∞ the asymptotic power of the χ2�goodness�of��t test vs. such
alternatives may be smaller than 1.

In order to prove the statement, we need the following estimate, which is called the Berry�Esseen theorem in
literature.

Lemma 5.5 Let Y1, Y2, . . . : Ω → R be a sequence of independent and identically distributed random variables
with E

(
|Y1|3

)
<∞. If EY1 = 0 and VarY1 = 1, then it holds for each n ≥ 1

sup
x∈R

∣∣∣P(Y1 + . . .+ Yn√
n

≤ x
)
−Φ(x)

∣∣∣ ≤ C
E
(
|Y1|3

)
√
n

, (47)

where Φ : R → [0, 1] denotes the distribution function of the N(0, 1)�distribution and C < ∞ is a universal
constant, which does not depend on the distribution of the random variables Y1, Y2, . . ..

Theorem 5.7 Let {pn} be a sequence of vectors, which is given by (45) and (46).

• Then it holds for each x ≥ 0 that

lim
n→∞

Ppn

(
Tn(X1, . . . , Xn) ≤ x

)
= Fr−1,λ(x) , (48)

where Fr−1,λ : R → [0, 1] is the distribution function of the noncentral χ2�distribution with r − 1 degrees of
freedom, whose noncentrality parameter λ is given by

λ =

r∑
j=1

h2j
p0j

. (49)

• If hj ̸= 0 for some j = 1, . . . , r, then the power of the χ2�goodness�of��t test converges, in the case of the
local alternatives {pn}, to a limit, which is larger than α and smaller than 1, i.e.,

α < lim
n→∞

Ppn

(
Tn(X1, . . . , Xn) > χ2

r−1,1−α

)
< 1 . (50)
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Proof

• The proof of the �rst part is analogous to the proof of Theorem 5.5 since due to (45) and (46) it holds
that

Z′
n =

√
n
(Zn1

n
− pn1, . . . ,

Zn,r−1

n
− pn,r−1

)⊤
+ h , where h = (h1, . . . , hr−1)

⊤. (51)

for the random vector Z′
n, introduced in (39).

• Because of (51) one can show in a similar way as in the proof of the multivariate central limit theorem
in Lemma 5.2 that

lim
n→∞

Ppn

(
Z′

n ≤ x
)
= FN(h,K)(x) ∀x ∈ Rr−1 . (52)

• In this context it is su�cient to notice that one can show, by using Berry�Esseen's theorem in
Lemma 5.5 that (analogously to formula (10) in the proof of Lemma 5.2)

� for arbitrary t = (t1, . . . , tr−1)
⊤ ∈ Rr−1 and x ∈ R it holds that

lim
n→∞

Ppn

(
n−1/2

r−1∑
j=1

tj
(
Znj − npnj

)
≤ x

)
= FN(0,t⊤Kt)(x) ,

� where K is the covariance matrix, introduced in (41).

• In the same way as in the proof of Theorem 5.5 we now get from (52) that

lim
n→∞

Ppn

(
A1/2Z′

n ≤ x
)
= FN(A1/2h,Ir−1)(x) ∀x ∈ Rr−1 .

� From this and from the de�nition of the noncentral χ2�distribution in Section 1.3.2 it follows that

lim
n→∞

Ppn

(
(A1/2Z′

n)
⊤(A1/2Z′

n) ≤ x
)
= Fr−1,λ(x) ∀x ∈ R ,

� where A is the inverse matrix A = K−1 in (42) and the noncentrality parameter λ is given by

λ = (A1/2h)⊤(A1/2h) = h⊤Ah =
r∑

j=1

h2j
p0j

.

• Thus, (48) is proved and because of α < 1− Fr−1,λ(χ
2
r−1,1−α) < 1 also (50) is valid. �

5.3 Pearson�Fisher Test

• The null hypothesis H0 : p = p0, considered in Section 5.2, is in fact a compound hypothesis since it is
equivalent to the hypothesis

H0 : P ∈ ∆0 ,

where ∆0 is the subset of distributions of the sample variables, which has been introduced in (35).

• If it shall be veri�ed whether the distribution P of the independent and identically distributed sample
variables X1, . . . , Xn belongs to a given (parametric) class of distributions {Pθ, θ ∈ Θ} with Θ ⊂ Rm, then
we can proceed in a similar way as in the case of the χ2�goodness�of��t test, discussed in Section 5.2.

• The sample function Tn : Rn → [0,∞), which has been considered in the de�nition of the Pearson�statistic

Tn(X1, . . . , Xn) in (36), is replaced by a modi�ed sample function T̂n : Rn → [0,∞).



5 GOODNESS�OF�FIT TESTS 112

5.3.1 Pearson�Fisher Test Statistic

• In the same way as in Section 5.2.1, we �coarsen� the model, i.e.,

� we partition the range of the sample variables X1, . . . , Xn into r classes (a1, b1], . . . , (ar, br] with
−∞ ≤ a1 < b1 = a2 < b2 = . . . = ar < br ≤ ∞, where r is a (su�ciently large) natural number.

� Instead of the sample variables X1, . . . , Xn, we once more consider the �class sizes� Z1, . . . , Zr, which
have been introduced in (32), where

Zj = #{i : 1 ≤ i ≤ n, aj < Xi ≤ bj} ∀ j = 1, . . . , r .

• According to Lemma 5.4 it holds that (Z1, . . . , Zr) ∼ Mr−1(n,p), where we now assume

� that the parameter p = (p1, . . . , pr−1)
⊤ ∈ [0, 1]r−1 of the multinomial distribution Mr−1(n,p)

� is a (known) function θ 7→ p(θ) of the (unknown) parameter vector θ = (θ1, . . . , θm)⊤ ∈ Θ ⊂ Rm with
m < r − 1 .

• The hypothesis to be tested is H0 : p ∈ {p(θ), θ ∈ Θ}.

� In order to be able to proceed with the veri�cation of this hypothesis in a similar way as in Section 5.2,
one �rst has to determine an estimator θ̂ = (θ̂1, . . . , θ̂m)⊤ for θ = (θ1, . . . , θm)⊤.

� This also provides an estimator (p̂1, . . . , p̂r) = (p1(θ̂), . . . , pr(θ̂)) for the probabilities
(p1, . . . , pr) = (p1(θ), . . . , pr(θ)), where

pj(θ) = Pθ(aj < X1 ≤ bj) ∀ j = 1, . . . , r .

De�nition The random variable T̂n(X1, . . . , Xn), which is given by the sample function T̂n : Rn → [0,∞) with

T̂n(x1, . . . , xn) =
r∑

j=1

(
Zj(x1, . . . , xn)− np̂j(x1, . . . , xn)

)2
np̂j(x1, . . . , xn)

(53)

is called Pearson�Fisher statistic.

Remark

• If the mapping θ 7→ p(θ) is continuous and θ̂ is a (weakly) consistent estimator for θ,

� then it follows from the law of large numbers (cf. Theorem WR�5.15) that for arbitrary
j ∈ {1, . . . , r} and θ ∈ Θ

lim
n→∞

E θ

∣∣∣ 1
n
Zj(X1, . . . , Xn)− p̂j(X1, . . . , Xn)

∣∣∣ = 0 .

� Therefore, it is reasonable to reject the null hypothesis H0 : p ∈ {p(θ), θ ∈ Θ} if T̂n(x1, . . . , xn)
is signi�cantly larger than 0.

• In order to be able to make this decision,

� we �rst of all discuss conditions for the mapping θ 7→ p(θ) which enable the construction of a

sequence of consistent (maximum�likelihood) estimators θ̂n for θ that are asymptotically normally
distributed.

� Then we determine the (asymptotic limit) distribution of the test statistic T̂n(X1, . . . , Xn), intro-
duced in (53), for n→ ∞.
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5.3.2 Multivariate Central Limit Theorem for ML Estimators

In a similar way as in Section I�2.4.2, where the case m = 1 has been considered, it is possible to derive a
multivariate central limit theorem for consistent sequences of maximum�likelihood estimators for the parameter
vector θ.

In this context we need the following regularity conditions.

• The family {Pθ,θ ∈ Θ} either consists only of discrete distributions or only of absolutely continuous
distributions, where Θ ⊂ Rm is an open set.

• It holds that
Pθ ̸= Pθ′ if and only if θ ̸= θ′ .

• The set B = {x ∈ R : L(x;θ) > 0} does not depend on θ ∈ Θ, where the likelihood function L(x;θ) is given
by

L(x;θ) =

 p(x;θ) in the discrete case,

f(x;θ) in the absolutely continuous case

and p(x;θ) or f(x;θ) is the probability function or density of Pθ, respectively.

• Furthermore, let the mapping θ → L(x;θ) for each x ∈ B be three times continuously di�erentiable and
suppose that for each x ∈ B it holds that

∂k

∂θi1 . . . ∂θik

∫
B

L(x;θ) dx =

∫
B

∂k

∂θi1 . . . ∂θik
L(x;θ) dx ∀ k ∈ {1, 2, 3}, i1, . . . , ik ∈ {1, . . . ,m}, θ ∈ Θ,

(54)
where the integrals have to be replaced by the corresponding sums in the discrete case.

• For each θ0 ∈ Θ, a constant cθ0 > 0 and a measurable function gθ0 : B → [0,∞) exist such that for each
triple (i1, i2, i3) ∈ {1, . . . ,m}3∣∣∣ ∂3

∂θi1∂θi2∂θi3
logL(x;θ)

∣∣∣ ≤ gθ0(x) ∀x ∈ B, ∀θ ∈ Θ with |θ − θ0| < cθ0 (55)

and
E θ0gθ0(X1) <∞ . (56)

Remark

• Recall :

� In general, the maximum�likelihood estimator θ̂ = θ̂(X1, . . . , Xn) for θ is de�ned as the solution
of the following optimization problem (cf. Section I�2.2.2).

� In this context θ̂ : Rn → Θ ⊂ Rm is a sample function with

L(x1, . . . , xn;θ) ≤ L(x1, . . . , xn; θ̂(x1, . . . , xn)) ∀ (x1, . . . , xn) ∈ Rn, θ ∈ Θ (57)

and

L(x1, . . . , xn;θ) =

 p(x1;θ) . . . p(xn;θ) in the discrete case,

f(x1;θ) . . . f(xn;θ) in the absolutely continuous case.

• Under the above mentioned regularity conditions one can show that for arbitrary x1, . . . , xn ∈ R the
estimate θ̂(x1, . . . , xn) ful�lls the following system of equations:

∂

∂θi
L
(
x1, . . . , xn; θ̂(x1, . . . , xn)

)
= 0 ∀ i = 1, . . . ,m . (58)
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• To formulate the multivariate central limit theorem, we need the notion of the Fisher�information
matrix, which has already been introduced in Section 4.3.1.

� For each θ ∈ Θ the m×m matrix I(θ) = (Iij(θ)) is considered with

Iij(θ) = E θ

( ∂

∂θi
logL(X1;θ)

∂

∂θj
logL(X1;θ)

)
, (59)

� where it is assumed that the expectation in (59) exists for arbitrary i, j ∈ {1, . . . ,m} (and is a
�nite real number).

As a generalization of Theorem I�2.11, where the 1�dimensional case has been considered, it is possible to derive
the following multivariate central limit theorem for weakly consistent sequences of maximum�likelihood estimators
{θ̂(X1, . . . , Xn), n ≥ 1} for the parameter vector θ which ful�ll the system of equations (58).

Theorem 5.8

• Let the Fisher�information matrix I(θ) be positive de�nite (and therefore invertible) for each θ ∈ Θ and let

{θ̂(X1, . . . , Xn), n ≥ 1} be a weakly consistent sequence of maximum�likelihood estimators for θ.

• Then it holds for n→ ∞ that

√
n
(
θ̂(X1, . . . , Xn)− θ

) d−→ N
(
o, I−1(θ)

)
. (60)

The proof of Theorem 5.8 proceeds in a similar way as the proof of Theorem I�2.11. It is therefore omitted, cf.
for instance E.L. Lehmann und G. Casella (1998) The Theory of Point Estimation, Springer�Verlag, New York.

5.3.3 Fisher�Information Matrix and Central Limit Theorem in the Coarsened Model

• We now return to the �coarsened� model, already considered in Section 5.3.1.

� Here we assume that L : R×Θ → (0, 1) is the likelihood function with

L(x;θ) = pj(θ) , if x ∈ (aj , bj ], (61)

� where the probabilities pj(θ) = Pθ(aj < X1 ≤ bj) are positive and smaller than 1.

• Furthermore, we assume that the regularity conditions, formulated in Section 5.3.2, are ful�lled for the
likelihood function given in (61).

Lemma 5.6 Then it holds for the Fisher�information matrix I(θ) that

I(θ) = C(θ)⊤C(θ) , (62)

where

C(θ) =



∂p1(θ)/∂θ1√
p1(θ)

∂p1(θ)/∂θ2√
p1(θ)

. . .
∂p1(θ)/∂θm√

p1(θ)
∂p2(θ)/∂θ1√

p2(θ)

∂p2(θ)/∂θ2√
p2(θ)

. . .
∂p2(θ)/∂θm√

p2(θ)
...

...
...

∂pr(θ)/∂θ1√
pr(θ)

∂pr(θ)/∂θ2√
pr(θ)

. . .
∂pr(θ)/∂θm√

pr(θ)


. (63)
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Proof

• Because of (61) it holds for each x ∈ R that

logL(x;θ) =

r∑
j=1

1I{aj<x≤bj} log pj(θ) .

• From this it follows for the entries Iij(θ) of I(θ) that

Iij(θ) = E θ

( ∂

∂θi
logL(X1;θ)

∂

∂θj
logL(X1;θ)

)
=

r∑
k=1

( ∂

∂θi
log pk(θ)

)( ∂

∂θj
log pk(θ)

)
pk(θ)

=
r∑

k=1

( ∂

∂θi
pk(θ)

)(
pk(θ)

)−1
( ∂

∂θj
pk(θ)

)
=
(
C(θ)⊤C(θ)

)
ij
. �

Thus, Theorem 5.8 implies the following result.

Corollary 5.1 If the matrix I(θ) = C(θ)⊤C(θ), given in (63), is positive de�nite for each θ ∈ Θ, then it holds
that √

n
(
θ̂(X1, . . . , Xn)− θ

) d−→ N
(
o,
(
C(θ)⊤C(θ)

)−1)
(64)

for each weakly consistent sequence {θ̂(X1, . . . , Xn), n ≥ 1} of maximum�likelihood estimators for θ which are
obtained from observations of the �coarsened� model.

Remark

• From (61) it follows for the likelihood function L(x1, . . . , xn;θ) that

L(x1, . . . , xn;θ) =
r∏

j=1

pj(θ)
Zj(x1,...,xn) ,

or for the loglikelihood function logL(x1, . . . , xn;θ) that

logL(x1, . . . , xn;θ) =

r∑
j=1

Zj(x1, . . . , xn) log pj(θ) . (65)

• Each maximum�likelihood estimate θ̂ = θ̂
(
Z1(x1, . . . , xn), . . . , Zr(x1, . . . , xn)

)
for θ which is obtained

from the coarsened data Z1(x1, . . . , xn), . . . , Zr(x1, . . . , xn) satis�es the system of equations

∂ logL(x1, . . . , xn;θ)

∂θi
= 0 , ∀ i = 1, . . . ,m . (66)

because of the above-mentioned regularity conditions.

• Here it follows from (65) that for arbitrary i = 1, . . . ,m and θ ∈ Θ

∂ logL(x1, . . . , xn;θ)

∂θi
=

r∑
j=1

Zj(x1, . . . , xn)

pj(θ)

∂pj(θ)

∂θi

or
∂ logL(x1, . . . , xn;θ)

∂θi
=

r∑
j=1

Zj(x1, . . . , xn)− npj(θ)

pj(θ)

∂pj(θ)

∂θi
, (67)

where the last equality is due to the fact that

r∑
j=1

∂pj(θ)

∂θi
= 0 , ∀ i = 1, . . . ,m . (68)
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5.3.4 Asymptotic Distribution of the Pearson�Fisher Statistic

The following theorem is the basis for the χ2- goodness�of��t test of Pearson-Fisher. Here we always assume that

• the likelihood function of the coarsened model, considered in (61), ful�lls the regularity conditions of Sec-
tion 5.3.2,

• the Fisher�information matrix I(θ), given in (62), is positive de�nite and {θ̂n} = {θ̂(X1, . . . , Xn), n ≥ 1} is
a weakly consistent sequence of ML estimators for θ which is obtained by considering the coarsened model.

Theorem 5.9

• Let T̂n(X1, . . . , Xn) be the Pearson�Fisher test statistic given in (53), i.e.,

T̂n(X1, . . . , Xn) =
r∑

j=1

(
Zj(X1, . . . , Xn)− np̂j(X1, . . . , Xn)

)2
np̂j(X1, . . . , Xn)

, (69)

where p̂j(X1, . . . , Xn) = pj
(
θ̂(X1, . . . , Xn)

)
.

• Then it holds that

lim
n→∞

Pθ

(
T̂n(X1, . . . , Xn) > χ2

r−1−m,1−α

)
= α , ∀α ∈ (0, 1) (70)

for each θ ∈ Θ, where χ2
r−1−m,1−α denotes the (1−α)�quantile of the χ2�distribution with r−1−m degrees

of freedom.

It is possible to give a full proof of Theorem 5.9 by reinterpreting the χ2�goodness�of��t test of Pearson�Fisher as
a likelihood�ratio test, cf. for instance Section 4.7 in H. Pruscha (2000) Vorlesungen über mathematische Statistik,
Teubner�Verlag, Stuttgart.

However, as this method of proof is rather complex, we only show a derivation of Theorem 5.9, which is partly
heuristic.

• Let p(θ) = (p1(θ), . . . , pr(θ))
⊤ and Z̃n(θ) =

(
Z̃n1(θ), . . . , Z̃nr(θ)

)⊤
with

Z̃nj(θ) =
Zj(X1, . . . , Xn)− npj(θ)√

npj(θ)
, j = 1, . . . , r . (71)

• Since E Z̃n(θ) = o and since it is possible to write Z̃n(θ) as a sum of n independent and identically
distributed random vectors, it follows from the multivariate central limit theorem (in the same way as in
the proof of Theorem 5.5) that

Z̃n(θ)
d−→ Z̃(θ) ∼ N(o,B(θ)K(θ)B(θ)) , (72)

where

B(θ) =


1/
√
p1(θ) 0 . . . 0

0 1/
√
p2(θ) . . . 0

...
...

...

0 0 . . . 1/
√
pr(θ)

 , K(θ) =


−pi(θ)pj(θ) , if i ̸= j,

pi(θ)(1− pj(θ)) , if i = j.
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� Thus, for the covariance matrix B(θ)K(θ)B(θ) in (72) we get that

B(θ)K(θ)B(θ) = Ir − q(θ)q⊤(θ) , where q(θ) =
(√

p1(θ), . . . ,
√
pr(θ)

)⊤
. (73)

� For the matrix C(θ), introduced in (63), it holds because of (68) that q⊤(θ)C(θ) = o and thus((
C⊤(θ)C(θ)

)−1
C⊤(θ)

)(
Ir − q(θ)q⊤(θ)

)((
C⊤(θ)C(θ)

)−1
C⊤(θ)

)⊤
=

((
C⊤(θ)C(θ)

)−1
C⊤(θ)

)(
Ir − q(θ)q⊤(θ)

)
C(θ)

(
C⊤(θ)C(θ)

)−1

=
(
C⊤(θ)C(θ)

)−1
.

� From (72) and (73) it now follows that(
C⊤(θ)C(θ)

)−1
C⊤(θ)Z̃(θ) ∼ N

(
o ,
(
C⊤(θ)C(θ)

)−1)
. (74)

• Furthermore, Corollary 5.1 and the Taylor series expansion yield

√
n B(θ)

(
p(θ̂n)− p(θ)

)
=

√
n C(θ)

(
θ̂n − θ

)
+ o
(
θ̂n − θ

) d−→ N
(
o,C(θ)

(
C⊤(θ)C(θ)

)−1
C⊤(θ)

)
.

� This and (74) imply that

√
n B(θ)

(
p(θ̂n)− p(θ)

) d−→ C(θ)
(
C⊤(θ)C(θ)

)−1
C⊤(θ)Z̃(θ) . (75)

� Moreover, it follows from (69) and (71) that

T̂n(X1, . . . , Xn) =

r∑
j=1

(
Z̃nj(θ̂n)

)2

=
r∑

j=1

Z̃nj(θ) + Z̃nj(θ)
(√ pj(θ)

pj(θ̂n)
− 1
)
−

√
n√

pj(θ̂n)

(
pj(θ̂n)− pj(θ)

)2

=
r∑

j=1

Z̃nj(θ)−
√
n√

pj(θ̂n)

(
pj(θ̂n)− pj(θ)

)
+ o(1)

2

,

� where the last equality follows from the convergence

Z̃nj(θ)
(√ pj(θ)

pj(θ̂n)
− 1
)

P−→ 0 , ∀ j = 1, . . . , r,

which is due to θ̂n
P−→ θ and the continuous mapping theorem for random vectors (cf. Lemma 4.5).

• In other words: With the notation φ(z1, . . . , zr) =
∑r

j=1 z
2
j it holds that

T̂n(X1, . . . , Xn) = φ
(
Z̃n(θ)−

√
n B(θ)

(
p(θ̂n)− p(θ)

)
+ o(1)

)
. (76)

� Together with (72) and (75), the asymptotic approximation formula (76) suggests the conjecture that
for n→ ∞

T̂n(X1, . . . , Xn)
d−→ φ

((
Ir −C(θ)

(
C⊤(θ)C(θ)

)−1
C⊤(θ)

)
Z̃(θ)

)
. (77)

� However, the convergence in (77) does not directly follow from (72), (75) and (76), but needs a separate
proof, which is omitted here.
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• We now show that
φ
((

Ir −C(θ)
(
C⊤(θ)C(θ)

)−1
C⊤(θ)

)
Z̃(θ)

)
∼ χ2

r−1−m . (78)

• In (72) and (73) we have shown that

Z̃(θ) ∼ N
(
o, Ir − q(θ)q⊤(θ)

)
, where q(θ) =

(√
p1(θ), . . . ,

√
pr(θ)

)⊤
.

� Furthermore, it follows from q⊤(θ)q(θ) = 1 that(
Ir − q(θ)q⊤(θ)

)2
= Ir − 2q(θ)q⊤(θ) + q(θ)q⊤(θ)q(θ)︸ ︷︷ ︸

=1

q⊤(θ)

= Ir − q(θ)q⊤(θ) ,

� i.e., the covariance matrix

Ir − q(θ)q⊤(θ)) =


1− p1(θ) −

√
p1(θ)p2(θ) −

√
p1(θ)p3(θ) . . . −

√
p1(θ)pr(θ)

−
√
p1(θ)p2(θ) 1− p2(θ) −

√
p2(θ)p3(θ) . . . −

√
p2(θ)pr(θ)

...
...

...
...

−
√
p1(θ)pr(θ) −

√
p2(θ)pr(θ) −

√
p3(θ)pr(θ) . . . 1− pr(θ)


of the random vector Z̃(θ) is symmetric and idempotent.

� This and the last part of Theorem 1.4 imply the representation formula

Z̃(θ)
d
=
(
Ir − q(θ)q⊤(θ)

)
ε , (79)

where ε ∼ N(o, Ir).

• Moreover, also the matrix Ir −C(θ)
(
C⊤(θ)C(θ)

)−1
C⊤(θ) is symmetric and idempotent and from

q⊤(θ)C(θ) = o it follows that(
Ir −C(θ)

(
C⊤(θ)C(θ)

)−1
C⊤(θ)

)(
Ir − q(θ)q⊤(θ)

)
= Ir −C(θ)

(
C⊤(θ)C(θ)

)−1
C⊤(θ)− q(θ)q⊤(θ) .

� This implies that the matrix R =
(
Ir −C(θ)

(
C⊤(θ)C(θ)

)−1
C⊤(θ)

)(
Ir − q(θ)q⊤(θ)

)
is symmetric

and idempotent as well.

� From (79) and Theorem 1.9 we now get that

φ
((

Ir −C(θ)
(
C⊤(θ)C(θ)

)−1
C⊤(θ)

)
Z̃(θ)

)
d
= φ

(
Rε
)
= ε⊤Rε ∼ χ2

rk(R) .

� Due to Lemma 1.3 it holds for the rank rk(R) of the symmetric and idempotent matrix R that

rk(R) = tr(R)

= tr(Ir)− tr
(
C(θ)

(
C⊤(θ)C(θ)

)−1
C⊤(θ)

)
− tr

(
q(θ)q⊤(θ)

)
= tr(Ir)− tr

((
C⊤(θ)C(θ)

)−1
C⊤(θ)C(θ)

)
− tr

(
q⊤(θ)q(θ)

)
= r −m− 1 .

• This proves the validity of (78).

Remark For the practical usage of the χ2- goodness�of��t test of Pearson�Fisher one can proceed in a similar
way as described in Section 5.2.2 in order to verify the hypothesis H0 : P ∈ {Pθ, θ ∈ Θ}.
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• First of all, a ML estimation θ̂(x1, . . . , xn) = (θ̂1(x1, . . . , xn), . . . , θ̂m(x1, . . . , xn))
⊤ for θ = (θ1, . . . , θm)⊤

is determined by solving the system of equations (66).

• Then the value of the test statistic Tn(x1, . . . , xn), de�ned in (53), is calculated.

• For su�ciently large sample sizes n the hypothesis H0 : P ∈ {Pθ, θ ∈ Θ} is rejected if

Tn(x1, . . . , xn) > χ2
r−1−m,1−α ,

• where χ2
r−1−m,1−α denotes the (1 − α)�quantile of the χ2�distribution with (r − 1 − m) degrees of

freedom.

5.4 Examples

5.4.1 Pearson�Fisher Test for Poisson�Distribution

• By observing the (independent and identically distributed) sample variables X1, . . . , Xn it shall be tested if
the distribution P of Xi belongs to the family of Poisson�distributions.

� So let Θ = (0,∞) with θ = λ and let {Pθ, θ ∈ Θ} = {Poi(λ), λ > 0} be the family of Poisson�
distributions.

� We consider the following r classes {0}, {1}, . . . , {r − 2} and {r − 1, r, r + 1, . . .}, i.e.

(a1, b1] = (−∞, 0], (a2, b2] = (0, 1], . . . (ar−1, br−1] = (r − 3, r − 2], (ar, br] = (r − 2,∞] .

� The probabilities pj(λ) = Pλ(aj < X1 ≤ bj) then are given by

pj(λ) =
λj−1

(j − 1)!
e−λ ∀ j = 1, . . . , r − 1 and pr(λ) =

∞∑
i=r

λi−1

(i− 1)!
e−λ. (80)

• According to (66), every maximum�likelihood estimate λ̂ for λ which is obtained from grouped data satis�es
the equation

r∑
j=1

Zj(x1, . . . , xn)

d

dλ
pj(λ)

pj(λ)
= 0 . (81)

� Here it follows from (80) that

d

dλ
pj(λ)

pj(λ)
=
j − 1

λ
− 1 ∀ j = 1, . . . , r − 1 and

d

dλ
pr(λ)

pr(λ)
=

∞∑
i=r

( i− 1

λ
− 1
)
λi−1

(i− 1)!

∞∑
i=r

λi−1

(i− 1)!

.

� This and (81) imply that the ML estimate λ̂ ful�lls the following equation:

r−1∑
j=1

Zj(x1, . . . , xn)
(j − 1

λ
− 1
)
+ Zr(x1, . . . , xn)

∞∑
i=r

( i− 1

λ
− 1
)
λi−1

(i− 1)!

∞∑
i=r

λi−1

(i− 1)!

= 0 . (82)
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• For each n there is one r0 = r0(n) ∈ N, such that Zr(x1, . . . , xn) = 0 for each r > r0. This and (82) imply
that for r → ∞

λ̂n = λ̂(x1, . . . , xn) → xn =
1

n

n∑
i=1

xi .

� For a su�ciently large number r of classes {0}, {1}, . . . , {r− 2}, {r− 1, r, r+1, . . .} the sample mean
xn, which is a ML estimate for λ in the non�aggregated Poisson�model, is a good approximation for
the ML estimation λ̂n for λ in aggregated Poisson�models.

� The null hypothesis H0 : P ∈ {Poi(λ), λ > 0} is therefore rejected if

T̂n(x1, . . . , xn) =
r∑

j=1

(
Zj(x1, . . . , xn)− np̂j(x1, . . . , xn)

)2
np̂j(x1, . . . , xn)

> χ2
r−2,1−α ,

where p̂j(x1, . . . , xn) = pj(xn) with the function pj : (0,∞) → [0, 1] given in (80) and the estimation
xn for λ.

5.4.2 Pearson�Fisher Test for Normal Distribution

• Now let Θ = R× (0,∞) with θ = (µ, σ2)⊤ and let {Pθ, θ ∈ Θ} = {N(µ, σ2), µ ∈ R, σ2 > 0} be the family
of (one�dimensional) normal distributions.

� The probabilities pj(θ) = Pθ(aj < X1 ≤ bj) are then given by

pj(θ) =

bj∫
aj

f(x;θ) dx , where f(x;θ) =
1

σ
√
2π

exp
(
− (x− µ)2

2σ2

)
. (83)

� According to (66), each maximum�likelihood estimate

θ̂(x1, . . . , xn) = (µ̂(x1, . . . , xn), σ̂
2(x1, . . . , xn))

⊤

for θ = (µ, σ2)⊤ which is obtained from the aggregated data satis�es the system of equations

r∑
j=1

Zj(x1, . . . , xn)

bj∫
aj

∂

∂θi
f(x;θ) dx

bj∫
aj

f(x;θ) dx

= 0 for i = 1, 2. (84)

� Here it follows from (83) that

∂

∂µ
f(x;θ) =

x− µ

σ2
f(x;θ) or

∂

∂σ2
f(x;θ) = f(x;θ)

( (x− µ)2

2σ4
− 1

2σ2

)
.

• This and (84) imply that the ML estimate θ̂(x1, . . . , xn) satis�es the following system of equations:

r∑
j=1

Zj(x1, . . . , xn)

bj∫
aj

(x− µ)f(x;θ) dx

bj∫
aj

f(x;θ) dx

= 0 ,
r∑

j=1

Zj(x1, . . . , xn)

bj∫
aj

(x− µ)2f(x;θ) dx

bj∫
aj

f(x;θ) dx

− nσ2 = 0 ,

where the �rst equality of this system of equations is equivalent to

r∑
j=1

Zj(x1, . . . , xn)

bj∫
aj

xf(x;θ) dx

bj∫
aj

f(x;θ) dx

− µ

r∑
j=1

Zj(x1, . . . , xn)︸ ︷︷ ︸
=n

= 0 .
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• Thus, the ML estimate θ̂(x1, . . . , xn) = (µ̂(x1, . . . , xn), σ̂
2(x1, . . . , xn))

⊤ ful�lls the system of equations

µ =
1

n

r∑
j=1

Zj(x1, . . . , xn)

bj∫
aj

xf(x;µ, σ2) dx

bj∫
aj

f(x;µ, σ2) dx

, σ2 =
1

n

r∑
j=1

Zj(x1, . . . , xn)

bj∫
aj

(x− µ)2f(x;µ, σ2) dx

bj∫
aj

f(x;µ, σ2) dx

,

� which for a su�ciently large number r of classes (a1, b1], . . . , (ar, br] can be solved approximately in
the following way:

µ̂ ≈ 1

n

r∑
j=1

cjZj(x1, . . . , xn) , σ̂2 ≈ 1

n

r∑
j=1

(cj − µ̂)2Zj(x1, . . . , xn) , (85)

� where c1 = b1 is the right endpoint of the �rst class, cr = br−1 is the left endpoint of the r�th class
and cj = (bj−1 + bj)/2 is the center of the j�th class for j = 2, . . . , r − 1.

• The null hypothesis H0 : P ∈ {N(µ, σ2), µ ∈ R, σ2 > 0} is rejected if

T̂n(x1, . . . , xn) =

r∑
j=1

(
Zj(x1, . . . , xn)− np̂j(x1, . . . , xn)

)2
np̂j(x1, . . . , xn)

> χ2
r−3,1−α ,

where p̂j(x1, . . . , xn) = pj(µ̂, σ̂
2) with the function pj : R × (0,∞) → [0, 1] given in (83) and (µ̂, σ̂2) is the

estimation for (µ, σ2), given in (85).

Remark

• The approximate solution (85) of the system of equations (84) shall now be used if the number r of
classes is large enough.

� This requires a su�ciently large sample size n.

� In other words: If the sample size n is small, then the χ2-goodness�of��t test is not suited to verify
the hypothesis for normality.

• Alternative tests for normal distribution are the following goodness�of��t tests of Shapiro�Wilk�type,
which lead to acceptable results even for a small sample size n.

5.4.3 Goodness�of�Fit Tests of Shapiro�Wilk�Type

• In this section we discuss two goodness�of��t tests of Shapiro�Wilk�type which can also be used to verify
the hypothesis H0 : P ∈ {N(µ, σ2), µ ∈ R, σ2 > 0}.

• Here the order statistics X(1), . . . , X(n) of the (independent and identically distributed) sample variables
X1, . . . , Xn are considered, which have already been introduced in Section I�1.4.

� Recall: The order statistics are de�ned by using the sample function φ : Rn → Rn, where

(x1, . . . , xn) → (x(1), . . . , x(n)) = φ(x1, . . . , xn) with x(i) = min
{
xj : #{k : xk ≤ xj} ≥ i

}
(86)

for each i ∈ {1, . . . , n}.
� The mapping φ : Rn → Rn, given in (86), is a permutation of the components of the vector (x1, . . . , xn),
such that

x(1) ≤ x(2) ≤ . . . ≤ x(n) .
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� For each ω ∈ Ω let now

(X(1)(ω), . . . , X(n)(ω)) = φ
(
X1(ω), . . . , Xn(ω)

)
be the (measurable) permutation, given in (86), of (X1(ω), . . . , Xn(ω)), such that

X(1)(ω) ≤ . . . ≤ X(n)(ω) . (87)

� The random variables X(1), . . . , X(n) : Ω → R are called the order statistics of (X1, . . . , Xn).

• If Xi ∼ N(µ, σ2) for certain µ ∈ R and σ2 > 0, then it is easy to see that the following representation
formula holds for the expectation bi = EX(i) of the order statistics X(i):

bi = µ+ σai ∀ i = 1, . . . , n , (88)

� where ai = EY(i) is the expectation of the i�th order statistic Y(i) for N(0, 1)�distributed sample
variables Y1, . . . , Yn.

� The bene�t of the representation formula (88) is that the expectations a1, . . . , an are available in the
form of tables or can be determined using Monte Carlo simulation.

• Since the vectors (b1, . . . , bn) and (X(1), . . . , X(n)) should di�er only little under H0, the following empirical
correlation coe�cient is considered to verify the null hypothesis
H0 : P ∈ {N(µ, σ2), µ ∈ R, σ2 > 0}:

T̃ (X1, . . . , Xn) =

n∑
i=1

(
bi − b

)(
X(i) −X

)
√

n∑
i=1

(bi − b)2

√
n∑

i=1

(
X(i) −X

)2 , (89)

where b =
∑n

i=1 bi/n and X =
∑n

i=1Xi/n.

1. Shapiro�Francia test

• Since correlation coe�cients are invariant under linear transformations, we are able to replace bi in
(89) by ai for each i ∈ {1, . . . , n}, where a =

∑n
i=1 ai/n = 0 holds.

• Furthermore, it holds that

n∑
i=1

(
X(i) −X

)2
=

n∑
i=1

(
Xi −X

)2
and

n∑
i=1

aiX = 0 ,

i.e., the de�nition of T̃ (X1, . . . , Xn) in (89) is equivalent to

T̃ (X1, . . . , Xn) =

n∑
i=1

aiX(i)√
n∑

i=1

a2i

√
n∑

i=1

(
Xi −X

)2 . (90)

• Since it always holds that |T̃ (X1, . . . , Xn)| ≤ 1, the null hypothesis H0 is rejected if T̃ (X1, . . . , Xn) <

qn,α, where qn,α denotes the α�quantile of the distribution of T̃ (X1, . . . , Xn).

• This is the so�called Shapiro�Francia test for normal distribution, where the quantiles qn,α of the

distribution of T̃ (X1, . . . , Xn) can either be taken from a table or be determined using Monte Carlo
simulation.
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2. Shapiro�Wilk test

• In (90) it is possible to consider the linear transformation

(a′1, . . . , a
′
n)

⊤ = K−1(a1, . . . , an)
⊤

instead of a1, . . . , an, where the covariance matrix K = (kij) is given by

kij = E
(
(Y(i) − ai)(Y(j) − aj)

)
with Yi ∼ N(0, 1).

• The test constructed in this way is called Shapiro�Wilk test.
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6 Nonparametric Localization Tests

6.1 Two Simple Examples of One�Sample Problems

6.1.1 Binomial Test

• The χ2 goodness�of��t test considered in Section 5.2 can be replaced by the following binomial test if r = 2,
i.e., if only two classes are considered (for example when dealing with binary data).

� Then we partition the domain of the (independent and identically distributed) sampling variables
X1, . . . , Xn into two subsets (a1, b1] and (a2, b2], such that

(a1, b1] ∩ (a2, b2] = ∅ and P
(
X1 ∈ (a1, b1] ∪ (a2, b2]

)
= 1 ,

and consider the �class size�

T (X1, . . . , Xn) = #{i : 1 ≤ i ≤ n, a1 < Xi ≤ b1} .

� One can easily see that T = T (X1, . . . , Xn) is binomial distributed, i.e.,

T ∼ Bin(n, p) , where p = P(a1 < X1 ≤ b1). (1)

• To begin with, we consider the problem of testing H0 : p = p0 versus H1 : p ̸= p0, where p0 ∈ (0, 1) is an
arbitrary �xed number.

� Due to (1), H0 is rejected if T ≤ tα1 or T ≥ t1−α2 ,

� where the �critical values� tα1 and t1−α2 for arbitrary α1, α2 ∈ (0, 1) with α1 + α2 = α are given by

tα1 = max{t ∈ R : Pp0(T ≤ t) ≤ α1}

= max
{
k ∈ {0, 1, . . . , n} :

k∑
i=0

(
n

i

)
p i
0(1− p0)

n−i ≤ α1

}
and

t1−α2 = min{t ∈ R : Pp0(T ≥ t) ≤ α2}

= min
{
k ∈ {0, 1, . . . , n} :

n∑
i=k

(
n

i

)
p i
0(1− p0)

n−i ≤ α2

}
.

� For p0 = 0.5 one usually chooses α1 = α2 = α/2. If p0 is close to 0 or 1, it is advisable to choose α1

smaller or greater than α2, respectively.

� The quantiles tα1 and t1−α2 of the binomial distribution Bin(n, p0) can either be taken from tables or
be determined using Monte Carlo simulation.

• The (one�sided) problem of testing H0 : p ≤ p0 versus H1 : p > p0 can be treated in a similar way. Here
H0 is rejected if T ≥ t1−α.

• In an analogous way, one obtains a decision rule for the (one�sided) problem of testing H0 : p ≥ p0 versus
H1 : p < p0, where H0 is rejected if T ≤ tα.

Remark

• The binomial test described above is also called sign test because the generation of 2 classes can be
perceived as binarization of the original data.

• In the two one�sided problems of testing, the critical values t1−α and tα are determined for p = p0
although the null hypothesis is H0 : p ≤ p0 or H0 : p ≥ p0, respectively.
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� Considering the values t1−α and tα anyway does here not contradict the fact that for each p < p0
or p > p0 the critical value would be smaller than t1−α or greater than tα and that H0 would thus
have to be rejected more often.

� The choice of the critical values t1−α and tα can be explained by the fact that one does not consider
a single p with p < p0 or p > p0, but that p can be arbitrarily close to p0 and hence, in particular,
also p = p0 is allowed.

• If the sample size n is large and if p0 is close to 0 or 1,

� the direct computation of the quantiles t1−α and tα of the binomial distribution Bin(n, p0) is
di�cult.

� The law of rare events (cf. Section WR�3.2.2) implies that t1−α and tα can be approximated
by quantiles of the Poisson distribution Poi(λ) in this case, where λ = np0 or λ = n(1 − p0),
respectively.

• Moreover, for arbitrary �xed p0 ∈ (0, 1) the critical values t1−α and tα can be approximated by suitably
transformed quantiles of the normal distribution N(0, 1) if the sample size n is �su�ciently large�.

� In this case, it follows from the central limit theorem of DeMoivre�Laplace (cf. Theorem WR�3.6)
that the transformed test statistic

T ′ =
T − np0√
np0(1− p0)

is approximately N(0, 1)�distributed, i.e., that

P(T ≤ t) = P(T ′ ≤ t′) ≈ Φ(t′) , where t′ =
t− np0√
np0(1− p0)

and Φ : R → [0, 1] is the distribution function of the N(0, 1)�distribution.

� Therefore, one gets that tα ≈ np0 + zα
√
np0(1− p0), where zα is the α�quantile of the N(0, 1)�

distribution.

• Possible criteria for �su�ciently large� which are mentioned in literature are, e.g., the conditions n ≥ 20
and 10 ≤ np0 ≤ n− 10.

� When investigating the (two�sided) problem of testing H0 : p = p0 versus H1 : p ̸= p0, then H0 is
rejected if

T ≤ np0 + zα1

√
np0(1− p0) or T ≥ np0 + z1−α2

√
np0(1− p0) .

� Similar approximation formulas can be derived for the critical values of the one�sided tests men-
tioned above.

Example

• Let the distribution function F : R → [0, 1] of the sampling variable X1, . . . , Xn be continuous and let
γp be the p�quantile of F , i.e., let F (γp) = p for p ∈ (0, 1).

• In order to verify the hypothesis H0 : γp = γ0p , one can consider the �coarsened� random sample
(Y1, . . . , Yn) with

Yi =

 1 , if Xi ≤ γp,

0 , if Xi > γp.

• Then Yi ∼ Bin(1, p) for each i = 1, . . . , n and the hypothesis H0 : γp = γ0p with respect to (X1, . . . , Xn)
is equivalent to the hypothesis H0 : p = p0 with respect to (Y1, . . . , Yn).

• Hence, the binomial test can in particular be used to verify the hypothesis H0 : γ0.5 = 0.
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6.1.2 Run Test for Randomness

• In this section it is not assumed that the sampling variables X1, . . . , Xn are independent.

� We merely assume that X1, . . . , Xn can only take the values 0 or 1, where the value 0 shall occur n1
times and the value 1 shall occur n2 times; n2 = n− n1.

� Thus, there are altogether
(
n
n1

)
possible realizations of the random sample (X1, . . . , Xn).

� We now want to verify the null hypothesis H0 that each of these
(
n
n1

)
realizations occurs with the same

probability.

� In other words: We want to check whether the localization, i.e., the order in which the n1 ones and n2
zeros are arranged, is �purely at random�.

• As a test statistic T : Ω → {0, 1, . . .} we consider the number T (ω) of runs in the (concrete) sample
ω = (x1, . . . , xn), i.e., the number of (sub�) sequences of consecutive equal symbols ω = (x1, . . . , xn).

Example

• Let n = 20 with n1 = 12 and n2 = 8. For

ω = (1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1) (2)

one then gets that T (ω) = 7.

• We now investigate the question whether the data given in (2) is compatible with the hypothesis H0

that the order is �purely at random� or whether H0 should be rejected.

• For this purpose, we specify the distribution of T by considering a suitably chosen (Laplace) probability
space, cf. Section WR�2.4.1.

Theorem 6.1 Assuming that H0 is true, it holds for each i = 1, 2, . . . ,min{n1, n2} that

P(T = k) =



2

(
n1 − 1

i− 1

)(
n2 − 1

i− 1

)
(
n

n1

) , wenn k = 2i,

(
n1 − 1

i

)(
n2 − 1

i− 1

)
+

(
n1 − 1

i− 1

)(
n2 − 1

i

)
(
n

n1

) , wenn k = 2i+ 1.

(3)

Furthermore, it holds that

ET = 1 +
2n1n2
n

and VarT =
2n1n2(2n1n2 − n)

n2(n− 1)
. (4)

Proof

• We only prove (3) for the case k = 2i since the proof for the case k = 2i+ 1 proceeds analogously.

� Hence, let k = 2i. Then there are at a time i runs consisting of ones and zeros, respectively.

� For the decomposition of the n1 zeros into i subsets, there are
(
n1−1
i−1

)
possibilities.

� For each of these decompositions, there are
(
n2−1
i−1

)
possibilities to divide the n2 ones into i subsets.
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� If we now additionally assume that the sample ω = (x1, . . . , xn) can begin either with x1 = 0 or
with x1 = 1, we obtain a total of 2

(
n1−1
i−1

)(
n2−1
i−1

)
decomposition possibilities.

� Therefore, (3) is proved for the case k = 2i.

• In order to determine the expectation ET , we use the following consideration.

� For each j = 2, . . . , n we consider the indicator variable Yj : Ω → {0, 1} with

Yj =

 1 , if a run starts at the j�th position,

0 , else.

� Then it holds that {ω ∈ Ω : Yj(ω) = 1} = {ω ∈ Ω : Xj−1(ω) ̸= Xj(ω)}, i.e., there are 2
(
n−2
ni−1

)
possibilities that a run starts at the j�th position.

� Therefore, one gets

EYj = P(Yj = 1) = 2

(
n− 2

ni − 1

)
(
n

n1

) = 2
(n− 2)! (n− n1)!n1!

(n− n1 − 1)!(n1 − 1)!n!
= 2

n1(n− n1)

n(n− 1)
.

� Together with the identity

T = 1 +
n∑

j=2

Yj (5)

this implies that

ET = 1 +
n∑

j=2

EYj = 1 + 2
n1(n− n1)

n
.

• The variance formula in (4) can be proved in a similar way because (5) implies that

VarT = E
( n∑
j=2

EYj
)2

−
( n∑
j=2

EYj
)2

=

n∑
j=2

EY 2
j +

∑
2≤j1,j2≤n, j1 ̸=j2

E
(
Yj1Yj2

)
−
( n∑
j=2

EYj
)2

=
n∑

j=2

EYj +
∑

2≤j1,j2≤n, j1 ̸=j2

E
(
Yj1Yj2

)
−
( n∑
j=2

EYj
)2
,

hence one only needs to specify the moments E
(
Yj1Yj2

)
. �

Remark

• A possible alternative to the null hypothesis H0 that the localization of the zeros and ones is �purely
at random� is their trend to form clumps or clusters.

• As rejection region of H0 one then chooses the left�hand end of the distribution of T .

• In other words: H0 is rejected if T ≤ rα(n1;n2), where

rα(n1;n2) = max
{
r ∈ {1, 2, . . .} : P(T ≤ r) ≤ α

}
is the α�quantile of the distribution of the test statistic T .

• The quantiles rα(n1;n2) can be computed using the formulas for the probabilities P(T = k) given in
Theorem 6.1. They can be taken from tables in literature.
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Example (continued) For α = 0.1 and n1 = 12, n2 = 8 one obtains that r0.1(12; 8) = 7. Moreover, it holds for
the sample considered in (2) that

T (ω) = 7
(
≤ r0.1(12; 8)

)
,

i.e., H0 is rejected.

If the (sub�) sample sizes n1 and n2 are large, the determination of the quantiles rα(n1;n2) of T = Tn1,n2 involves
a considerable computational cost. A way out is o�ered by the following central limit theorem, which we state
without proof.

Theorem 6.2 If n1, n2 → ∞ such that n1/(n1+n2) → p or equivalently n2/(n1+n2) → 1−p for a p ∈ (0, 1),
then it holds that

lim
n1,n2→∞

1

n1 + n2
ETn1,n2 = 2p(1− p) and lim

n1,n2→∞

1

n1 + n2
VarTn1,n2 = 4p2(1− p)2 (6)

as well as

lim
n1,n2→∞

P
( Tn1,n2 − 2(n1 + n2)p(1− p)

2
√
n1 + n2 p(1− p)

≤ x
)
= Φ(x) ∀x ∈ R , (7)

where Φ : R → [0, 1] is the distribution function of the N(0, 1)�distribution.

Remark Theorem 6.2 implies that for large n1, n2 the null hypothesis H0 is rejected if

Tn1,n2 − 2n1n2/(n1 + n2)

2n1n2/(n1 + n2)3/2
≤ zα , (8)

where zα is the α�quantile of the N(0, 1)�distribution.

6.2 Wilcoxon�Rank Test

6.2.1 Model Description; Median Test

• We now return to the case that the sampling variablesX1, . . . , Xn are independent and identically distributed
with the distribution function F : R → [0, 1].

� At the end of Section 6.1.1, in the context of the binomial or sign test, we have discussed a median
test for verifying the hypothesis

H0 : γ0.5 = 0, (9)

where γ0.5 is a median of F , i.e., F (γ0.5) = 0.5.

� In this section we consider another (more e�cient) approach for testing the hypothesis given in (9).

• In doing so, we assume that the distribution function F of the sampling variables X1, . . . , Xn belongs to
the following (nonparametric) class of distribution functions.

� Let G : R → [0, 1] be an arbitrary continuous distribution function with the following kind of symmetry
with respect to the origin: For each x ∈ R it holds that G(−x) = 1−G(x).

� This implies in particular that G(0) = 1/2, i.e., zero is a median of G.

� Let the family ∆ of distribution functions of the sampling variables X1, . . . , Xn which is taken into
account in the (two�sided) Wilcoxon test be given by ∆ =

{
Fδ : Fδ(x) = G(x− δ) ∀x, δ ∈ R

}
.
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� Since G is continuous, one then gets that

P(Xi = x) = P(Xi = Xj) = 0 (10)

for each x ∈ R and for arbitrary i, j = 1, . . . , n with i ̸= j.

• We discuss the (two�sided) problem of testing H0 : δ = δ0 vs. H1 : δ ̸= δ0 for some δ0 ∈ R.

� Here we can (w.l.o.g.) set δ0 = 0; otherwise, the transformed sampling variables X ′
1, . . . , X

′
n with

X ′
i = Xi − δ0 can be considered.

� In a similar way, also the (one�sided) problem of testing H0 : δ = 0 vs. H1 : δ > 0 can be treated.

• For the veri�cation of the null hypothesis H0 : δ = 0 we consider the ranks R1, . . . , Rn of the random
variables |X1|, . . . , |Xn| with

Ri =

n∑
j=1

1I{|Xj |≤|Xi|} ∀ i = 1, . . . , n ,

where the indicator variable 1I{|Xj |≤|Xi|} : Ω → {0, 1} is given by

1I{|Xj |≤|Xi|}(ω) =

 1 , if |Xj(ω)| ≤ |Xi(ω)|,

0 , else.

• Then we consider the test statistics

T+
n =

n∑
i=1

Ri1I{Xi>0} and T−
n =

n∑
i=1

Ri1I{Xi<0} . (11)

Remark

• Due to (10) it holds with probability 1 that

T−
n =

n∑
i=1

Ri − T+
n =

(
n+ 1

2

)
− T+

n . (12)

• One can show that, assuming that H0 : δ = 0 is true, it holds that T−
n

d
= T+

n ; cf. (18).

• Thus, in the case that H0 : δ = 0 is true, the test statistics T+
n and T−

n should take values that are
approximately equal. Because of (12), this means that T+

n ≈
(
n+1
2

)
/2.

• Very small or very large values of T+
n hence indicate that the alternative hypothesis H1 : δ ̸= δ0 might

be true, i.e., H0 : δ = 0 is rejected if

T+
n ≤ tα/2 or T+

n ≥ t1−α/2 , (13)

where the �critical values� tα/2 and t1−α/2 are the (α/2)�quantile and the (1 − α/2)�quantile of the
distribution of T+

n , respectively.

6.2.2 Distribution of the Test Statistic T+
n for Small Sample Sizes

• If the sample size n is not too large, then the quantiles tα/2 and t1−α/2 in (13) can be determined by
combinatorial considerations.

� Due to (10), the random vector R = (R1, . . . , Rn) of the ranks R1, . . . , Rn of |X1|, . . . , |Xn| is a
(random) permutation of the numbers 1, . . . , n.
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� Then the test statistic T+
n given in (11) can be represented as follows:

T+
n =

n∑
i=1

i Zi , where Zi = 1I{X
R

−1
i

>0} (14)

� and R−1 = (R−1
1 , . . . , R−1

n ) denotes the inverse permutation of R, i.e., if Ri = j, then it holds that
R−1

j = i.

• Moreover, the following lemma is useful to determine the distribution of T+
n .

Lemma 6.1 Assuming that H0 : δ = 0 is true, it holds that:

• The random vectors
(
1I{X1>0}, . . . , 1I{Xn>0}

)
and R = (R1, . . . , Rn) are independent.

• The components Z1, . . . , Zn of (Z1, . . . , Zn) are independent and identically distributed with Zi ∼ Bin(1, 1/2).

Proof

• We �rst show that the random variables 1I{Xi>0} and |Xi| are independent for each i = 1, . . . , n.

� For each x ≥ 0 it holds that

P
(
1I{Xi>0} = 1, |Xi| ≤ x

)
= P

(
0 < Xi ≤ x

)
= G(x)− 1

2

and

P
(
1I{Xi>0} = 1

)
P
(
|Xi| ≤ x

)
=

1

2

(
G(x)−G(−x)

)
=

1

2

(
G(x)− (1−G(x))

)
= G(x)− 1

2
.

� Moreover, it obviously holds for each x < 0 that

P
(
1I{Xi>0} = 1, |Xi| ≤ x

)
= 0 = P

(
1I{Xi>0} = 1

)
P
(
|Xi| ≤ x

)
.

� In the same way, it can be shown that

P
(
1I{Xi>0} = 0, |Xi| ≤ x

)
= P

(
1I{Xi>0} = 0

)
P
(
|Xi| ≤ x

)
for each x ∈ R.

• Since the independence of the sampling variables X1, . . . , Xn implies the independence of the random
vectors

(
1I{X1>0}, |X1|

)
, . . . ,

(
1I{Xn>0}, |Xn|

)
,

� it follows that
(
1I{X1>0}, . . . , 1I{Xn>0}

)
and

(
|X1|, . . . , |Xn|

)
are independent random vectors.

� Since R = (R1, . . . , Rn) is a Borel measurable function of
(
|X1|, . . . , |Xn|

)
, also the random vectors(

1I{X1>0}, . . . , 1I{Xn>0}
)
and R are independent.

• Therefore, one gets for arbitrary i ∈ {1, . . . , n} and z ∈ {0, 1} that

P(Zi = z) = P
(
1I{X

R
−1
i

>0} = z
)

=
∑
r

P
(
1I{X

R
−1
i

>0} = z | R = r
)
P(R = r)

=
∑
r

P
(
1I{X

r
−1
i

>0} = z | R = r
)
P(R = r)

=
∑
r

P
(
1I{X

r
−1
i

>0} = z
)
P(R = r) =

1

2

∑
r

P(R = r) =
1

2
,

where the summation extends over all permutations r = (r1, . . . , rn) of the numbers 1, . . . , n.
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• This implies that

P
(
Z1 = z1, . . . , Zn = zn

)
= P

(
1I{X

R
−1
1

>0} = z1, . . . , 1I{X
R

−1
n

>0} = zn
)

=
∑
r

P
(
1I{X

R
−1
1

>0} = z1, . . . , 1I{X
R

−1
n

>0} = zn | R = r
)
P
(
R = r

)
=

∑
r

P
(
1I{X

r
−1
1

>0} = z1, . . . , 1I{X
r
−1
n

>0} = zn | R = r
)
P
(
R = r

)
=

∑
r

P
(
1I{X1>0} = zr1 , . . . , 1I{Xn>0} = zrn | R = r

)
P
(
R = r

)
=

∑
r

P
(
1I{X1>0} = zr1 , . . . , 1I{Xn>0} = zrn

)
P
(
R = r

)
=

1

2n
= P(Z1 = z1) . . . P(Zn = zn)

for arbitrary z = (z1, . . . , zn) ∈ {0, 1}n.

Theorem 6.3 Assuming that H0 : δ = 0 is true, the distribution of T+
n is given by

P(T+
n = k) =

ak
2n

∀ k = 0, 1, . . . , n , (15)

where

ak = #
{
z = (z1, . . . , zn) ∈ {0, 1}n :

n∑
i=1

izi = k
}
. (16)

Moreover, it holds that

ET+
n =

n(n+ 1)

4
and VarT+

n =
n(n+ 1)(2n+ 1)

24
. (17)

Proof

• The representation formula (14) for T+
n and Lemma 6.1 imply that

P(T+
n = k) = P

( n∑
i=1

i Zi = k
)

=
∑

z=(z1,...,zn)∈{0,1}n:
∑n

i=1 izi=k

P
(
Z1 = z1, . . . , Zn = zn

)
=

ak
2n

for each k = 0, 1, . . . , n.

• Furthermore, one obtains that

ET+
n = E

( n∑
i=1

i Zi

)
=

n∑
i=1

i EZi =
1

2

(
n+ 1

2

)
=

n(n+ 1)

4

and

VarT+
n = Var

( n∑
i=1

i Zi

)
=

n∑
i=1

i2 VarZi =
1

4

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

24
. �

Remark

• From (12) and (14) it moreover follows with Lemma 6.1 that

T−
n =

(
n+ 1

2

)
− T+

n =

(
n+ 1

2

)
−

n∑
i=1

i Zi =
n∑

i=1

i (1− Zi)
d
=

n∑
i=1

i Zi = T+
n ,

i.e., under H0 : δ = 0 it holds that

T−
n

d
= T+

n . (18)
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• Thus, (12) implies that for each k = 0, 1, . . . , n

P
(
T+
n = k

)
= P

(
T−
n =

n(n+ 1)

2
− k
)

= P
(
T+
n =

n(n+ 1)

2
− k
)
,

i.e., the distribution of T+
n is symmetric with respect to the expectation ET+

n = n(n+ 1)/4.

• This means that also the quantiles tα,n = max{t ∈ R : P(T+
n ≤ t) ≤ α} have this property of symmetry,

i.e., for each α ∈ (0, 1) it holds that

tα,n =
n(n+ 1)

2
− t1−α,n .

• The quantiles tα,n can either be taken from tables or be determined using Monte Carlo simulation.

6.2.3 Asymptotic Distribution

• The direct determination of the quantiles tα/2 and t1−α/2 by using Theorem 6.3 is di�cult if the sample
size n is large.

� Another way to approximatively determine the distribution of the test statistic T+
n is based on the

representation formula (14).

� In this context the fact is used that T+
n =

∑n
i=1 i Zi is a sum of independent random variables, which

follows from Lemma 6.1.

� In fact, the central limit theorem for sums of independent (but not necessary identically distributed)
random variables implies that T+

n is normally distributed.

• For this purpose we consider the following stochastic model: For each n ≥ 1 let Xn1, . . . , Xnn : Ω → R be
a sequence of independent random variables,

� where we (w.l.o.g.) assume that for each k ∈ {1, . . . , n}

EXnk = 0 , 0 < σ2
nk = VarXnk <∞ and

n∑
k=1

σ2
nk = 1 . (19)

� If the random variables Xn1, . . . , Xnn do not satisfy the conditions formulated in (19), then we consider
the transformed random variables X ′

n1, . . . , X
′
nn with

X ′
nk =

Xnk − EXnk√
nVarXnk

. (20)

� We denote the distribution function of Xnk by Fnk, where we do not exclude the case that Fnk for
each k ∈ {1, . . . , n} can depend on the number n of considered random variables Xn1, . . . , Xnn.

The following central limit theorem of Lindeberg (cf.Theorem WR�5.22) is the basis to show that T+
n is asymp-

totically normally distributed.

Lemma 6.2

• For each n ∈ N let Xn1, . . . , Xnn : Ω → R be a sequence of independent random variables, which satisfy the
conditions (19).
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• If furthermore for each ε > 0

lim
n→∞

n∑
k=1

∫
R\(−ε,ε)

x2 dFnk(x) = 0 , (21)

then it holds for each x ∈ R that

lim
n→∞

P
(
Xn1 + . . .+Xnn ≤ x

)
= Φ(x) , (22)

where Φ : R → [0, 1] is the distribution function of the N(0, 1)�distribution.

Theorem 6.4 Under H0 : δ = 0 it holds that

lim
n→∞

P
(T+

n − ET+
n√

VarT+
n

≤ x
)

= Φ(x) ∀x ∈ R . (23)

Proof

• Because of (14) it is su�cient to show that the random variables Xn1, . . . , Xnn with

Xnk =
kZk − kEZk√

VarT+
n

(24)

satisfy the conditions of Lemma 6.2.

� It follows directly from equation (24) that (19) is ful�lled.

� Therefore, it merely remains to show that the Lindeberg�condition (22) is satis�ed.

• For the distribution function Fnk : R → [0, 1] of the random variable Xnk, introduced in (24), it follows
from Lemma 6.1 that

Fnk(x) =



0 , if x <
−k

2
√
VarT+

n

,

1

2
, if

−k
2
√

VarT+
n

≤ x <
k

2
√
VarT+

n

,

1 , if
k

2
√
VarT+

n

≤ x .

� This implies that
∫
R\(−ε,ε)

x2 dFnk(x) = 0 for each k ∈ {1, . . . , n} if n is chosen in such a way that

n2

4VarT+
n

=
6n2

n(n+ 1)(2n+ 1)
< ε2 ,

where the last equality follows from the formula for VarT+
n in Theorem 6.3.

� Therefore, the validity of the Lindeberg�condition (22) is shown. �

Remark

• Because of Theorem 6.4 the following critical area is considered in the case of the (two�sided) test
problem H0 : δ = 0 vs. H1 : δ ̸= 0.

• For su�ciently large n, H0 : δ = 0 is rejected if∣∣∣ T+
n − ET+

n√
VarT+

n

∣∣∣ ≥ z1−α/2 , (25)

where ET+
n or VarT+

n are given in Theorem 6.3 and z1−α/2 is the (1 − α/2)�quantile of the N(0, 1)�
distribution.

• In the literature the condition n ≥ 20 is suggested as a possible criterion for �su�ciently large�.
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6.3 Two�Sample Problems

• In this section we discuss nonparametric tests for the case that two independent random samples (X1, . . . , Xn1)
and (Y1, . . . , Yn2) are observed.

• In other words: We assume that the random variables X1, . . . , Xn1 , Y1, . . . , Yn2 are completely independent
with the (unknown) distribution functions F and G, i.e.,

F (x) = P(Xi ≤ x) and G(y) = P(Yj ≤ y) ∀x, y ∈ R, i = 1, . . . , n, j = 1, . . . ,m .

• Then, a (two�sided) test problem is for example given by

H0 : F (x) = G(x) ∀x ∈ R vs. H1 : F (x) ̸= G(x) ∃x ∈ R . (26)

• As a one�sided alternative to H0 : F (x) = G(x) ∀x ∈ R the following hypotheses can be considered:

H1 : F (x) ≥ G(x) ∀x ∈ R and F (x) > G(x) ∃x ∈ R (27)

or
H1 : F (x) ≤ G(x) ∀x ∈ R and F (x) < G ∃x ∈ R . (28)

6.3.1 Run Test of Wald�Wolfowitz

• For the analysis of the test problem, given in (26), one can apply the run test for randomness, which has
been discussed in Section 6.1.2.

� For this purpose, we combine the sample variables X1, . . . , Xn1 and Y1, . . . , Yn2 to one random sample

(X ′
1, . . . , X

′
n) = (X1, . . . , Xn1 , Y1, . . . , Yn2) , where n = n1 + n2,

and consider the ordered sample (X ′
(1), . . . , X

′
(n)).

� Here we assume that the distribution functions F and G are continuous, i.e., the mapping

(X ′
1, . . . , X

′
n) 7→ (X ′

(1), . . . , X
′
(n))

is uniquely determined with probability 1.

• Under H0 : F (x) = G(x) ∀x ∈ R it is to be expected that the Xi's and Yj 's in (X ′
(1), . . . , X

′
(n)) are �well

mixed�,

� since the sample variables X ′
(1), . . . , X

′
(n) then are independent and identically distributed.

� If the trend for �clumping and clustering� is considered as an alternative, then H0 is rejected if the
number T of iterations in the (binary) sample (Z1, . . . , Zn) is �too small�, where Zi = 0 if X ′

(i) = Xj

for some j ∈ {1, . . . , n} and Zi = 1 if X ′
(i) = Yj for some j ∈ {1, . . . , n}.

Examples

• In a medical study the body heights of n1 = 8 girls and n2 = 10 boys were analyzed.

• The measurement results are:

xi 117 121 122 124 125 126 128 132

yj 110 113 114 115 116 118 119 120 123 127
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• If we order these measurements by size and assign a 0 to the heights of the boys and a 1 to the heights
of the girls, then we obtain the sequence

ω = (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1) with T (ω) = 8. (29)

• Otherwise, Theorem 6.1 implies that for the α�quantile rα(n1;n2) of the distribution of T it holds that
r0.05(8; 10) = 6 for α = 0.05.

• In this case H0 is therefore rejected because T (ω) = 8 > 6 = r0.05(8; 10).

Remark

• The run test considered in this section is not able to identify alternatives of the type (27) or (28).

• The example given in (29) makes this clear: Since the number of iterations T (ω) = 8 does not change,
if we (in contrast to the previous approach) assign a 1 to the heights of the boys and a 0 to the heights
of the girls.

• Also for two�sided alternatives the run test of Wald�Wolfowitz, also called �omnibus�test�, should only
be used if the form of the alternative is not speci�ed further.

• For special alternatives, which for example only a�ect location or variability characteristics, other test
methods are more e�cient, cf Section 6.3.2.

6.3.2 Wilcoxon Rank�Sum Test for Location Alternatives

• We now discuss another nonparametric test for the case that two independent random samples (X1, . . . , Xn1)
and (Y1, . . . , Yn2

) are observed.

• However, we will here consider more special alternatives as in (26) � (28).

� We assume that the random variables X1, . . . , Xn1
and Y1, . . . , Yn2

are completely independent with
the (unknown) continuous distribution functions F and G.

� Similar as in Section 6.2 it is assumed that there is some δ ∈ R such that

F (x) = G(x+ δ) ∀x ∈ R .

� A (two�sided) test problem, which is consistent with the above mentioned more general test problem
(26), is then given by

H0 : δ = 0 vs. H1 : δ ̸= 0 . (30)

� The following hypotheses can be considered as one�sided alternatives to H0 : δ = 0:

H1 : δ > 0 or H1 : δ < 0 . (31)

• In the same way as in Section 6.3.1 we merge the sample variables X1, . . . , Xn1 and Y1, . . . , Yn2 to one
combined random sample (X ′

1, . . . , X
′
n) = (X1, . . . , Xn1 , Y1, . . . , Yn2), where n = n1 + n2.

� Furthermore, we consider the (random) vector of the ranks R′ = (R′
1, . . . , R

′
n) of the sample variables

X ′
1, . . . , X

′
n in the combined sample, where

R′
i =

n∑
j=1

1I{X′
j≤X′

i} ∀ i = 1, . . . , n .

� As in Section 6.3.1 it has to be expected underH0 : δ = 0 that theXi's and Yj 's in the combined sample
(X ′

(1), . . . , X
′
(n)) are �well mixed� because then the sample variables X ′

(1), . . . , X
′
(n) are independent and

identically distributed.
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� Thus, for the two�sided test problem in (30), H0 is rejected if the rank�sum

Tn1,n2 =

n1∑
i=1

R′
i (32)

is �too small� or �too large�.

• In order to perform the test, the distribution of the test statistic Tn1,n2 , introduced in (32), has to be
determined. For this purpose the following lemma is useful.

Lemma 6.3

• Let X : Ω → {. . . ,−1, 0, 1, . . .} be a discrete random variable such that E |X| <∞ and that for some µ ∈ R
the following symmetry property is ful�lled:

P(X = µ− k) = P(X = µ+ k) ∀ k ∈ {. . . ,−1, 0, 1, . . .} . (33)

• Then it holds that EX = µ.

Proof

• We can w.l.o.g. assume that µ = 0 since otherwise the transformed random variable X ′ = X − µ can
be considered.

• Then it follows from (33) with µ = 0 that

EX =

∞∑
k=−∞

k P(X = k) = −
∞∑
k=1

k P(X = −k) +

∞∑
k=1

k P(X = k)
(33)
= 0 .

�

Theorem 6.5

• Under H0 : δ = 0 the distribution of Tn1,n2 is given by

P(Tn1,n2 = k) =
ak,n1,n2(
n1 + n2
n1

) ∀ k =
n1(n1 + 1)

2
, . . . , n1n2 +

n1(n1 + 1)

2
, (34)

where

ak,n1,n2 = #
{
z = (z1, . . . , zn1+n2) ∈ {0, 1}n1+n2 : #{i : zi = 1} = n1,

n1+n2∑
i=1

izi = k
}
. (35)

• Furthermore, it holds that

P(Tn1,n2
= k) = P(Tn1,n2

= 2µ− k) ∀ k ∈ {. . . ,−1, 0, 1, . . .} (36)

and therefore
ETn1,n2 = µ , (37)

where µ = n1(n1 + n2 + 1)/2.

Proof

• Under H0 : δ = 0 the sample variables X ′
1, . . . , X

′
n1+n2

are independent and identically distributed.
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� Hence, each of the
(
n1+n2

n1

)
partitions of the n1 variables X1, . . . , Xn1 into the n1 + n2 existing

rank spots has the same probability.

� Moreover, it holds for the minimum and maximum value tmin and tmax, respectively, of Tn1,n2 that

tmin =

n1∑
i=1

i =
n1(n1 + 1)

2
and tmax =

n2+n1∑
i=n2+1

i = n1n2 +
n1(n1 + 1)

2
.

� From this the validity of (34) � (35) is obtained.

• In order to prove (36) we use the following symmetry property.

� Each z = (z1, . . . , zn1+n2) ∈ {0, 1}n1+n2 with

#{i : zi = 1} = n1 and

n1+n2∑
i=1

izi = k

corresponds to some z̃ = (z̃1, . . . , z̃n1+n2) ∈ {0, 1}n1+n2 with

#{i : z̃n1+n2+1−i = 1} = n1 and

n1+n2∑
i=1

(n1 + n2 + 1− i) z̃i = n1(n1 + n2 + 1)− k .

� Since the sample variables X ′
(1), . . . , X

′
(n) are independent and identically distributed, it thus fol-

lows for each k ∈ {. . . ,−1, 0, 1, . . .} that

P(Tn1,n2 = k) = P(Tn1,n2 = n1(n1 + n2 + 1)− k) = P(Tn1,n2 = 2µ− k) , (38)

where 2µ = n1(n1 + n2 + 1).

• In order to show (37) it is su�cient to substitute k = µ− i in (38).

� Then (38) implies that

P(Tn1,n2 = µ− i) = P(Tn1,n2 = µ+ i) ∀ i ∈ {. . . ,−1, 0, 1, . . .} .

� From this and Lemma 6.3 the validity of (37) is obtained. �

Remark

• Now, (38) implies the following symmetry property for the quantiles tα,n1,n2 of Tn1,n2 .

� For each α ∈ (0, 1) it holds that

tα,n1,n2 = n1(n1 + n2 + 1)− t1−α,n1,n2 .

� The quantiles tα,n1,n2 can either be taken from tables or be determined using Monte Carlo simu-
lation.

• The null hypothesis H0 : δ = 0 is rejected in favor of H1 : δ ̸= 0 if

Tn1,n2 ≤ tα/2,n1,n2
or Tn1,n2 ≥ n1(n1 + n2 + 1)− tα/2,n1,n2

.

• Analogously, the null hypothesis H0 : δ = 0 is rejected in favor of H1 : δ < 0 or H1 : δ > 0 if

Tn1,n2 ≥ n1(n1 + n2 + 1)− tα,n1,n2 or Tn1,n2 ≤ tα,n1,n2 .

If the sample sizes n1 and n2 are large enough, it is di�cult to determine the quantiles tα,n1,n2 directly via
Theorem 6.5. However, then the distribution of the test statistic Tn1,n2

can approximatively be determined from
the following central limit theorem.
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Theorem 6.6 If n1, n2 → ∞ such that n1/(n1 + n2) → p or n2/(n1 + n2) → 1− p for some p ∈ (0, 1), then
it holds that

lim
n1,n2→∞

P
( Tn1,n2 − ETn1,n2√

VarTn1,n2

≤ x
)
= Φ(x) ∀x ∈ R , (39)

where

ETn1,n2 =
n1(n1 + n2 + 1)

2
, VarTn1,n2 =

n1n2(n1 + n2 + 1)

12

and Φ : R → [0, 1] is the distribution function of the N(0, 1)�distribution.

Remark

• Because of Theorem 6.6 the null hypothesis H0 : δ = 0 is rejected for large n1, n2 in favor of H1 : δ ̸= 0
if ∣∣∣Tn1,n2 − n1(n1 + n2 + 1)/2√

n1n2(n1 + n2 + 1)/12

∣∣∣ ≥ z1−α/2 ,

where zα is the α�quantile of the N(0, 1)�distribution.

• Analogously, H0 : δ = 0 is rejected in favor of H1 : δ > 0 or H1 : δ < 0 if

Tn1,n2 − n1(n1 + n2 + 1)/2√
n1n2(n1 + n2 + 1)/12

≥ z1−α or
Tn1,n2 − n1(n1 + n2 + 1)/2√

n1n2(n1 + n2 + 1)/12
≤ −z1−α .


