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1 Introduction and Mathematical Foundations

These lecture notes are made for students who already have a basic knowledge of mathematical statistics. Esti-
mation and statistical test methods which have been discussed in ”"Stochastik I” are assumed to be known.

The present lecture notes consist of the following parts:

e multivariate normal distribution (nondegenerate and degenerate normal distribution, linear and quadratic
forms)

e linear models (multiple regression, normally distributed error terms, single- and multiple-factor analysis of
variance)

e generalized linear models (logistic regression, maximum-likelihood equation, weighted least squares estima-
tor, evaluation of the goodness of fit)

e tests for distribution assumptions (Kolmogorow—Smirnow test, x?-goodness—of-fit test of Pearson-Fisher)

e nonparametric location tests (binomial test, iteration tests, linear rank tests)

In particular, we will use notions and results which have been introduced in the lecture notes "Elementare
Wahrscheinlichkeitsrechnung und Statistik” and “Stochastik I: we will indicate references to these lecture notes
by "WR” and "I” in front of the section number of the cited lemmas, theorems, corollaries and formulas.

1.1 Some Basic Notions and Results of Matrix Algebra

First, we recall some basic notions and results of matrix algebra, which are needed in these lecture notes.

1.1.1 Trace and Rank

e The trace tr(A) of a quadratic n x n matrix A = (a;;) is given by

n

tr(A) = ai. (1)

i=1

e Let A be an arbitrary n x m matrix. The rank rk(A) is the maximum number of linearly independent rows
(or columns) of A.

— The vectors aj,...,a; € R™ are called linearly dependent if there exist real numbers cq,...,c € R,
which are not all equal to zero and c1a; + ...+ cpay = o.

— Otherwise the vectors aj,...,a; € R™ are called linearly independent.

From the definition of the trace of a matrix in (1) and from the definition of matrix multiplication the next lemma
directly follows.

Lemma 1.1 Let C be an arbitrary n x m matriz and D an arbitrary m x n matriz. Then tr(CD) = tr(DC).

It can be proved that a quadratic matrix A is invertible if and only if A has full rank or det A # 0, respectively.
The following result is also useful in this context.

Lemma 1.2 Let A be an n x m matriz with n > m and tk(A) = m. Then tk(ATA) = m.
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Proof
e It is obvious that the rank rk(ATA) of the m x m matrix AT A cannot exceed m.
e Now, we assume that rk(ATA) < m. Then, there exists a vector ¢ = (c1,...,cn) € R™ with ¢ # o
and ATAc = o.
e From this follows that c' AT Ac = o and (Ac) " (Ac) = o, i.e., Ac = o.
e However, this is contradictory to the assumption that rk(A) = m. (]

Furthermore, it can be proved that the following properties of trace and rank are valid.

Lemma 1.3 Let A and B be arbitrary n x n matrices. Then tr(A — B) = tr(A) — tr(B) always holds. If A
is idempotent and symmetric, i.e., A = A2 and A = A", it also holds that tr(A) = rk(A).

1.1.2 Eigenvalues and Eigenvectors

Definition Let A be an arbitrary n X n matrix. Each (complex) number A € C is called an eigenvalue of the
matrix A if and only if there exists a vector x € C" with x # o and

(A-MD)x=o0. (2)

We call x an eigenvector corresponding to A.

Remark
e Only if A is a solution of the so—called characteristic equation
det(A — A\I) =0, (3)

there is a solution x € C™ with x # o for (2). The left-hand side P(\) = det(A — AI) of (3) is called
the characteristic polynomial of matrix A.

e Let Ai,...,Ax € R be the real-valued solutions of (3). Then the characteristic polynomial can be
written in the form

PA) = (D" A =AD" ... (A= Xp)™q(N), (4)

where a1, ...,a; € N are positive natural numbers, the so—called algebraic multiplicities of A1, ..., Ak,

and ¢(\) is a polynomial of order n — Zle a; which has no real solutions.

Lemma 1.4 Let A = (a;;) be a symmetric n x n matric with real-valued entries a;;. Then every eigenvalue is
a real number and eigenvectors x;,x; € R™ which correspond to different eigenvalues \;, \; € R are orthogonal to
each other.

Proof
e The determinant det(A — AI) in (3) is given by

det(A =D =Y (~1)"™@ T ain, [] (aim — N, (5)

T 1 IFETy 11 1=,

where the summation extends over all m! permutations w = (m,...,m,) of the natural numbers
1,...,m and r(m) is the number of pairs in 7r, which are not in the natural order.
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e Since the elements of A are real numbers, every solution A = a +1b of (3) implies another solution
A=a—ibof (3).

e Let x =a+iband X = a—ib be eigenvectors which correspond to A or A, respectively. Then Ax = \x
and AX = XX or
XTAx =% x = \X'x
and T . T _
XTAx = (ATi) X = (Ai) X = ()\i) X = AX ' X.
e From this it follows that A\X'x = A\X ' x.
e Since X' x = |a|? + |b|2 > 0, it holds that A = ), i.e., \ is a real number.

e In a similar way it can be proved that for different eigenvalues A;, A\; € R there exist eigenvectors
xi,X; € R" with real-valued components which are orthogonal to each other.

e Since the matrix A — \;I only contains real-valued elements, it holds that if x; is an eigenvector which
corresponds to \;, then also X; and x; + X; € R" are eigenvectors that correspond to A; .

o Therefore we can (and will) assume w.l.o.g. that x;,x; € R". Furthermore, if
(A-X\Ix; =0 and (A —)\Ix; =o,
it follows that Ax; = \;x; and Ax; = A\;x; as well as
ijqu; = )\,;ijxi and xiTij = )\jxiij .
e On the other hand it is obvious that ijxZ- = x,;/ x; and with the symmetry of A = (a;;) we get the
identity X;FAXZ' = x; Ax; since

n n n n

T T
x; Ax; = E E TgjQpmTm; = E E TmilGmeTe; = X; AX; .

m=1 (=1 =1 m=1

e Altogether it follows that )\inTXi = \;x;/ x; and (\; — )\j)ijxi =0.

o As \; — \; #0, it holds that x;xi =0. |

1.1.3 Diagonalization Method

e Now, let A be an invertible symmetric n X n matrix.

e In Lemma 1.4 we have shown that all eigenvalues A1,...,\, of A are real numbers (where it is possible
that one number occurs more than once in this sequence).

e Since det A # 0, we get that A = 0 is no solution of (3), i.e., all eigenvalues A1,..., A, of A are different

from zero.
e Furthermore, it can be proved that there are orthonormal (basis) vectors vi,...,v, € R" ie.,
v, vi=1, viv;=0, Vi,je{l,...,n} withi # j, (6)
such that v; is an eigenvector that corresponds to A\;; i =1,...,n.
o If all eigenvalues Aq,..., A, differ from each other, then this is an immediate consequence of part 2 of
Lemma 1.4.

e As a consequence, the following diagonalization method for invertible symmetric matrices is obtained.
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Lemma 1.5

o Let A be an invertible symmetric n x n matriz and let V.= (vq,...,v,) be the n X n matriz that consists
of the orthonormal eigenvalues vi,...,v,.
o Then
VTAV =A, (7)
where A = diag(A1, ..., ) denotes the n x n diagonal matriz which consists of the eigenvalues Ai,..., \p.
Proof
e Equation (2) in the definition of eigenvalues and eigenvectors implies that Av; = \;v; for each i =
1,...,n.
e This means that AV = (A\;vy,..., \,v,) and with (6) it follows that VT AV = VT (A\jvy, ..., A\, v,) =
A. |

1.1.4 Symmetric and Definite Matrices; Factorization

Lemma 1.6 Let A be a symmetric and positive definite n x n matriz, i.e., A = AT and x" Ax > 0 for each
vector x = (x1,. .. ,acn)—r € R™ with x # o. Then A is invertible and there is an invertible n x n matriz H, such
that

A=HH'. (8)

Proof We only prove the second part of Lemma 1.6.

e Lemma 1.5 implies that VT AV = A and

A=(VHTAV, (9)
— where V = (v1,...,v,) is the n X n matrix which consists of the orthonormal eigenvectors
Viy,...yVp,
— and A = diag(\y,...,\,) denotes the n x n diagonal matrix which consists of the (positive)
eigenvalues A1, ..., \,.

e Now, let A2 be the n x n diagonal matrix A2 = diag(v/A1, ..., vAy) and let
H= (V) 'AY2yT, (10)
e It is obvious that the matrix H, given in (10), is invertible. Because of VTV =T it also holds that
HHT = (VT)71A1/2VT ((VT)flAl/QVT)T _ (VT)71A1/2VTVA1/2V—1
_ (VT)_1A1/2A1/2V—1 = (VH)IAV! = A,

where the last equality follows from (9). O

Remark

e Each invertible n x n matrix H with A = HH" is called a square root of A and is denoted by A'/2.

e Using the Cholesky decomposition for symmetric and positive definite matrices, one can show that
there exists a (uniquely determined) lower triangular matrix H with A = HH'.

The following property of symmetric matrices is a generalization of Lemma 1.6.
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Lemma 1.7 Let A be a symmetric and positive semidefinite n X n matriz, i.e., it holds that A = AT and
x " Ax > 0 for each vector x = (z1,...,3,) € R". Now, let tk(A) =r (< n). Then there exists an n x r matriz
H with tk(H) = r, such that A = HHT.

The proof of Lemma 1.7 is similar to the proof of Lemma 1.6.

Lemma 1.8

o Let m,r € N be arbitrary natural numbers with 1 < r < m. Let A be a symmelric and positive definite
m x m matriz and let B be an r x m matriz with full rank rk(B) = r.

o Then also the matrices BABT and A1 are positive definite.

Proof

e Because of the full rank of BT it holds that B x # o for each x € R" with x # o.
e Since A is positive definite, it also holds that

x"(BAB")x=(B'x)"A(B'x) >0

for each x € R™ with x # o, i.e., BABT is positive definite.
e Therefore, we get for B = A~! that
A=A (AAT) =ATA(ATY)

is positive definite. O

1.2 Multivariate Normal Distribution

In this section we recall the notion of a multivariate normal distribution and discuss some fundamental properties
of this family of distributions.

1.2.1 Definition and Fundamental Properties

o Let Xq,...,X,, : Q — R be independent and (identically) normally distributed random variables, i.e.,

X; ~ N(u, 0%), Vi=1,...,n, (11)
where 1 € R and 02 > 0.
e The assumption of normality in (11) and the independence of the sampling variables X1,..., X,, mean in
vector notation that the distribution of the random sample X = (Xi,...,X,,)" is given by
X ~ N(p,0°1,), (12)
where = (y,..., 1) " and N(p,0%I,) denotes the n—dimensional normal distribution with mean vector p

and covariance matrix ¢2I,,.
e Recall (cf. Section WR-4.3.4): In general, the n—dimensional normal distribution is defined as follows.

— Let gt = (pt1,...,pn) | € R™ be an arbitrary vector and let K be a symmetric and positive definite
n X n-matrix.
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— Let Z = (Zy1,...,Z,)" be an absolutely continuous random vector, where the joint density of Z is
given by
= (L)n 1 (_1 _ TKil(Z— )) (13)
f(z) 7os) Jaak P2 (2 — ) [
for each z = (21,...,2,)" € R™.
— Then the random vector Z = (Z,...,Z,) " is called (nondegenerate) normally distributed.

— Notation: Z ~ N(u, K)
Now, we show that the function given in (13) is an (n—dimensional) probability density.

Theorem 1.1 Let = (ju1,..., /)" € R” be an arbitrary vector and let K be a symmetric and positive definite
n X n-matrix. Then it holds that

[ee] oo 1
/ . / exp(— 5 =) K (x - u)) dzy ... dwn = (27)V2 (det K)V/2 | (14)
Proof
e Since K is symmetric and positive definite (and therefore invertible), Lemma 1.5 implies that there
exists an n X n matrix V. = (vy,...,v,) consisting of the orthogonal eigenvectors vy, ..., v, of K, such
that
VKV =A, (15)
where A = diag(A1,...,\,) denotes the n x n diagonal matrix which is built up of the eigenvalues
)\1,...,)\71 of K.
e Since K is positive definite, it holds that v;; Kv; = A; > 0 for each i = 1,...,n, i.e., all eigenvalues

A, ..., A of K are positive.
Because of VIV =1, it holds VT = V~! and VVT = I, respectively.
Due to the fact that (AB)™! = B~'A~! and due to (15), it follows that

(VIKV) ' = VIK'V = diag(\Th, ..., A1)

’ '

The mapping ¢ : R® — R” with y = ¢(x) = V' (x — ), i.e., x — u = Vy, maps R" bijectively onto
itself and for the Jacobian determinant of ¢ : R™ — R™ it holds that

Ip; _ _
det(axj (z1,... ,xn)) =detV = =£1,

where the last equality follows from the fact that 1 = det(VT V) = (det V)2.
Therefore, the integral on the left—-hand side of (14) can be written as

/oo 7 exp(— % (x — ,u)TK_l(x—u)) dzy ...dey

= / eXp(—%(x—u)TKfl(x—u» d(z1,...,Tp) :/ exp(—; iz\%) dyi, ... Yn)

R B i=1

(oo} o0
n

1~ y? 1/2
// exp(2 ;)ﬁ)dyl...dynn@ﬂ)\i) .

i=1

e This implies (14) since

[[* =det A =det(VTKV) =det(V V) det K = det K . 0
i=1
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1.2.2 Characteristics of the Multivariate Normal Distribution

e Let o= (u1,...,4n)" € R™ be an arbitrary vector and let K = (k;;) be a symmetric and positive definite
n X n matrix.

e First, we determine the characteristic function of a normally distributed random vector.

e Recall: The characteristic function ¢ : R™ — C of an arbitrary n—dimensional random vector X =
(X1,...,X,)" : Q= R"is given by

p(t) =E exp(it'X) =E exp( thXg> Vt=(t1,....t,) €R". (16)

Theorem 1.2

e Let the random vector X = (X1,...,X,,)" : @ — R" be normally distributed with X ~ N(u, K).
e Then the characteristic function ¢ : R™ — C of X fulfills

1
ot) =exp(itTh— StTKt), VteR". (17)

Proof

e Equations (13) and (16) imply

p(t) = / .../exp(i Ztgxg>f(x1,...,xn)dajl...dzn
—o00 —0o0 =1

o0 oo

1 1 .
= 2 (et K) 12 / /exp 1t X — §(x— ) TK 1 (x — )) dxy ... dxy,
B exp(it ' p) T -
—00

where the last equality holds due to the substitution y = x — p, for which the matrix of the partial
derivatives is the identity matrix and therefore the Jacobian determinant is equal to 1.

e Similar to the proof of Theorem 1.1 it follows with the help of the substitutions y = Vx and t = Vs

that
B exp(it’ p) TR
p(t) = (zn)n/2(detK1/2 / /exp is’ x—5 V'K~ Vx)dml day,
. exp( 1t—r 7 xg
(2m)n/2( detK 1/2 eXP 1 Sexg — K)) dzy...dzy,
and thus
. exp( 1tT J;2
p(t) = (2m)7/% ( detK 72 H / exp(i sexe — 2—)\@) dzy
exp(it’ )ﬁ 1 /ex (isx—ﬁ)dﬂc
p M H e p Ty 3y 05
where the matrix V consists of the orthonormal eigenvectors of K and Aq, ..., A, > 0 are the eigenvalues

of K with det K =Xy -...- \p.
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e Now, it is sufficient to consider that ¢y : R — C with

7 1 . x2
we(s) = / Ny exp<1 sr — 2—)%) dx

is the characteristic function of the (one dimensional) N(0, A¢)—distribution.
e In Section WR-5.3.3 we already have seen that ¢;(s) = exp(—Ags?/2).
e Hence, we get

n /\gS2 e; A[S?
o(t) = exp(it'p) Hexp(— TZ) = exp(it' p) exp(— = 5
(=1
t Kt
= exp(it' p) eXp(— 5 ) 0

Using (17) for the characteristic function we are able to determine expectation and covariance matrix of a normally
distributed random vector.

Corollary 1.1 IfX = (X1,...,X,) " ~ N(u,K), it holds for arbitrary i,j =1,...,n that

]EXZ = Wi, and Cov (XZ, Xj) = kij . (18)
Proof
e From (17) it follows that
do(t) /. =
o = (1 i — ;kwt@)ap(t) (19)
and
9*p(t) . - - -
a0t = - kij@(t) + (1 Hi — ;kietz) (1 Ky — ; kjﬂe)‘ﬂ(t) . (20)
e [t is easy to see that
EX; =i} agt(t) .
i t=o

Because of ¢(0) =1 and (19), it follows that EX; = p,.

e Furthermore,

E(X;X;) =

This equation and (20) imply Cov (X;, X;) = ki;. O

Remark
e In Theorem WR-4.14 we have shown that the covariance matrix K = Kx of an arbitrary random
vector X = (X1,...,X,,) " is always symmetric and positive semidefinite.
e In (13), where the density of the nondegenerate multivariate normal distribution is defined, it is
additionally required that the covariance matrix K is positive definite.

e Here, K being positive definite is not only sufficient but also necessary to ensure that the matrix K is
invertible, i.e., det K # 0 or K has full rank.
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1.2.3 Marginal Distributions and Independence of Subvectors; Convolution Properties
e In this section it is shown how to derive further interesting properties of the multivariate normal distribution
using Theorem 1.2.
e For this purpose we need a wvectorial version of the uniqueness theorem for characteristic functions (cf.

Corollary WR-5.5), which we will state without proof.

Lemma 1.9 Let X, Y : Q — R" be arbitrary random vectors; X = (X1,...,X,)", Y = (Y1,...,Y,) . Then it

holds that 4
X=Y if and only if  ox(t) = py(t) Vt=(t1,...,t,) €R", (21)

where N N
ex(t)=E exp(i thXj) and py(t)=E exp(i Ztiyj)
j=1 j=1

are the characteristic functions of X and Y, respectively.

First, we show that arbitrary subvectors of normally distributed random vectors are also normally distributed.

e We assume g = (pu1,...,,) € R" to be an arbitrary vector and K = (k;;) to be a symmetric and positive
definite n x n-matrix.

e It is obvious that the random vector (Xy,,...,Xy,)" is normally distributed for each permutation m =
(m1,...,m,) " of the natural numbers 1,...,n if X = (Xy,...,X,)" is normally distributed.

e Therefore, we can w.l.o.g restrict the examination of the distribution of subvectors of normally distributed

random vectors to the examination of the first components.

Corollary 1.2 Let X = (Xy,...,X,)" ~ N(u,K), where K is positive definite. Then it holds that
(le"'7Xm)TNN(IJ’m7Km) vm:la"'ana

where p,, = (i1, .-, ptm) | and K,,, denotes the m x m matriz which consists of the first m rows and columns of
K.

Proof

e Let ¢ : R” — C be the characteristic function of (X1,...,X,)".
e Now, the characteristic function ¢, : R™ — C of (X1,...,X,,)" fulfills

Om(tm) = go((tm70,...70)) . Yt =t tm) T €R™
—

n—m

e This result and (17) imply that
1
Om(tm) = exp (it;um ~3 t;Kmtm> , Vt, € R™.

e Since K is symmetric and positive definite, we know that also the m x m matrix K,,, is symmetric and
positive definite. From this fact and from Theorem 1.2 it follows that the characteristic function of the
subvector (X1,...,X,,)" is identical with the characteristic function of the N(p,,, K,,)-distribution.

e The statement follows because of the one-to-one correspondence of characteristic functions and distri-
butions of random vectors (cf. Lemma 1.9). O
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There is a simple criterion for two subvectors (Xi,...,X,)" and (Xuq1,...,X,) ", with 1 < m < n, of the
normally distributed random vector X = (X1,...,X,,) " being independent.

Corollary 1.3 Let X = (X1,...,X,,)" be a normally distributed random vector with X ~ N(u,K); K = (kij).
The subvectors (X1,...,Xm)" and (Xpmi1,...,Xn)" are independent if and only if kij = 0 for arbitrary i €
{1,...,m}and j e {m+1,...,n}.

Proof
e If the subvectors (X1,...,X,,)" and (X,u41,...,X,)" are independent, then the (one-dimensional)
random variables X; and X, are independent for arbitrary ¢ € {1,...,m} and j € {m+1,...,n}.
e Thus, it holds that Cov (X;, X;) = 0 and Corollary 1.1 implies that k;; = 0.
e Let us now assume that k;; = 0 for arbitrary i € {1,...,m} and j € {m+1,...,n}.

e Then Theorem 1.2 implies that the characteristic function ¢(t) of X = (X1,...,X,) " has the following
factorization.

e For each t = (t1,...,t,)" € R™ it holds that

1 n 1 n n
gﬁ(t) = exp(itTu — 5 tTKt) = exp(i Ztl.ul — 5 Z Zt7k”t]>
i=1

i=1 j=1
= exp(i Ztﬁh — 5 Zztlk”tj) exp(i . Z tz,uz — 5 ' Z Z tikijtj) y
1=1 =1 j=1 i=m-+1 i=m+41j=m+1
where the factors of the last term are the characteristic functions of (X1, ..., X,,) " and (Xopma1,---, Xn) '
e The statement follows because of the one-to-one correspondence of characteristic functions and distri-
butions of random vectors (cf. Lemma 1.9). O
Remark

e Finally, we show that the family of multivariate normal distributions is closed under convolution. In the
following we call this property briefly “convolution stability” of the multivariate normal distribution.
In Corollary WR-3.2 we already have proved the convolution stability of one-dimensional normal
distributions.

e The following formula for the characteristic function of sums of independent random vectors is useful
in this context. The proof is analog to the proof of the one-dimensional case (cf. Theorem WR-5.18).

Lemma 1.10 Let Z1,Zs : Q — R™ be independent random vectors. The characteristic function pz,+z, : R" = C
of the sum Zq + Zy can then be written as

Pz, +Zo (t) =¥z (t) Pz (t) ’ vt e R" ’ (22)

where @z, denotes the characteristic function of Z;; i = 1,2.

The following statement is called convolution stability of the multivariate normal distribution.

Corollary 1.4 Let Z1,Z5 : Q@ — R" be independent random vectors with Z; ~ N(p,;,K;) for i = 1,2. Then it
holds that Z1 + Za ~ N(py + po, K1 + Ks).
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Proof

e Equations (17) and (22) imply that

PZ1+Z2 (t) = ¥z (t) Pz (t)
1 1
exp(it—ru1 ~ 5 tTKlt) exp(it—ruz ~ 5 tTth)

. 1
eXP(ltT(Ih + pa) — B} t1 (K + K2)t) :

e This result and the uniqueness theorem for characteristic functions (cf. Lemma 1.9) imply the state-
ment. (|

1.2.4 Linear Transformation of Normally Distributed Random Vectors

Now, we show that the linear transformation of a normally distributed random vector again is a normally dis-
tributed random vector.

Theorem 1.3

o Let Y ~ N(u,K) be an n—dimensional normally distributed random vector with mean vector p € R™ and
(positive definite) covariance matriz K.

e Moreover, let m < n, let A be an arbitrary m x n matriz having full rank tk(A) = m and let ¢ € R™ be an
arbitrary m—dimensional vector.

e Then it holds that Z = AY + c is an (m-dimensional) normally distributed random vector with

Z~ NAp+c, AKAT). (23)

Proof

For each a € R™ it holds that

pz(t) = exp(itTa)goZ_a(t) , vVt e R™.

From (17) derived in Theorem 1.2 and from the uniqueness theorem for the characteristic function of
normally distributed random vectors it follows that

Z~ NAp+c, AKA") ifandonlyif Z— (Ap+c)~ N(o, AKAT).

Therefore, we will w.l.o.g. assume that Y ~ N(o,K) and ¢ = o.
Then the characteristic function ¢z (t) of Z = AY fulfills

@Z(t) _ ]EeitTZ
EeitTAY —Eé (ATt)TY

= QOY(ATt) )

for each t € R™, where ¢y (ATt) denotes the value of the characteristic function of the normally
distributed random vector Y at ATt € R™.
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e Now, formula (17) for the characteristic function of normally distributed random vectors implies

pz(t) = ov(ATt)
exp(— 1 (ATt)TK(ATt))
2

= exp(— %tT(AKAT)t) .

e In other words: The characteristic function of Z is equal to the characteristic function of N(o, AKAT).

e The uniqueness theorem for characteristic functions of random vectors implies Z ~ N(o, AKAT). O

By using Theorem 1.3 it follows in particular that it is possible to create normally distributed random vectors by
a linear transformation of vectors whose components are independent, N(0, 1)-distributed random variables.

Corollary 1.5

o Let Yq,....Y, : Q@ — R be independent random wvariables with Y; ~ N(0,1) for each i = 1,...,n, i.e,
Y = (Y1,...,Y,) " ~ N(o,I).

o Let K be a symmetric and positive definite n X n matriz and let p € R™.

o Then the random vector Z = K'/2Y + p satisfies Z ~ N(p, K), where K'/2 is the square root of K.

Proof

e With the help of Theorem 1.3 it follows that
Z ~ N(u, K2 (K% "),

e Now, this result and Lemma 1.6 imply the statement. O

1.2.5 Degenerate Multivariate Normal Distribution

In the following, we will give a generalization of the notation of (nondegenerate) multivariate normal distributions,
which was introduced in Section 1.2.1.

e A factorization property of covariance matrices which has already been mentioned in Lemma 1.7 is useful
in this context.

e Recall: Let K be a symmetric and positive semidefinite n x n matrix with rk(K) = r < n. Then there is
an n x r matrix B with rk(B) = r, such that

K=BB'. (24)

Definition

e Let Y be an n—dimensional random vector with mean vector p = EY and covariance matrix K =
Cov (Y), such that rk(K) = r with r < n.

e Then Y is called normally distributed if Y 4 p + BZ, where B is an n X r matrix with tk(B) = r
fulfilling (24) and where Z is an r—dimensional random vector with Z ~ N(o, ;).
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e We say that Y ~ N(u, K) follows a degenerate normal distribution if tk(K) < n.
(Notation: Y ~ N(u,K))

Remark
o If tk(K) = r < n, then the random vector Y ~ N(u, K) is not absolutely continuous

— because the values of Y < p + BZ are almost surely (with probability 1) elements of the r—
dimensional subset {p + Bx: x € R"} of R”,

— i.e., the distribution of Y has no density with respect to the n—dimensional Lebesgue measure.
— An example for this is the random vector Y = (Z,Z)" = BZ with Z ~ N(0,02) and B = (1,1) T,
which only takes values on the diagonal {(z1,22) € R? : z; = 2}.

e The distribution of the random vector p + BZ does not depend on the choice of matrix B of the
factorization (24).

e This is an immediate consequence of both of the following criteria for (degenerate and nondegenerate)
multivariate normal distributions.

Theorem 1.4

o LetY be an n—dimensional random vector with mean vector p=EY and covariance matriz K = Cov (Y),
such that tk(K) = r with r < n.

e The random vector Y is normally distributed if and only if one of the following conditions is fulfilled:

1. The characteristic function ¢(t) =E exp (i Z?Zl thj) of Y is given by
1
o(t) :exp(itTuf 5tTKt), Vt=(t,....ts)  €R". (25)

2. The linear function c'Y of Y is normally distributed for each ¢ € R™ with ¢ # o and

¢'Y ~ N(c"p,c"Ke).

The proof of Theorem 1.4 is omitted (and left as an exercise).

1.3 Linear and Quadratic Forms of Normally Distributed Random Vectors
1.3.1 Definition, Expectation and Covariance

Definition
eLetY=(Yy,...,Y,)" and Z = (Z1,...,Z,)" be arbitrary n—dimensional random vectors and let A
be a symmetric n X n matrix with real-valued entries.

e Then the (real-valued) random variable YT AY : Q — R is called a quadratic form of Y (with respect
to A).

e The random variable YT AZ : Q — R is called a bilinear form of Y and Z (with respect to A).
First, we derive the expectation of quadratic or bilinear forms.

Theorem 1.5 LetY = (Y1,..., Yn)—r and Z = (Z4,. .., Zn)T be arbitrary n—dimensional random vectors and
let A be a symmetric n X n matric with real-valued entries. Furthermore, let the mean vectors py = EY and
w7 = EZ as well as the covariance matrices Kyy = (COV (YZ,Y7)) and Kzv = (Cov (Zi,Yj)) be well-defined.
Then it holds that

E(YTAY) = tr(AKyy) + pyApy  and  E(YTAZ) = tr(AKzy) + pyApy. (26)
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Proof

e We only prove the second formula in (26) since the first formula follows as a special case for Z =Y.
e It obviously holds that YTAZ = tr(Y " AZ). Moreover, from Lemma 1.1 it follows that tr(Y AZ) =
tr(AZYT).
o Altogether we get
E(Y'AZ) = Etr(Y'AZ) = Etr(AZY") = tr(AE(ZY"))
= tr(A(Kzy + pzpy)) = tr(AKzy) + pyApg. 0

In a similar way it is possible to derive a formula for the covariance of quadratic forms of normally distributed
random vectors. The following formulas for the third and fourth mixed moments of the components of centered
normally distributed random vectors are useful in this context.

Lemma 1.11 LetZ = (Zy,...,Z,)" ~ N(o,K) be a normally distributed random vector with mean vector . = o
and with an arbitrary covariance matric K = (ki;). Then it holds that

E (ZiZng) =0 and E (ZZZ]Zme) = ]{iijk}gm + kifkjm + k]‘gkim A i,j, g, m € {1, . ,77,} . (27)

The proof of Lemma 1.11 is omitted. It is an immediate consequence of Theorems 1.2 and 1.4, cf. the proof of
Corollary 1.1.

Theorem 1.6
o Let Y = (Y1,...,Y,)" be an n—dimensional random vector with Y ~ N(pu,K) and let A = (a;;), B = (b;;)

be arbitrary symmetric n X n matrices.

e Then
Cov (YTAY, Y'BY) = 2tr(AKBK) + 4" AKBp. (28)

e In particular, it holds that Var (Y TAY) = 2tr((AK)?) + 4" AKAp.

Proof

e From the definition of the covariance and from Theorem 1.5 it follows that

Cov(YTAY,Y'BY) = E((Y'AY -E(Y'AY))(Y'BY —E(Y'BY)))
= E((YTAY — tr(AK) — p"Ap)(Y'BY — tr(BK) — u'Bp)).

e With the substitution Z =Y — p or Y = Z + p it follows that

Cov(YTAY,Y'BY) = E((Z'AZ+2u"AZ - t1(AK))(Z'BZ + 2p"BZ — t1(BK)))
= E(Z'AZZ'BZ)+2u' AE (ZZ'BZ) + 2u" BE (ZZ'AZ)
~-E(Z"AZ)tx(BK) — E (Z'BZ) tr(AK)
+4p " AKBpu + tr(AK) tr(BK)
= E(Z'AZZ'BZ) +2u" AE (ZZ'BZ) +2p ' BE (ZZ" AZ)
+4p" AKBp — tr(AK) tr(BK) ,

where the last equality is a result of Theorem 1.5 because Z ~ N(o,K), which implies E (ZTAZ) =
tr(AK).
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e Since the matrices A, B and K are symmetric, it follows from Lemma 1.11 that

E(Z'AZZ'BZ) = E(Z'"AZ - Z'BZ)

n n n

= ZZZZCL”IMW E(ZiZ;ZZm)

i=1 j=1¢=1 m=1

= Z Z Z Z (aijkjibfmk’m[ + a/jikifb@mkmj + a'ijkjfb(mkmi)

i=1 j=1¢=1 m=1

= tr(AK)tr(BK) + 2tr(AKBK) .
e Furthermore, Lemma 1.11 implies that
E(ZZ"AZ) = (Zza” Zzzg) = (29)
i=1j5=1 ¢

and analogously E (ZZTBZ) =o.
e This result and the above derived expression for Cov (Y TAY, Y 'BY) imply the statement. O

Now, we derive the following formula for the covariance vector of linear or quadratic forms of normally distributed
random vectors.

Theorem 1.7 LetY = (Y1,...,Y,)" be an n—dimensional random vector with Y ~ N(p, K) and let A = (ai;),
B = (b;j) be arbitrary symmetric n x n matrices. Then it holds

Cov (AY, Y'BY) = 2AKBpu. (30)

Proof
e As E(AY) = Ap and as it has been shown in Theorem 1.5 that
E(Y'BY) = tr(BK) + u' By,
it follows that
Cov (AY,Y'BY) = E((AY — Ap)(Y'BY — p'Bp — tr(BK)))
= E((AY —Ap)((Y — p) ' B(Y — p) + 2(Y — p) ' Bp — tr(BK))) .
e Moreover, it holds that E (AY — Ap) = o and from (29) it follows with Z =Y — p that
E((AY = Ap)(Y —p) 'B(Y —p)) = AE (Y — p)(Y — p) 'B(Y —p)) =

e Therefore, we get

Cov (AY,Y'BY) = 2E((AY — Ap)(Y —p) Bu)
— 2AE((Y - u)(Y - )7 )Bu
= 2AKBy.
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1.3.2 Noncentral y>-Distribution

To determine the distribution of quadratic forms of normally distributed random vectors we introduce the (para-
metric) family of the noncentral y?-distribution.

Definition Let g € R” and (X1,...,X,)" ~ N(u,I). Then the random variable

Z=(X1,...,X)(X1,.... X)) =) X7
i=1

is distributed according to a noncentral x>—distribution with n degrees of freedom and the noncentrality
parameter A = p" p. (Notation: Z ~ X%,A)

Remark

e For . = o we obtain the (central) y?-distribution x2 with n degrees of freedom, which has already
been introduced in Section 1-1.3.1, as a special case.

e To derive a formula for the density of the noncentral x?—distribution we consider (in addition to the
characteristic function) still another integral transform of probability densities.

Definition

e Let f : R — [0,00) be the density of a real-valued random variable, such that the integral [* e f(z) dx
is well-defined for each ¢ € (a,b) in a certain interval (a,b) with a < b.

e Then the mapping ¥ : (a,b) — R with

oo

(1) = / 7 f(x)dr, Vi€ (ab) (31)

— 00

is called the moment generating function of the density f.
The following uniqueness theorem for moment generating functions is true, which we state without proof.

Lemma 1.12

o Let f,f' : R — [0,00) be densities of real-valued random wvariables and let the corresponding moment
generating functions ¥ : (a,b) = R and ¢’ : (a,b) — R be well-defined in a (common) interval (a,b) with
a < b.

o It holds that ¥(t) = ¢'(t) for each t € (a,b) if and only if f(x) = f'(x) for almost all z € R.

By using Lemma 1.12 we are now able to identify the density of the noncentral x?-distribution.

Theorem 1.8

o Let the random variable Z, ) : @ — R be distributed according to the X%}/\fdistm'bution with n degrees of
freedom and noncentrality parameter \.

o Then the density of Z, x is given by

A\ ns
[e%S) — FHi-1
Atz (2) i :
exp(— — , Wfz2>0,
f2.(2) = 2 ),,-Zoﬂzzﬂr(’;ﬂ)

0 otherwise.
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Proof

o Let p € R" and (X1,...,X,,)" ~ N(u,1).

e The moment generating function ¢z (t) of Z = (X1,..., Xn)(X1,..., Xn) | = > i1 X7 is well-defined
for t € (—o00,1/2) and for each t < 1/2 it holds that

n

vz (t) = IElexp(th2 / /exp thx? 1:[1\/127_exp(; (xjf,uj)z)dxl...dxn

=1

n/2 oo n n
( ) / /exp(th ;Z(szujf) dzy ...dx,
jl:[l / (277)—1/2 exp (tx? - %(xj — Mj)2> dx; .

e It is possible to rewrite the exponent of the last term as follows:

1
tx? - i(xj S (— 2tx + a: —2xp + u?)

(x§(1 —28) — 2ujpy + 3 (1 — 20 4 2 — 31— 2t)—1)

— (1= 20721 = 20) + 21 = (1= 20)7Y)).

l\D\»—ll\D\»—lw\»—l

/N
—
8

-

e Hence, it holds that

bot) = exp<—;<1—<1—2t>-l>zu§>ﬂ [ em e~ B RCE s,
j=1 J=1_1,

(1— 2t)~"/2 exp(— % 1-(1- 2t)_1))

as the integrand represents the density of the one-dimensional normal distribution (except for the
constant factor (1 — 2t)Y/2); X\ = u" p.

e On the other hand, the moment generating function ¢(t) of the density fz, ,(z) given in (32) can be
written as

N2\ T n/245—1,—2/2
o) = Y M e 2t
par 254973 + j)

where the integral is the moment generating function of the (central) y>~distribution x? 4o, With n+2j
degrees of freedom.

e Similar to the way the characteristic function (cf. Theorem 1-1.5) is defined, the moment generating
function of this distribution is given by

1

) = G5 -

2
X425

e Therefore, it holds that

7 . n/2+j71 —z/2 1
e'? dz = -
/ 9% +i I‘( +]> (1 —2t)n/2+3
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and
Y(t) = (1 7215)*“/2% 1 (é(lth)’l)j
2 1 \2
= (12t exp(— Lyt 2t)’1)) .
2
e Hence, 9(t) = ¥z(t) for each t < 1/2 and the statement follows from Lemma 1.12. O

1.3.3 Distributional Properties of Linear and Quadratic Forms

e Recall: The definition of the noncentral x?-distribution in Section 1.3.2 considers the sum of squares of the
components of N(u, I)-distributed random vectors.

e One can show that the (adequately modified) sum of squares is distributed according to the noncentral
x>—distribution even if the considered normally distributed random vector has an arbitrary positive definite
covariance matrix.

e Indeed, let u € R™ and let K be a symmetric and positive definite n X n matrix.
e IfZ=(Zy,...,Z,)" ~ N(u,K), Theorem 1.3 implies that
K '2Z ~ N(K™Y2u,1).
o Therefore, by the definition of the noncentral y?—distribution it follows that
ZK'Z= (K ?2) K 2Z~ 2, (33)

where A = (K~ Y2u) TK=2pu = u"TK=pu.

The distributional property (33) for quadratic forms of normally distributed random vectors has the following
generalization. In this context Lemma 1.7 about the factorization of symmetric and positive semidefinite matrices
is useful.

Theorem 1.9

o LetZ = (Zy,...,7Z,)" ~ N(u,K), where the covariance matriz K be positive definite. Moreover, let A be
a symmetric n X n matriz with tk(A) =r < n.

o If the matriz AK is idempotent, i.e., if AK = (AK)?, it holds that Z" AZ ~ sz\’ where A\ = ' Ap.

Proof
e Let the matrix AK be idempotent. Then it holds that
AK = AKAK.

e Since K is nondegenerate, it is allowed to multiply both sides of the above equation from the right by
K. It follows
A = AKA (34)

or
x' Ax = x" AKAx = (Ax) "K(Ax) >0

for each x € R™, i.e., A is positive semidefinite.



1 INTRODUCTION AND MATHEMATICAL FOUNDATIONS 24

e According to Lemma 1.7 there exists a decomposition
A=HHT, (35)

such that the n x r matrix H has full column rank 7.
e Now, Lemma 1.2 implies that the inverse matrix (HH) ™! exists.

e From Theorem 1.3 about the linear transformation of normally distributed random vectors it follows
for the r—dimensional vector Z’ = H' Z that

Z ~ NHu,I,) (36)
because

H'KH = (HH 'H'HMHKH)MHH)MHH)!
(H'H)"'H"(AKA)HH "H) !
= H'H M 'AHH H)'=1,,

where the last three equalities follow from (34) and (35).
e As on the other hand

ZTAZ = Z'HH'Z = (H'Z) H'Z = (2)'Z

and since .
H'p) Hp=p HH p=p'Ap,

the statement follows from (36) and from the definition of the noncentral x2-distribution. O

Furthermore, the following criterion for the independence of linear and quadratic forms of normally distributed
random vectors is useful. It can be considered as a (vectorial) generalization of Lemma I-5.3.

Theorem 1.10

o LetZ = (Zy,...,2,)" ~ N(u,K), where K is an arbitrary (symmetric and positive semidefinite) covariance
matriz.

o Moreover, let A, B be arbitrary r1 X n and ro X n matrices with r1,72 < n and let C be a symmetric and
positive semidefinite n X n matriz.

o [f the additional condition
AKB" =0 or AKC=0 (37)

is fulfilled, the random variables AZ and BZ or AZ and Z' CZ, respectively, are independent.

Proof

e First, we show that (37) implies the independence of the linear forms AZ and BZ.

e Because of the uniqueness theorem for characteristic functions of random vectors (cf. Lemma 1.9), it
suffices to show that to € R"

E exp(i (t| AZ + t;BZ)) =E exp(itlTAZ)]E exp(it;BZ)

for arbitrary t; € R™.
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e From (37) it follows that
T T
BKAT = ((BKAT)T) - (AKBT) - 0.
e Therefore, it holds for arbitrary t; € R™, to € R™ that
(t] A)K(tjB)" =t/ AKB 'ty =0, (tg B)K(t{ A)" =t BKAt; = 0. (38)

e Then the representation formula (25) for the characteristic function of normally distributed random
vectors derived in Theorem 1.4 and (38) imply that

E exp(i(t{ AZ +t; BZ)) = E exp(i (t{ A + t, B)Z)
= exp(i(t] A+t B)u - % (t{A+t]BJK(]A+t]B)")
= e(itA+ I B — S (T AKTA) - S (] BKIB)T)
= en(i(t] A — 5 (T AKETA) ) ep(i (6B - (IBK(B)T)
= Eexp(it{ AZ)E exp(it, BZ).
e Now, it remains to show that the independence of AZ of ZT CZ is a result of the second condition of
(37).

e Let 1k(C) = r < n. According to Lemma 1.7 there is an n x r matrix H with rk(H) = r, such that
C=HH'.
e Then it follows from (37) that AKHH' =0 and AKHH™H = 0.
e Because of Lemma 1.2, the 7 x 7 matrix H'H has (full) rank rk(H) = r. Hence, H" H is invertible.
e Finally, it follows that AKH = 0.
e Therefore, the first part of the proof implies that the linear forms AZ and H'Z are independent.
e Because of
Z'CZ=7"HH'Z=H'Z)'H'Z,

the transformation theorem for independent random vectors (cf. Theorem I-1.8) implies that also AZ
and ZT CZ are independent. (]
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2 Linear Models; Design Matrix with Full Rank

Recall (cf. Chapter 5 of the lecture “Stochastik I7):

e In simple linear regression one considers two datasets (z1,...,2,) € R” and (y1,...,yn) € R™, which shall
be modeled stochastically.

e In doing so, we perceive the vectors (z1,y1), . . ., (Zn, yn) as realizations of n random vectors, say (X1,Y7),...,
(X, Ys), which are typically not identically distributed.

e We interpret the random variables Yi,...,Y, as response variables and assume that they depend on the
predictor variables X1, ..., X, in the following way:
}/i:gO(X,‘)—‘rEi, Vi:l,...,n, (1)
where

— ¢ :R — R is an arbitrary Borel measurable function, the so-called regression function, and

— £1,...,&pn : 2 — R are random variables, so-called error terms, which can be used to model random
errors, e.g., errors in measurement,.

e We are dealing with an important special case if the regression function ¢ : R — R is a linear function, the
so-called regression line, i.e., if there are real numbers (1, 2 € R, such that

o(z) = p1 + Pax, VreR, (2)
where (7 is called the intercept and Bs is called the regression coefficient.

e The quantities 1,82 € R are unknown model parameters, which are to be estimated from the observed
data (z1,...,2,) € R™ and (y1,...,yn) € R™

We now consider the following multivariate generalization of the simple linear regression model and let m,n > 2
be arbitrary natural numbers, such that m < n.

e We assume that the response variables Y7,...,Y, depend on wectorial m—dimensional predictor variables
(Xlla e ,le)T7 ceey (an, - ,Xnm)—r, i.e.,

}/i:gﬁ(Xﬂ7...,X¢m)+€i7 Viil,...,n, (3)
where

— the regression function ¢ : R™ — R is given by

(X1, Tm) = L1214+ - + BT V(x1,...,2y,) €R™ (4)
with (unknown) regression coefficients f1, ..., 3, € R and
— the random error terms €1, ...,&, :  — R satisfy the following requirements:
Ee; =0, Vare; = 0?2, Cov (e;,e5) =0, Vi, j=1,...,nwith i #j (5)

for a certain (unknown) 2 > 0.

e Here we just consider the case of deterministic predictor variables (X11,--., X1m) 5.y (Xnts -y Xnm) |,
i.e., we put

(X117"'7X1m)T = (xlla" '7l‘17n)—r’'''7(‘)(77,].7"'7)(77/1”1’7,)T = (xnla-“axnm)—r

for certain vectors (z11,...,Z1m) 5.+ (Tnls- - Tnm) € R™.
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Remark

e In matrix notation the model given in (3) and (4) can be expressed as follows:

Y =XB+e¢, (6)
where
Yi 11 --- Tim 61 €1
Y = ) X = ) B = ) €= (7)
Yn Tnl <o Inm Bm En

e Here X is called the design matriz of the regression model.

2.1 Method of Least Squares

The goal of this section consists in estimating the unknown model parameters 31, ..., 3,, and o2 from the observed
data (Z11,--,T1m) ooy (Tnty ooy Tpm) T €ER™ and (y1...,yn) " € R

e Similar to the way this is done in Section I-5.1 we consider the method of least squares in order to determine

estimators f31, ..., B, for the unknown regression coefficients f1,. .., G-
e In detail, this means that a random vector ,@ = (B\l, . ,Em)T is to be determined, such that the mean
squared error
1 — 2
e(B) = ﬁ Z(Yz — (B + ...+ 6mlzm)) (8)

=1

is minimal for 8 = B

Remark Except the model assumptions made in (5) no further preconditions concerning the distribution of
the random error terms q,...,e, :  — R are required up to now.

2.1.1 Normal Equation

It can easily be shown that the function e(3) considered in (8) has a uniquely determined minimum if the design
matrix X has full (column) rank, i.e., tk(X) = m.

Theorem 2.1 Let rk(X) = m.

o The mean squared error e(3) in (8) is minimal if and only if B is a solution of the so—called normal equation:
X'Xg=X"Y. (9)
e The normal equation (9) has the uniquely determined solution

B=X"X)"'XTY. (10)
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Proof

e The function e(83) given in (8) is differentiable, where

- (0 B s )

and

82€(ﬁ)) _ z XTX .
351’&@' n
Setting €’(3) = o results in the normal equation (9).
e Moreover, it follows from Lemma 1.2 that k(X" X) = m.
— Hence, the m x m matrix X "X (and consequently also e¢”(3)) is invertible and positive definite.
— Therefore, e(8) is minimal if and only if 8 is a solution of (9).

"(8) = (

As the m x m matrix X X is invertible, we know that (9) has a uniquely determined solution B, which
is given by (10). O

Remark The estimator B = (XTX)"!XTY for 3 is a linear transformation of the random sample Y i.e., ,@
is a linear estimator for (3.

Examples (simple and multiple linear regression model)

e For m =2 and

X=1: : (11)
1 z,
we obtain the simple linear regression model already considered in Section I-5.1 as a special case.

e The design matrix X in (11) has full rank rk(X) = 2 if and only if not all z4,...,z, are equal.

e The estimators B = (Bl, 32) for the intercept 31 and the regression coefficient S2, considered in (10)
(see also Theorem I-5.1), are then given by

Bo="2  and B =7, — P, (12)

respectively, where T,,, 7,, denote the sample means, i.e.,

1 — 1 —
1= 1=

and the sample variances s2,, 952;;; and sample covariance szy are given by
1 n 9 1 n 1 n 9
Siﬂ?:n_lz(mi_jn) ) Siy:n_lz(xi_fn)(yi_@n) and Siy:n_lz@i_yn) :
i=1 i=1 i=1

e For m > 2 and
1 12 cee Tim

1 Tp2 ... Tnm

we obtain the so-called multiple linear regression model.
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2.1.2 Properties of the LS—Estimator ,@

From now on in Section 2.1, we always assume that the design matrix X has full (column) rank and derive three
different properties of the LS-estimator 3 = (B1,...,8m)' given in (10).

Theorem 2.2 The estimator B is unbiased for 3, i.e., IE,B’ =0 for all B € R™.

Proof
Due to Ee = o it follows from (6) and (10) that

(10) (©)

E((X'X)'X'Y) = E(X'X)'X"(XB+¢)) = B+E((X'X) X e)
= B+X'X)"'X"Ee = 3.

EB

The LS—estimator B additionally has the following minimum variance property. We denote by L the family of all
unbiased linear estimators 3 = AY +a for 3, where A is an (m x n)-dimensional matrix and a = (a1, ...,a,)" €
R™.

Theorem 2.3 For all B = (51, R Em) € L it holds that
VargiSVargi, Vi=1,...,m, (14)

where the equality in (14) is true for alli=1,...,m if and only if B = B.

Proof

As it is assumed that the linear estimator B = AY + a is unbiased for 3, one has

B=EB =EAY +a) C E(AXB+¢))+a = AXB+AEe+a = AXB+a

for all B € R™, where the last equality arises from Ee = o.

Herefrom, it follows that
AX =1 and a=o. (15)

e Hence, one has

B =AY = A(XB+¢e) = AXB+Ae = B+ Ae,

i.e., each linear unbiased estimator B for B is of the form
B=p+Aec. (16)

For the covariance matrix Cov (3) of the random vector 3 it thus holds that

Cov(B) = E((B-B)(B-P)") = E((Ae)(Ae)") = AE(ee )AT = o?AAT,

ie.,

Cov (B) = c>AA™ . (17)
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Remark

Furthermore, it results from (17) with A = (XTX)~!XT that the covariance matrix Cov (,@) of the

o~

LS-estimator 3 is given by R
Cov(B) = 0?(X'X)™! (18)

because

0_2 ((XTX)—le) ((XTX)—le)T
= SZX'X)TIXTX((XTX)™!
= o(XTX)7L.

Cov (B)

So in order to prove the validity of (14), it has to be shown that

(XTX)™), < (AAT),,  Vi=1,...,m. (19)
For D=A — (X"X)"'XT one has
AAT = D+ XX) XD+ XXX’

= DD+ (X' X)) X'DT +DX(X"X) 1+ (XTX)!
= DD"+(X'X)!

because due to (15) it holds that
DX=(A-X"X)"'X")X=AX-I=I-1I=0,

where 0 denotes the zero matrix.
As for D = (d;;) the inequality (DD ") =" d2 >0 is fulfilled, this gives (19).

it 4ej=171g
Moreover, it becomes clear that the equality in (19) for each ¢ = 1,...,m holds if and only if D = 0,
e, A= (XTX)"1XT. O

It follows from Theorems 2.1 and 2.2 that ,[Ai € L. Moreover, it arises from Theorem 2.3 that ,@ is the
best unbiased linear estimator for B in terms of (14).

We now derive a sufficient condition for B to be a weakly consistent estimator for 3, where the sample
size n, i.e., the number of rows of the design matrix X = X,, tends to co.

Recall: An estimator ﬁn = B(Yl, ..., Y,) for B is called weakly consistent if

ILm P@(|En—ﬁ|>s):0, Ve>0,8eR™.

Under similar conditions, it can also be shown that Bn is asymptotically normally distributed if n — oo
(cf. Section II1.3.2 in Pruscha (2000)).

Theorem 2.4 Let f : N — R\ {0} be a function satisfying lim,_,~ f(n) =0, such that the limit

Q = lim (f(n)X,; X,) (20)

n—roo

exists and the m X m matrix Q s invertible. Then Bn is a weakly consistent estimator for (3.
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Proof

o As Bn is unbiased (cf. Theorem 2.2), it holds for each n > m that

Pa((B, — Bl >€) = Ba(lB, B> <) = Ba(> (B — 5:)° > )

i=1

mo 2 m R 9
< Bo(ULBn— 502> 2}) < S Ps((Bn— 80" > )
=1 i=1
S g Z Var BUL s

Il
—

(2

where the last inequality results from the Chebyshev inequality (cf. Theorem WR-4.18).

e Hence, it suffices to show that

lim Var@nzo, Vi=1,...,m. (21)

n—oo

e The matrix Q! is well-defined because we assume that the (limiting) matrix Q is invertible. Moreover,

it follows from (20) that
Q' = lim (f(n)X[X,) ",

n— oo

e From the formula for the covariance matrix of the random vector Bﬂ, derived in (18), it now results

that
. N 2. T -1 2 .. . T -1 2 1. -1 _
Jim Cov () =0 Jim (X Xa)™" = 0 lim £(m) Jim (fXX,)™" = (o Jim f()Q~" =o0.

e This particularly implies (21). O

2.1.83 Unbiased Estimation of the Variance ¢° of the Error Terms

e Besides the conditions on the error terms €1,...,¢, formulated in (5), we now assume that n > m. Fur-
thermore, we again assume that the design matrix has full rank, i.e., rk(X) = m.

e By generalizing the approach we considered in Section 1-5.1.3 for the estimation of o2 in the simple linear
regression model, we now consider

2= 1 (Y -XB)T(Y-XB). (22)

e For normally distributed error terms, S? can be regarded as a modified version of a maximum-likelihood
estimator for o2; cf. Section 2.2.

We show that the random variable S? defined in (22) gives an unbiased estimator for o>

lemmata are useful.

. Here, the following

Lemma 2.1 The n X n matriz

is idempotent and symmetric, i.e.,
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Proof

e The second part of the statement in (24) follows directly from the definition of G and the computation
rules for transposed matrices because

T
G = (I—X(XTX)—le) - 1-XX'X)"XT = G.
e Furthermore, it holds that

G2

(I - X(XTX)—le) (I - X(XTX)—le)
= IT-2X(X'X)"' X" + X(X"X)"'XTX(X"X)"'x"
= I-XX'X)"'X"=aG. O

Lemma 2.2 For the n x n matriz G given in (23) it holds that tr(G) =n — m.

Proof

e One can easily see (cf. Lemmas 1.1 and 1.3) that

— tr(A — B) = tr(A) — tr(B) for arbitrary n x n matrices A and B,

— tr(CD) = tr(DC) for arbitrary n x m matrices C and arbitrary m X n matrices D.
e Herefrom and from the definition of G in (23) it follows that

tr(G) = tr(Ian(XTX)*1XT> = tr(L,) — tr(X(XTX)’IXT)
= (L) — tr(XTX(XTX)—l) = tr(L,) — tr(Iy) = n—m,

where I, denotes the (¢ x ¢)—dimensional identity matrix. O

Theorem 2.5 It holds that E S? = 02 for any 02 > 0, i.e., S? is an unbiased estimator for 2.

Proof
e It obviously holds that
GX=(I-XX'X)"'X")X=0. (25)
e Herefrom, it follows with the aid of (10) and (23) that
5 (10) (23)

Yy-x3 Y vy _xx™x)"'Xv € qy = axg+ae ¥ qe.

e Hence, for the estimator S? introduced in (22) it is true that

1 1
S? = (Ge) (Ge)= —— €' G Ge = e Ge
n—m n—m n—m
1 - .
= t Ge) = tr(G
— r(e' Ge) — r(Gee'),
on account of G'G = G2 = G (cf. Lemma 2.1).
e Due to E(ee ") = 01, this leads to
2
ES? = tr(GE (ee")) = tr(Go’1,) = tr(G) = o2
— r(GE (ee")) — r(Go’l,) — r(G) =07,

where the last equality results from Lemma 2.2. (|
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2.2 Normally Distributed Error Terms

e In addition to the model assumptions that were made at the beginning of Chapter 2, we now assume that
the random error terms €1, ...,&, :  — R are independent and normally distributed, i.e., &; ~ N(0,0?) for
eachi=1,...,n.

e Moreover, let rk(X) =m and n > m.

e According to Theorem 1.3, the distributions of the vector Y = X3 + € of response variables and of the
LS-estimator B = (XTX)"!XTY are given by

Y ~ N(Xg, o’I) (26)

and R
/6 ~ N(ﬁa 02(XTX)_1) ’ (27)

respectively.

2.2.1 Maximum—Likelihood Estimation
o A parametric model for the distribution of the vector Y = (Y1,...,Y,,) " of the sampling variables Y1,...,Y,
is given by (26).

e This means that aside from the method of least squares, which was discussed in Section 2.1, we can now also
use maximum-likelihood estimation in order to construct estimators for the unknown model parameters 3
and o2.

e It follows from (1.13) and (26) that

o) = (=) exp(~ 5og (v~ XB) (v ~ XB)) (25)

oV 27 202
for each y = (y1,...,yn) ' € R™.

e Hence, we consider the likelihood function

307 = (—1 )" exn(— —— (v - X8) (v —
Liy:8.0%) = (7= en(= 55 (v = X0) (v - XB)) (29)
or the loglikelihood function
n n 1
log L(y; B,0%) = — 5 log(2m) — 5 log(0®) = o— ly — XB*. (30)

e We want to find estimators ,@, 52 for B, 02, such that

L(Y;B,6%) = sup L(Y;B,07%) (31)
BeER™ 52>0

with probability 1 or equivalently such that

log L(Y;B, %)= sup logL(Y;B,0%) (32)
BER™, 02>0

with probability 1.
Remark The maximization in (31) or (32) can be carried out in two steps: first with respect to 8 and then

with respect to o2. Due to (30), the first step is identical with the minimization method considered in
Section 2.1.1.
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Theorem 2.6 The solutions of the maximization problems (31) and (32) are uniquely determined and given by

and

~

B=X"X)"'X"Y (33)

/\2:

(Y-XB)" (Y -XB), (34)

S|

respectively.

Proof

Remark

For arbitrary but fixed y € R” and 2 > 0, we first consider the mapping
R™ 5 B~ log L(y; B,0%). (35)

In Theorem 2.1 we have shown that the mapping given in (35) has the uniquely determined global
maximum B(y) = (X"X) " 'X Ty, which does not depend on o2.

For each (fixed) y € R™, we now consider the mapping

(0,00) 3 0* = log L(y; B(y), o). (36)
This mapping is continuous and it obviously holds that

lim log L(y: B(y). 0%) = —oc.

As n > m is assumed, the n—dimensional absolutely continuous random vector Y only takes values in
the m—dimensional subset {Xz: z € R™} of R” with probability 0.

Therefore, we have that |Y — X3|2 > 0 with probability 1 and

lim log L(y; B(y),0%) = —o0
02—0
for almost every y € R”.
Thus, for almost every y € R", the mapping given in (36) has at least one global maximum in (0, co).

For each of these maxima, it holds that

dlog L(y; Bly), o?) n 1 3 3
Oo? T 202 204

The ML—-estimator ,@ for B derived in Theorem 2.6 coincides with the LS—estimator derived in Theo-
rem 2.1.

In contrast, the ML—estimator 52 for o2 differs from the (unbiased) estimator S? for o2 considered in
Section 2.1.3 in a constant proportionality factor because
o n—m

- = S2.
n
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2.2.2 Distributional Properties of ,@ and 5?2
e Apart from the fact that 8 ~ N(B, ¢*(XTX)™!) is normally distributed, which was already mentioned in
(27), it is also possible to determine the distribution of the estimator

1

% =

(Y -XB)' (Y -XpB). (37)

for the variance o2 of the error terms.

e For this purpose we use the representation formula
Y — X3 = Ge, (38)

which we have shown in the proof of Theorem 2.5, where G =1 — X(X X)X T.

From the condition derived in Theorem 1.9, under which a quadratic form of normally distributed random vectors
follows a x?-distribution, we obtain the following result.

Theorem 2.7 It holds that
(n —m)S?

T "~ Xn-m> (39)

i.e., the random variable (n —m)S?/o? is distributed according to the (central) x*—distribution with n —m degrees
of freedom.

Proof

In Lemma 2.1 we have shown that the matrix G =T — X(X"X)7!X7 is idempotent and symmetric.

Herefrom and from (38) it follows that

(n —m)S?
2

1 . . 1 1
= (Y -XB)' (Y -X3) = o (Ge)'Ge = o e'G'Ge

g

— (07'%) ' G(o ).

As 07'e ~ N(o,I) and as the matrix GI = G is idempotent, it suffices to show that rk(G) =n —m
due to Theorem 1.9.

This is a result of Lemma 1.3 and 2.2 because

l“k(G) Lemn:1a 1.3 Sp(G) Lemn:1a 2.2 n—m

Moreover, we use the criterion for the independence of linear and quadratic forms of normally distributed random
vectors, which has been derived in Theorem 1.10 in order to show the following result.

Theorem 2.8 The estimators B and S? for B and o2, respectively, are independent.
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Proof
e From B = (XTX)"!XTY and Y = X + ¢ it follows that
B=X"X)"XTe+(XTX)"'X'X8 = (X' X)"'XTe+.
e Furthermore, we have shown in the proof of Theorem 2.7 that the estimator

1

n—m

S? = (Y -XB3)"(Y - XB)

can be written as a quadratic form of e:

1

n—m

S% = e'Ge,  where G=1-X(XTX)'XT.

e Due to € ~ N(0,0%I) and
((XTX)*XT) (I - X(XTX)*1XT> ~0,

it follows from Theorem 1.10 that the linear form (X' X) !X Te and the quadratic form &' Ge are
independent.

e This implies that also the random variables B and S? are independent. O

2.2.3 Statistical Tests for the Regression Coefficients

e By use of the distributional properties of linear and quadratic forms of normally distributed random vectors
which have been derived in Sections 1.3.3 and 2.2.2, we are able to construct statistical t—tests and F—tests
for the verification of hypotheses about the regression coefficients f1,.. ., Bm.

e In doing so, we still consider the (independent) estimators 8 and S2 for 3 and o2, where

B=X"X)'XTY ~ N(8, 0>(XTX)7}) (40)
and ( 52
n—m 1 -~ -~
e = S (Y =XB) (Y~ XB) ~ i (41)
We first discuss the following F—test, which is also called a test of model significance.
e Here, the null hypothesis Hy : 1 = ... = B, = 0 is tested (against the alternative Hy : 8; # 0 for at least

one j € {l,...,m}).

e The choice of the test statistic is motivated by the following decomposition.

Theorem 2.9 With the notation Y = X,@, ot holds that

~

YY=YY+(Y-Y) (Y-Y). (42)
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Proof

e We have that

n

YTY = v = (T4 R) = ST - T2y - T,
i=1

i=1 i=1 i=1 i=1

= Y)Y -T2 =YY (Y-Y) (YY),
i=1 i=1
e Here, the last but one equality holds due to the following consideration:

~ ~T ~

S-T)Y = (Y-Y)Y = (Y -B'X")XB = Y'XB-3 X"XB
——
=XTY

- Y'XB-8X'Y = (Y'XB) -3 X"Y=0.

Remark

e The first summand Y'Y on the right side of (42) is the squared length of the vector Y = X3 of the
estimated target values Y7,...,Y,.

~

e The second component of the decomposition (42), i.e., the sum of the deviation squares (Y—Y)—r (Y-
Y), is called residual variance.

e Sometimes the so—called coefficient of determination R? is considered as well, which is given by

~

o
=

) (YY)

, where ?:EZYi.

NgE
=
|
=
3
i

Our model assumption that the design matrix X has full rank, i.e., rk(X) = m, implies that the inequality
(XB)T(XB) =B (X X)B > 0 holds if the hypothesis Hy : 81 = ... = B, = 0 is not true.

e Therefore, it is natural to reject the hypothesis Hy if the squared length Y 7Y of the random vector Y = X,@
is sufficiently large.

e In order to decide what “sufficiently large” means in this context, we also consider the variability o2 of the
data.

— Assuming that Hy : B8 = o is true, it holds that
E(YTY) = E(e7e) = E(D ¢?) = D Ee? = no?.
1

i=1 i=

— In this case, due to Theorem 2.9, one has

~

no* =E(Y'Y) +E((Y-Y) (Y -Y)),

~

— which is the reason why the quotient of Y Y and the sum of deviation squares (Y — Y)T (Y — Y) is
considered for testing the hypothesis Hy : 3 = o.
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e More precisely, we consider the following test statistic

~T —~
B (X'X)B
Thod = ————— . 43
d msS?2 (43)
For being able to construct a test of the hypothesis Hy : f1 = ... = ,,, = 0 based on Ty,04, the distribution of
the test statistic Tmoq has to be determined.
Theorem 2.10 Assuming that Hy : By = ... = B, = 0 is true, it holds that
ﬂllod ~ Fm,nfm ) (44)
i.e., the test statistic Tmoa given in (43) has an F-distribution with (m,n —m) degrees of freedom.
Proof
e Assuming that Ho : 81 = ... = f3,, = 0 is true, it holds that 8 ~ N(o, K) with K = 0?(XTX) L.

e This implies that (¢ 7'X)T (07! X)K = (67'X) T (671 X)o?(XTX)"! =1, i.e., in particular, that the
matrix (0 71X) T (¢ 71 X)K is idempotent.

~T —~

e Now it follows from Theorem 1.9 that the quadratic form o283 (XTX)B has a (noncentral) y*—

distribution with m degrees of freedom.

e Moreover, we have shown in Theorem 2.7 that the radom variable (n — m)S?/0? has a (central)
x2-distribution with n — m degrees of freedom.

e In Theorem 2.8 we have shown that B and S? are independent.
e Thus, it follows from the transformation theorem for independent random vectors (cf. Theorem I-1.8)

~T ~
that the random variables 023 (X TX)A3 and (n —m)S?/0? are independent as well.

e Now the statement follows from the definition of the F—distribution, cf. Section 1-3.1.3. |
Remark
e When testing the hypothesis Hy : 81 = ... = 8, = 0 with a significance level of o € (0, 1) (against the

alternative H; : §; # 0 for at least one j € {1,...,m}), the null hypothesis Hy is rejected if
Tmod > Fm,n—m,l—aa (45)

where Fyp, ,—m. 1—o denotes the 1 —a quantile of the F-distribution with (m,n—m) degrees of {reedom.

e In a similar way, an F—test for the verification of the hypothesis Hy : 3 = B, with significance level
a € (0,1) (against the alternative Hy : B # 3,) for an arbitrary hypothetical parameter vector
Bo = (Bo1,---»Pom) can be constructed.

e Proceeding as in the proof of Theorem 2.10, one can show that if Hy : 3 = 3, is true, the test statistic
B8, (XTX)(B -

0 mSQ

has an F-distribution with (m,n —m) degrees of freedom.
e Thus, the null hypothesis Hy : 8 = 3, is rejected if

TBO > Fm,nfm,lfa . (47)

For the verification of hypotheses about single components of 3 = (81, ...,m) ", t-tests are used instead.
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e Let j € {1,...,m}. In order to test a hypothetical value By ; of the j—th component 5, of the parameter
vector B = (B1,...,Bm) ", we consider the test statistic

_Bi-5
= v .

where 2%/ denotes the entry of the (inverse) matrix (X' X)~! at position (i, j).
e From (40) — (41) and from the independence of B and S? it follows that T ~ tn—m.

e When testing the hypothesis Hy : 5; = fo,; with a significance level of o € (0,1) (against the alternative
H, : B # Bo;), the null hypothesis Hy is rejected if

|B\j — Bo|
SV i

where t,, _p, 1_q/2 denotes the (1 — a/2)—quantile of the t—distribution with n —m degrees of freedom.

> tnfm,,lfa/Q 3 (49)

Remark

o The test of the hypothesis Hy : §; = 0 (against the alternative Hy : 8; # 0) is particularly interesting
because by using it, one can verify how far the response variables Yi,...,Y,, depend on the j—th
predictor at all.

o In this test of significance of the j—th predictor, the null hypothesis Hy : 3; = 0 is rejected if

M > tn—m,l—a/Z . (50)

SV xii

The tests we considered up to now in this section are special cases of the following ubiquitious test. Here, an
arbitrary part of the components of the parameter vector 3 is tested.

e For £ € {1,...,m} and By, . .., Bom € R the hypothesis
Hy:Br=Boe,---sBm = Bom versus H; : Bj # Poj for at least one j € {,...,m} (51)
shall be tested.

e For this purpose, we consider the following (m — £+ 1) x (m — £ + 1)—dimensional submatrix K,; of the
matrix (X X)™! = (29) with

Kuni =

xm@ mm

— One can show that the inverse matrix K;nli is well-defined because Ky = H(XTX)’1HT, where

H = (0,I), the null matrix 0 has the dimension (m — £+ 1) x (£ — 1) and the identity matrix I has the
dimension (m — £+ 1) x (m — £+ 1).

— Herefrom and from Lemma 1.8 it follows that the matrix Ky; is positive definite and thus invertible.

e A possible approach to solve the testing problem given in (51) is then given by the test statistic

(Buni - /611111)TK|:111i (Buni - 6uni)
(m—0+1)82 :

where Buni = (B\Za cee 73771) and ﬂuni = (ﬂofa ceey /BOm)

Tuni = (52)
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e The following Theorem 2.11 implies that, assuming that the null hypothesis Hy formulated in (51) is true,

Tuni ~ meerl,nfm .
e Hence, the hypothesis Hy : B¢ = Bo ¢, .- - Bm = Bom is rejected if

Tuni > meerl,nfm,lfa .

We now discuss one further test, a general test for linear forms of the parameter vector 8 = (84, ...

e Let r € {1,...,m}, let H be an r X m matrix with full rank rk(H) = r, and let ¢ € R".
e The hypothesis to be tested is
Hy:HB=c versus H, :HB #c,
where the following test statistic Ty is considered:

(HB —c) (HXX)"'H) ' (HB - ¢) .

T = rS2

Theorem 2.11 Assuming that Hy : HB = c is true, it holds that
TH ~ Fr,nfm )
i.e., the test statistic Tu given in (56) has an F-distribution with (r,n —m) degrees of freedom.

Proof

As the design matrix X has full rank, the symmetric matrix X' X is positive definite.

(53)

(54)

76771)

— Due to Lemma 1.8 the matrices (X' X)~! and H(XTX) 'H' are then positive definite as well,

— i.e., in particular, the matrix H(XTX)"'HT has full rank and thus is invertible.

Z=HB-c with B~ N(B, 2(X X)™).

Theorem 1.3 implies that, assuming that Hy : HB = c is true, it holds that

Z ~ N(o,c’H(X'X)"'H") .

Furthermore, the r x r matrix A = (H(XTX)_lHT)_1 is symmetric because

AT !

(HXX)"H) Y = (BX™X)'H))”

(H((XTX)T)—IHT)—l _ (H(XTX)—lHT)—l — A

072ZT" AZ is a random variable having a y2-distribution.

The rest of the proof continues in the same way as the proof of Theorem 2.10.

Therefore, the quantity ZT (H(XTX)"'HT)~'Z considered in (56) is well-defined, where

- H(X'X)")HT)"

1

As the matrix (0'_2A) (JQH(XTX)_lHT) = I obviously is idempotent, Theorem 1.9 implies that

O

Remark The null hypothesis Hy : HB = c is rejected if Tyx > Fy p—m,1—a, Where T3 is the test statistic given

in (56).
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2.2.4 Confidence Regions; Prediction of Response Variables
e Recall: In Section 2.2.3 we have considered the test statistic T; = (B\] — B;)/(SVxi7), where £/ denotes the
entry of the (inverse) matrix (X "X)™! at position (i, 7).
e In doing so, we have shown that T} ~ t,,_,, for each j € {1,...,m}.

e This leads to the following confidence intervals with confidence level 1 — « € (0,1) for each single regression
coefficient f3;.

e It holds for each j € {1,...,m} with probability 1 — a that

~

ﬂj - tnfm,17a/2s Vil < ﬂj < Bj + tnfm,lfa/ZS Vil (58)

Remark

e In the same way as in the proof of Theorem I-5.8 a common confidence region with confidence level
1 —«a € (0,1) for all m regression coefficients B, ..., By, can be derived by use of the Bonferroni
inequality (cf. Lemma I-5.4).

e Indeed, the probability that

Bj - tn—m7l—a/2ms V i < ﬁj < Bj + tn—m,l—a/QmS V 77 (59)
for all j =1,...,m at the same time is at least equal to 1 — a.

e Moreover, Theorem 2.10 leads to an ezact common confidence region with confidence level 1 — « for
all m regression coefficients (1, ..., Bm-

— It holds (cf. (46) — (47)) that

2_ AT (xT a2 _
Pﬁ((ﬁ B) %S?X)(ﬂ B)<Fm,n_m,1_a)=1—a.

— Here, the confidence region E with

3_3\T(xT 3 _
E= {/6 = (617 s vﬂm) : (ﬁ ﬁ) (553()(5 I@) < F7n,n7m,1fo¢}

forms a (random) ellipsoid with center [Ai = (B\l, e Bm)

e One can show that the ellipsoid E can be embedded into an m—dimensional paraxial cuboid E' D E,

where
m

E = H <BJ - S\/mzijm,n—m,l—a7 Bj + S\/mmijmm,—m,l—a) :

j=1

e The confidence region E’ has a simpler form than E. However, due to E' D E it is clear that E’ is an
estimation, which is less accurate than E.

In a similar way, a confidence interval for the expected target value

©(xo1, -+ Tom) = B1zo1 + ... + BmTom

corresponding to a given vector xg = (Zo1, . .- ,xom)—r € R™ of values xg1, ..., Tom of the m predictor variables
can be derived.

e For this purpose, we consider the 1 x m matrix H = (z¢1, ..., %om) (= XJ ).
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e Then, Theorem 2.11 implies that

~T
V- 1B x0 — p(x0)] d
Tu = T - |T|7
S X (XTX)_1XO

where T is a random variable having a t—distribution with n — m degrees of freedom.

e Hence, it holds with probability 1 — « that

~ ~T
B x0—Zy < p(xo) <B X0+ Zy, (60)
where
Zy = tn—m,l—a/QS\/ X(—)F(XTX)ilx() .
Remark

e Analogously, one can derive a prediction interval for the response variable Yy = S1x01+. - -+ BmTom +£o0,

where the error term ¢¢ is normally distributed and independent of the error terms €1,...,e,; €9 ~
N(0,0?).

T
e Indeed, it is B8 x¢ — Yo ~ N(0,0%(1 +x7 (X"X) %)) and thus

o~

~T
ﬁXo—Z6<Y0<,B X0+Z(/), (61)

with probability 1 — a, where Z = tn_m’l_a/QS\/l + x4 (XTX)~Ixq.

2.2.5 Confidence Band

In this section we assume that the design matrix X has the form

1 212 ... Zim
X = , (62)
1 Zpo ... ZTom
i.e., we consider the (multiple) linear regression model.
e In the definition of the regression function ¢(x1,...,Zm) = B121 + ... + Bm@m in (4), we now set z; =1

and determine a confidence band for the regression hyperplane
y=p1,22,...,2m) =01+ Poxas+ ... + BnTm, Vao,...,Tm €R.

e This means that we need to find a number a, > 0, such that with the given (coverage) probability v =
1—a € (0,1) it holds that

Bl +§2$’2 + ... +Bmmm - a’ny < @(173321- --7mm) < B\l +§2x2 + ... +/B\mxm +a’ny (63)

for each x = (1,29,..., %) € R™ simultaneously, where

B=X"X)"'XTY and Z=8/x"(XTX) 'x.

For solving this problem, the following lemma is useful.
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Lemma 2.3 It holds with probability 1 that

(XTe)T(XTX) 'x)?

T AT T y—1xT
xglR?L}il xT(XTX) 1x =(X'e) X' X)(X'e), (64)
where RT_l denotes the set of all vectors x € R™ with x = (1,29,...,2,)"

Proof

From Lemmas 1.6 and 1.8 it follows that (X"X)~! = HH for an invertible m x m matrix H.
Therefore, the expression

(XTe)"(XTX) 'x = ((XH) e) 'H'x
can be perceived as the scalar product of the m-dimensional vectors (XH) e and H' x.
Analogously, it holds that

XTe) " (XTX)"'XTe=((XH)"e)'(XH)"e and x'(X'X)'x=H"x)"Hx.
From this result and from the inequality
ly 'zl <VyTyVz'z Vy,zeR™ (65)

together with y = (XH) "e and z = H' x it follows that

(XTe)T(XTX) x| < /(XTe)T(XTX)(XTe) /xT (XTX) !x

and thus )
(XTe)T(X"X)"'x) TAT(xTx)V-1(xT
< (X X'X X .
X0 <X XX (XTe) (66)
As the random vector € = (e1,...,£,)" has independent and absolutely continuous components, we

get that Y. | &; # 0 with probability 1.
Now let > " ;& # 0. Then it follows from the form of the design matrix X considered in (62) that
the vector x = X e/ Y7 | &; belongs to R7"~! and that in this case the equality in (66) holds . O

The following result, which is a vectorial generalization of Theorem 1-5.9, leads to the desired confidence band.

Theorem 2.12 Let ay = \/mFy n_m . Then it holds that

Proof

~T 2
Pﬁ( max (8 x— o) < a2> =7. (67)

xerm—t §2x T (XTX)~1x = 7

e For each x € R it holds that

@Tx —px) = BTX -B8'x = ((XTX)_IXTY)TX -B'x = (B+ (XTX)_les)TX -8'x

= (XTe)T(XTX) 'x

and thus
~T
(B x—ox))° - (XTe)T(XTX) 'x)* L (XTe)T(XTX) 1x)*
X = X = — X
xer™—1 S2x T (XTX)~Ix xerm—1 SZxT(XTX)~1x 5% yerm1 xT(XTX)"x
(XTe)"(XTX)"1(XTe)
— = ,

where the last equality follows from Lemma 2.3.
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Therefore, one has

~T 2
B x—p(x) XTe)T(XTX)"L(XT
T (63

Due to € ~ N(o, 0%I) and
X7 (I - X(XTX)*XT) -0,
Theorem 1.10 implies that X "e and e " (I — X(X"X) !XT )e are independent.

Hence, it follows from the representation formula

1

n—m

5% = e I-X(X"X)'XT)e,

which has already been derived in Theorem 2.7, that also the random variables (X Te) T (XTX)"}(XT¢)
and S? are independent.

In Theorem 2.7 we have shown that
(n—m)S?/o? ~\2_, ..
Moreover, Theorem 1.9 implies that
(XTe)T(XTX)" (X e)/0® ~ X7,

since the m x m (covariance) matrix X ' X of the normally distributed random vector X "e has full
rank and since the matrix (X' X)~!1(X"X) = I is idempotent.

Due to (68) we have altogether shown that

1 (B x - ¢(x)’

max ~ Fonem .
merg o ST (XX) kT

For the threshold value considered in (63) and (67), we hence obtain ay = \/mF,, n_m 4. O
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3 Arbitrary Design Matrix; Generalized Inverse

e We now consider the following generalization of the linear model discussed in Chapter 2,
Y =XB+e¢, (1)

for which we have assumed so far that the design matrix

T11 I12 e T1m

Tnl Tp2 oo Typm

is an (n x m)-dimensional matrix with full (column) rank rk(X) = m, where n > m.

e In contrast to this, in this chapter we will consider the case that rk(X) < m, i.e., we allow that the design
matrix X does not have full rank.

e As we did in Section 2.1, we first assume for the random vector € = (e1,...,¢,) " that
Ee; =0, Vare; = o2, Cov (g4,65) =0, Vi,j=1,...,nwith i #j (3)

for a certain (unknown) o2 > 0.

3.1 Analysis of Variance as a Linear Model

To begin with, we discuss two examples of problems leading to linear models whose design matrix does not have
full rank, cf. Section 3.4.

The term ,,analysis of variance” does not mean that variances of random variables are analyzed in this context, but
refers to the analysis of the variability of expectations. In literature, ANOVA is typically used as an abbreviation.

3.1.1 One—Factor Analysis of Variance; ANOVA Null Hypothesis

e In a one-factor analysis of variance, we assume that the random sample Y = (Y7,...,Y,,) " can be partitioned
into k classes of subsamples (Y;;, j = 1,...,n;), where

—mn; >1foreachi=1,...,k and Zf:lnizn

— and the sampling variables belonging to the same class have the same expectation 6;.

e In other words: We assume that

Y;j:tgi-i-&'ij, Vi=1,....k, j=1,...,n;, (4)
where 01,...,0; € R are (unknown) parameters and the error terms ¢;; : @ — R are uncorrelated with
Eei; =0, Vare;; = o2, Vi=1,....k, j=1,...,n;. (5)
Remark
e The numbers i = 1,...,k of the classes (Y;;, j = 1,...,n;) are interpreted as levels of a predictor

variable.
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e The model assumptions made above imply in particular that the observed values yi,...,y, of the
response variables Y7, ...,Y, can be structured in table form as follows:
level 1 2 3 e k
Y11 Y21 Y1 - Yk1
Y12 Y22 Ys2 - Yk2
Yk3
Y3ns
Yin,
Y2n, Ykny,
We show that the classical ANOVA null hypothesis Hy : 61 = ... = 0 can be expressed by use of so—called
contrasts.

e For this purpose, we consider the following set A C R¥ with
k
.A: {a: (al,...,ak)—r : 37507 Zai :0}
i=1

e Let t = (t1,...,t;)" € R* be an arbitrary vector of variables and let a = (a1,...,ax)" € A be a vector of
(known) constants. The mapping t — Ele a;t; is then called a contrast.

Lemma 3.1 Let 0q,...,0; € R be arbitrary real numbers. For the validity of 01 = ... = 0y it is then necessary
and sufficient that
k
Zalﬂi:o VaeA. (6)
i=1
Proof
e If 6y = ... =0, =0 is true, we get for each a € A that
k k
i=1 i=1
e In order to show the sufficiency of the condition, we consider the vectors ay,...,a;_1 € A with

a;=(1,-1,0,...,0)", ay;=(0,1,-1,0,...,0)", ..., az_;=(0,...,0,1,—1)".

e Foreachi € {1,...,k—1} the validity of condition (6) for a; implies that —0;+6,11 =0, i.e., 0; = 0;41.
Therefore, it follows that 6, = ... = 0. O

Remark

e Due to Lemma 3.1, the classical ANOVA null hypothesis Hy : 61 = ... = 0 is equivalent to the
hypothesis Hy : Zle a;0; = 0 for each a = (ay,...,a;)" € A
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e Moreover, assuming that Hj is true, it is obvious that
- Y% 4V, with Y,;. = 3" Yi;/n; is an unbiased estimator for k a;0; = 0 for each a € A,
i=1 j=1"v =1
— the variance of Zle a;Y;. is given by Var Zf La;Y;. =0 ZZ Lai/n;

— and i
1 ¢ -
- 23T’ "

i=1 j=1

is an unbiased estimator for o2, the so—called pooled sample variance.
e Hence, it is reasonable to reject Hy : 61 = ... = 6, if the supremum over a € A of the (suitably normed)
absolute values of Zf 1 az?z exceeds a certain threshold value, where the test statistic sup,e 4 72 is
considered with T, = ( i 1aZ i )/ 52 Doict l/m

e In a similar way as in the proof of Lemma 2.3 one can show that, assuming that Hy : 8, = =0 is
true, it holds that

k — = \2
sup T2 = =1 , 8
acA SI% ( )

where V.. = Zle n;Y; / Zf:l ;.

The following decomposition implies an intuitive interpretation of numerator and denominator of the test statistic
sup,ec 4 T2 considered in (8), cf. also Theorem 2.9.

Theorem 3.1 [t holds that

S v T - Y (¥ =Y. +Zi(mj v (9)

=1 j=1

Proof By expanding the left—-hand side of (9), one obtains that

k n; ko n;
NS -7 = (V) (V- T

i=1 j=1 i=1 j=1

= ZZ P42V V) (Vi —Y.)+ (Vi —Y.)?)
=1 j=1

= Y DY (V=Y +2) (Vi —Y)D (Vi —Yi)+ ) ni(YVi —Y.)>.
i=1 j=1 i=1 j=1 i=1

O
=0
Remark

e The double sum on the left-hand side of (9) can be interpreted as a measure for the (total) variability
of the sampling variables {Yi;, i=1,...k, j=1,...,n;}.

o The first sum on the right-hand side of (9) is a measure for the variability between the levels of the
predictor variable, while the double sum on the right-hand side of (9) is a measure for the variability
within the levels of the predictor variable.

e So due to the definition of S given in (7), the test statistic considered in (8) is proportional to the
ratio of the variability between the levels and the variability within the levels of the predictor variable.

e Therefore, the ANOVA null hypothesis Hy : 61 = ... = 0y is rejected if the variability between the
levels is significantly higher than the variability within the levels of the predictor variable.
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3.1.2 Reparametrization of the Expectations

The model of one—factor analysis of variance considered in Section 3.1.1 can be represented as a linear model in
two different ways.

e In both cases, the random sample Y = (Vi,...,Y,)" is “structured”, i.e., we use the notation Y =
T
(YH,...,Yl,,“,Ygl, ey Yon, oo, Ye, o 7Yk'nk) , where nq + ... +ng =n.

e The random vector Y is represented in the form Y = X3+ ¢, where the design matrix X and the parameter
vector B are chosen differently in each case.
— While X has full rank in the first case, it does not have full rank in the second case.

— The second (reparametrized) representation is especially useful for the application of general estimation
and test methods, which are discussed in Sections 3.2 and 3.3.

— If the error terms are normally distributed, we can thus determine the distribution of the test statistic

supae 4 T2 considered in (8), assuming that Hy : 61 = ... = 0y, is true, cf. formula (89) in Section 3.4.1.
Case 1
e In this case the design matrix X is given by the n X k matrix
1 0 0 ... 0 O
1 0 0 0 0
0 1 0 0 0
X = , (10)
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1
and the parameter vector 3 is given by B = (61,...,0;)".
Case 2
e We consider the following reparametrization of the expectations 64, ...,0;, which correspond to the
levels of the predictor variable.
o Let p € Rand ay,...,ar € R be real numbers, such that

and

k
Zniai =0. (12)
i=1
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e Then the random sample Y of the model of one—factor analysis of variance can also be written in the
form Y = X3 + €, where the design matrix X, however, is now given by the n x (k + 1) matrix

1 1 0 O ... 0 O

1 1 0 0 0 O

1 0 1 0 0 0
X = , (13)

1 0 1 0 0 0

1 0 0 O 0 1

1 0 0o o0 ... 0 1

and the parameter vector 3 is given by 8 = (u, a1, ..., o) .
Remark

e The linear additional condition (12) for the components a1, ..., ax of the parameter vector 3 ensures

that the representation (11) — (12) of the expectations 61, ..., 0 is unique.
e Furthermore, (11) and (12) imply that

where
— the parameter u can be interpreted as gemeral mean of the expectations EY;; of the sampling
variables Y;; and
— the (deviation) parameter «; is called the effect of the i-th level of the predictor variable.

o For the design matrix X given in (13) it holds that rk(X) = k, i.e., the n x (k4 1)—dimensional matrix
X does not have full column rank.

Theorem 3.2 [t holds that

I
for each i = 1,...,k, i.e., Y.. and Y;. — Y .. define unbiased estimators for the model parameters u and o,
respectively.

Proof It follows from the definition of Y.. that
1 E 1 k 1 k
S o) oS VAN NI o U S o
k 1] k 1Y k 1 )
> i j=1 i=1T =1 DM i

where the last equality follows from the reparametrization condition (12). The second part of the statement
in (14) can be proved analogously. O
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3.1.3 Two—Factor Analysis of Variance
e We now modify the model of one—factor analysis of variance introduced in Section 3.1.1 and assume that

the response variables Yi,...,Y, depend on two predictor variables.

e Thus, we partition the random sample Y = (Y7,...,Y,) " into k - ky subsamples (Yi,i5, 7 = 1,...,M414,),
where n;,;, > 1forall 4y =1,...,k and ia =1,..., k2 and

k1 k2

E E Nipip = N

i1=1iy=1
e We assume that the sampling variables belonging to the same class have the same expectation 6;,;, in each

case.

e In other words: We assume that
Y;Jlizjzeilig +Ei1i2j7 Vilzla"wkh i2:17"'7k2aj:17"'7ni1i27 (]-5)
where 6;,;, € R are (unknown) parameters and the error terms ¢;,5,; : 2 — R are uncorrelated with

E5i1i2j207 Var5i1i2j202, V’il:l,...,kl,igzl,...,kQ,j:].,...,nilig. (16)

Remark

e The representation (15) of the sampling variables Y;,;,; leads to the same form of linear model as it
was considered in Case 1 of Section 3.1.2.

e The numbers i1 = 1,...,ky and 9o = 1,..., ko of the classes (Y5,i,;, 7 = 1,...,ni4,) are again inter-
preted as levels of the corresponding predictor variable.

e Here, the design matrix X has the dimension n x (k - k2) and full column rank kq - k.

Moreover, we consider a similar reparametrization of the expectations 6;,;, as in Section 3.1.2.

e In doing so, we only consider the so—called balanced case, i.e.,

— we additionally assume that all kq - k2 subsamples (Y 5,5, 7 = 1,...,n4,i,) have the same sample size.
— Hence, let n;,;, =7 forall iy =1,...,k; and ia = 1,..., ko, where r = n/(ki1k2).
e Let p € Rand for all iy € {1,...,k1} and iy € {1,...,ka} let ozl(ll) € R, ag) € R and a4, € R be real
numbers, such that

01'11'2 :,LL+04511)+04,522)+04“12, Vilil,...,kl, igil,...7]€2 (17)

and

k1 ko k1 ko
Z O[Ell) = Z 04522) = Z Qg4 = Z Q9 = 0. (18)

i1=1 ig=1 i1=1 ip=1
e Then, the random sample Y can be written in the form Y = X3 + €, where

— the design matrix X is given by a matrix of dimension n x (1 + k; + ko + k1ks), whose entries only
consist of zeros and ones and which does not have full rank.

— Therefore, the parameter vector 8 has the following form:

.
8= (,u,agl),...,afgll),af),...,a,(ﬁi),au,.‘.,aklkZ) .
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Remark

e The additional linear conditions (18) for the components of the parameter vector 3 ensure, in a
similar way as in the model of one—factor analysis of variance considered in Section 3.1.2, that the
representation (17) — (18) of the expectations 611, ...,0k, %, is unique.

e Here,

— 1 can be perceived as general mean of the expectations EY;,;,; of the sampling variables Y 4,5,

— a,l(»ll) is called main effect of the i1-th level of the first predictor variable,

— agf) is called main effect of the is-th level of the second predictor variable and

— iy, 18 called interaction between the levels i1 and i of the level combination (i1, i2).

For the construction of estimators for the model parameters u, o o@ and @, 4y, We use the following notation:

71 0 “Uig
Let
ko r k1 r r
Y. = Z ZYiﬂEj ) Y, = Z ani2j7 Yijip. = anizj (19)
i2=1j=1 i1=175=1 j=1
and
1 1 1 1 kl kz T
Yi. = % Yi ., Y. = % Yo, Yii, = s Yiiio Y. = rkyko Z Z anhj (20)

i1=1ip=1 j=1

Theorem 3.3 It holds that

EY.. =p, E(Vi.-YV.)=al, EV., -V.)=0a?, EV.+YVin Vi —YV.5) =i, (21)
for arbitrary iy = 1,... k1, ia=1,... ko, de, Y., Y; . =Y. Y. .. =Y. . andY..+Y ;. —Y;. =Y., define

(COINNC)

unbiased estimators for the model parameters p, o; ", o, and o, i,, respectively.

Proof It follows from the definition of Y ... in (20) that

1 k?l k2 T 1 k?l kz
EY. = Tk Z Z ZEszj = Z Z Oiy iz
i1=142=1 j=1 i1=1142=1
1 k1 ko
1 2
= Kt Z Z(a51)+agz)+ai1i2) =M,
ko ky i1=1ip=1
where the last equality follows from the reparametrization conditions (18). The remaining three parts of
the statement in (21) can be proved analogously. O
Remark

e The conditions (18), i.e., the assumption that the parameter vector 3 belongs to a linear subspace of
RItkithetkiks  play a fundamental role in the proof of Theorem 3.3.

e Here, the conclusions of Theorem 3.3 can be interpreted as unbiasedness of the considered estimators
with respect to this restricted parameter space.

e However, if we allow that 3 is an arbitrary vector of dimension 1 + ky + ko + ky1ks, there is no LS—
estimator for B, which is unbiased at the same time, cf. the discussion at the end of Section 3.2.1.

The following result contains a decomposition of sums of squared differences, cf. also Theorems 2.9 and 3.1.
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Theorem 3.4 It holds that

k1 ko r k1 ko k1 ko r
SIS Vi —V) = kY (Vi V) 4k Y (Vg = V) 4 3 3 S (Vi — Viia)”
i1=11i=1 j=1 i1=1 ig=1 i1=11i=1 j=1
k1 ko
+7”Z 2(71122 —?21 —?124-?)2 (22)
i1=11i2=1

Proof Using the notation introduced in (19) and (20), we get that

k}l kQ T o 2
333 (V-7
i1=11i2=1j=1
k?l k}z T o . o . o
SN (T = V) + (Vo = Vo) + (Yisiag = Vi) +
i1=112=1j=1
k1 ko r k1 ko r k1 ko T

=
~|
|
~|
+
~|
e

_ _ \2 __ _\2 _ 2
S T Y YN (T ) S (T
ir=1iz=1j=1 i1=1ip=1 j=1 i1=1iz=1j=1
ki ko 7

+ Z Z Z(?illé' ~Yi. Y., +?“_)2 +R,

i1=11ip=1 j=1

where it can be shown in a similar way as in the proof of Theorem 3.1 that the sum R of the mixed products
is equal to zero. (]

Remark
e The sum of squares on the left-hand side of (22) can be perceived as a measure for the (total) variability
of the sampling variables {Y; i,i, 11 =1,..., k1,92 =1,... ko, j=1,...,7}.

e The first and second sum of squares on the right-hand side of (22) are measures for the variability
between the levels of the first and second predictor variable, respectively, while the third sum of squares
on the right-hand side of (22) is a measure for the variability within the pairs of levels (i1,i2) of the
two predictor variables, the so—called residual variance.

e The fourth sum of squares on the right—hand side of (22) is a measure for the interactions between the
components of the pairs of levels (i1,42) of the two predictor variables.

e By similar considerations as in the proof of Theorem 2.5 it can be shown that a suitably normalized
version of the residual variance is an unbiased estimator for the variance o2 of the error terms.

o In particular, it holds that E S? = 02, where

k}l kz T

1 — 2
S2 — m Z Z Z(Yilm - Ymvz,) .

i1=1ip=1 j=1

3.2 Estimation of Model Parameters

Now we return to the analysis of the linear model with arbitrary design matrix X given in (1) — (3). In this
section, we assume that

o rk(X)=1r <m, i.e, X has not full column rank and that

e B € R™ is an arbitrary m—dimensional vector, i.e., at first we do not consider any additional conditions of
type (12) or (18).
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3.2.1 LS-Estimator for 3

We first recall the following formula for the rank of quadratic matrices.

Lemma 3.2 Let A be an arbitrary n X n matriz. Then it holds that
rk(A) =n — dimker(A), (23)
where ker(A) = {x € R" : Ax = o} and dimker(A) denotes the dimension of ker(A) C R™.

Moreover, the following property of the rank of products of matrices is useful, which immediately follows from
Lemma 3.2.

Lemma 3.3 Let m,n,r € N be arbitrary natural numbers and let A, B be arbitrary m X n and n X r matrices.
Then it holds that

rk(AB) < min{rk(A), rk(B)}. (24)
Remark

e As we now assume that the design matrix X does not have full rank, the m x m matrix XX is not
invertible because Lemma 3.3 implies that rk(X'X) < rk(X) < m.

e Therefore, the normal equation (2.9), i.e.,
X'Xg=X"Y, (25)
does not have a uniquely determined solution.
e In order to specify the solution set of (25), we need the notion of the generalized inverse of a matrix.
Definition An m x n matrix A~ is called generalized inverse of the n x m matrix A if

AA A=A, (26)

In order to show that there always is a solution A~ of (26), we use the following general representation formula,
which we state without proof at this point.

Lemma 3.4 Let A be an n X m matriz with n > m and 1k(A) =r < m. Then there are invertible n X n and
m x m matrices P and Q, such that

I. 0 (L0
PAQ = and A=P"
0 0 0 0

Q. (27)

By use of Lemma 3.4 one can show how solutions A~ of (26) can be found.

e Let P and Q be matrices with the properties considered in Lemma 3.4 and let B be an arbitrary m X n
matrix with

I, R
B=Q P, (28)
S T

where R, S and T are arbitrary matrices with dimensions r x (n —r), (m —r) x r and (m —r) x (n —r),
respectively.



3 ARBITRARY DESIGN MATRIX; GENERALIZED INVERSE 54

e Then (27) and (28) imply that

L (1 R [0\
ABA — P Q'Q PP Q
0 0 S T 0 0
(Lo (L R o0
0 0 S T 0 0
i.e., the matrix B given in (28) is a generalized inverse of A.
e Let k€ {r,...,m} be an arbitrary natural number. Let
I, 0
R =0, S=0 and T = , (29)
0O O

then it is k(B) = k.

Altogether, we obtain the following result.

Lemma 3.5 Let A be an n x m matriz with n > m and rk(A) =r < m. Let furthermore B be the m x n matriz
given in (28) — (29), for each k € {r,...,m}. Then it holds that tk(B) = k and A~ = B is a solution of (26).

Moreover, the following properties of the generalized inverse are useful.

Lemma 3.6

o Let A be an arbitrary n X m matriz with n > m and let (ATA)7 be a generalized inverse of the symmetric
m x m matriz ATA.

e Then the transposed matriz ((ATA)_)—r is a generalized inverse of AT A as well.
e Besides, it holds that
ATAATA) AT =AT. (30)
Proof
e By definition of the generalized inverse, we have ATA(ATA) ATA =ATA.
e From this equation and from the symmetry of the matrix AT A it follows that

ATA = (ATA)" = (ATA(ATA)’ATA)T = ATA((ATA)’)TATA,

i.e., the transposed matrix ((ATA)f)—r is a generalized inverse of AT A as well.

e In order to prove (30), the second part of the statement, we consider the matrix

B=ATA(ATA) AT —AT.
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e Then it holds that
_ _ T
BBT — (ATA(ATA) AT-AT)(ATA(ATA) AT-AT)
T
— ATA(ATA) ATA((ATA)T) ATA
.
~ATA(ATA) ATA-ATA((ATA)) ATA+ATA
= ATA-ATA-ATA+ATA=0.

e Therefore, we get that B = 0. |

By use of the generalized inverse (X' X)~ of X "X and its properties (considered in Lemma 3.6), the solution set
of the normal equation (25) can be specified.

Theorem 3.5 The general solution B of the normal equation X' X8 = XY has the form
B=X"X)X"Y+ (I,-(X"X)"X"X)z, (31)
where (XTX)™ is an arbitrary solution of
XTX(XTX)"X'X =X"X (32)

and z € R™ is an arbitrary m—dimenstonal vector.

Proof

o By plugging (31) into the left-hand side of the normal equation (25), one sees

— that for each z € R™ equation (31) gives a solution of (25),
— as it holds that

X'X8 = XTX((XTX)’XTY + (L, — (XTX)’XTX)z)
= X'XX'X)X'Y = X'Y,
where the last equality follows from Lemma 3.6.
e Let now B be an arbitrary solution and 3 be a solution of the form (31) of equation (25).
— Then subtraction on each side of (25) yields
X'X(B-8)=o. (33)
— Hence, for a z € R™ it holds that
~ ~ (31) _ _ ~
B = B-(B-p) = XX)XY+ (L - (XTX) X X)z - (8- 0)
= X'X)XTY + (I - (XTX)"XX)(z— (8- B)) + (X' X)"X"X(8 - 8)
(33)

XTX) XY + (L, - (X'X) X "X)(z— (- B)).

— This means that 3 is a solution of the form (31) of equation (25) as well. O
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Example (one—factor analysis of variance)

e Recall: In the reparametrized model of one—factor analysis of variance (cf. case 2 of the example
considered in Section 3.1.2) the design matrix is given by the n x (k + 1) matrix

11 0 0 ... 0 O
1 1 0 0 0 0
1 0 1 0 0 0
X — , (34)
1 0 1 0 0 0
1 0 0 O 0 1
1 0 0 0O ... O 1
and the parameter vector 3 is given by 8 = (i, a1,...,a1) .
e One can easily see that in this case
n ny ng N3 oo Np—1 Nk
ny np 0 0 NN 0 0
X'X=|n 0 ng 0 ... 0 0 (35)
ng, 0 0 0 ... 0 nx

and that a generalized inverse of X "X is given by

1
- 0 0 0 0 O
1 1
-—— — 0 0 0 0
n np
T 1 1
(XTX)"=| -~ 0 — 0 0 0 (36)
2
—10 0()...0i
n ng

e Therefore, the normal equation (25), i.e., X" X3 = XY, has the following form:

k
ny—l—Zniai:Y.., niu+n; = Y., Vi=1,...,k.

=1

e If we only consider solutions of this system of equations which are in the restricted parameter space
© C RFH where

k
@:{ﬂ:(u,al,...,ak):;niaiz()}, (37)
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we obtain the (uniquely determined) solution ,@ = (@, a1, ..., Q) with

n=Y., a;, =Y,;. —-Y.., Vi=1,... k. (38)

e One can easily see that the solution 3 of the normal equation (25) which is given in (38)

— has the form 8 = (XTX)~XTY, where the generalized inverse (X X)~ is given by (36), and
— is an unbiased estimator for 8 = (u, v, ..., ax) with respect to the restricted parameter space ©,
which has the form given in (37).

o Without the additional condition considered in (37), there is no LS—estimator which is unbiased at the
same time, cf. Theorem 3.8.

Now we consider the linear model with general design matrix X again, which is given in (1) — (3). In particular,
we consider the solutions of the normal equation (25) discussed in Theorem 3.5 and show that the mean squared
error e((3) given in (2.8) is minimized for z = o.

Theorem 3.6 Let (X' X)™ be a generalized inverse of X' X. Then the sample function
B=X"X)"X"Y (39)

minimizes the mean squared error e(B3), i.e., B is an LS—estimator for 3.

Proof
e For each m—dimensional vector 3 = (1,...,m) " it holds that
ne(B) = (Y-XB)(Y-XB) = (Y-XB+XB-8) (Y-XB+X(B-0))
= (Y-XB) (Y-XB)+(B-B)X'X(B-p) > (Y-XB) (Y-XB) =ne(B)
e because

B-BTXXE-8)= (XB-8) (XB-) >0

nd
’ B-B)"X(Y-XB)=B-8)" (X" -X"XX"X)"X")Y =0,

where the last equality follows from Lemma 3.6. a

3.2.2 Expectation Vector and Covariance Matrix of the LS—Estimator 3

The model assumptions (3) for e1,...,¢, and the general calculation rules for the expectation and covariance of
real-valued random variables imply that the expectation vector and the covariance matrix of the LS—estimator
B = (XTX)"XTY have the following form.

Theorem 3.7 It holds that -
EB=(X"X)"X"X3 (40)

and
CovB=0’(X"X) X "X((X"X)7)". (41)
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Proof
e It follows from Y = X3 + € and Ee = o that

EB=E ((XTX)—XTY> - (X"X)"X"EY = (X"X)"XX3.

e Moreover, it holds that

n

Cov (B, B;) = COV(Z (XTX)~ H,Z((XTX)—XT)an)

n
(=1 r=1

n

=1

- a?Z((XTX)*X%(<XTX>*XT>ﬂ
/=1

M:

X", ((XTX)_XT)J.TCOV (Yy, Yy)

1
Il

<
3

(XTX)"XT),,(X((X"x)7)")

I
t%

¢
=1

T T Tx\—) "
XTX)XTX(XTX)7) ), .

= 0’2

s ~ <\

for arbitrary i,7 € {1,...,m}.

Together with Lemma 3.3, Theorems 3.5 and 3.7 imply that there is no LS—estimator for 3 which is additionally
unbiased. In particular, the LS—estimator 8 for B given in (39) is biased.

Theorem 3.8 If rk(X) < m, there is no unbiased LS—estimator for 3.

Proof

e Due to rk(X) < m, it follows from Lemma 3.3 that rk(XTX) < m and
rk((X'X)"X"X) <m.
— Hence, there is a 8 # o with (XTX)"X "X = o, i.e., the equation
(X'X)"X"XB=p (42)

does not hold for each 8 € R™.
— So because of (40), the LS—estimator 3 fiir 3 given in (39) is biased.

e As (42) does not hold for each B8 € R™, one additionally obtains that for each arbitrary but fixed
z € R™ the equation
(X™X)"X'X(B-2)=B-2

or equivalently
(X'X)"X'XB+ (I, - (X'X)"X'X)z=3

does not hold for each 3 € R™.

e Due to Theorem 3.5, this means that there is no LS—estimator for 3 which is additionally unbiased. [J



3 ARBITRARY DESIGN MATRIX; GENERALIZED INVERSE 59

3.2.3 Estimable Functions

e In Section 3.2.2 we have shown that if the design matrix X does not have full rank, there is no unbiased
LS—estimator for 3 in the linear model without additional conditions.

e Hence, instead of the vector 3, one considers a class of (real-valued) linear functions a’ 3 of the parameter
vector 3, for which unbiased LS—estimators can be constructed.

e In other words: Instead of the (vectorial) linear transformation 3 = (X' X)~X Y of the random sample
Y = (Y4,..., Y,,,,)T one considers a class of (real-valued) linear functions c'Y of Y, which can be perceived
as estimators for a' 3.

e This leads to the following conception.

Definition
e Let a= (a1,...,a,)" € R™ be an arbitrary m-dimensional vector.
e The linear function a' 3 of the parameter vector 3 is called estimable without bias or an estimable
function if there is an n-dimensional vector ¢ = (cy,...,c,) " such that
E(c'Y)=a'g, VB eR™. (43)

Example (one—factor analysis of variance)

e For the reparametrized model of one—factor analysis of variance with parameter vector
B = (p,a1,...,a,)" € R¥! one can show that for example o] — a is an estimable function as defined
by (43).

e This is true because for
a' =(0,1,-1,0,...,0) and ¢’ =(0,...,0,1,—1,0,...,0)
——
ni—1

it holds that
E (CTY) =E(Yin, —Ya1) =(p+o1)— (u+az) =1 —az=2a'B

for each B = (i, a1,...,03)" € RFFL,

e In a similar way it can be shown that u + a; and a; — o are estimable functions of B for i =1,...,k
and 4,7’ = 1,...,k with i # i/, respectively.

Example (two—factor analysis of variance with balanced subsamples)

e For the model of two—factor analysis of variance with balanced subsamples, introduced in Section 3.1.3,
the normal equation (25) has the following form:

k] kQ kl k?2
rkikop + vk Z 04511) + 1k Z ag) +7r Z Z Qiyiy, = Yo
i1=1 ig=1 i1=11ix=1
ko ko
TkQM‘i‘TkQ(XEll)“‘TZOég)‘FTZOéiliz = Y;l Vilzl,...,kl
ig=1 io=1
kl kl
T'klﬂ‘i”f'zoégll)+7'k10é,§22)+7'204i1i2 = Y12 V’igil,...,kg
11=1 i1=1

(2

Tﬂ+r(1§11)+r(1i2 —|—7’aili2 = 5/1'”'2. \V/ilzl,...7k1, igzl,...,kg
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e In consideration of the additional condition (18), this system of equations can be solved uniquely. In
other words: If only parameter vectors

-
8= (u,agl),.. 04211) agz),.. a,(c? all»---,akle)

from the restricted parameter space

{5 Z a(l) Z ay i T— f: iy = 0}

7,1 1 7.2 1 il =1 ’i2:1
are considered, one obtains the unique solution

-~ . (1) ~ . T
8= (,u, agl) agl) a§2)7 .. al(fz) a11,. .. ,aklkz) (44)

of the normal equation, where

i=Y., a’=Y,.-Y., a?=v,

@ in “dg-

Y, Qi =Y+ Vi, — Vi,

for arbitrary ¢1 = 1,...,k1, 12 =1,...,ks.

e It can be shown that the solution 3 of the normal equation given in (44) — (45) has the form
B=(X"X)X"Y,
where (XTX)~ is a generalized inverse of X "X and X is the design matrix of the model of two—factor

analysis of variance with balanced subsamples.

e Remark: The sample function 3 given in (44) - (45) was already discussed in Theorem 3.3, where we
have shown that 3 is an unbiased estimator for 3 with respect to the parameter space ©.

e Furthermore, one can show that the linear functions p + a(l) + a(2) + «;j,i, of the parameter vector
B are estimable without bias as defined in (43) (without takmg mto account the additional conditions
(18)) for arbitrary i1 = 1,..., k1, ia = 1,..., ko.

e In the model of two—factor analysis of variance without interactions, i.e., a;,,, = 0 for arbitrary

i1 =1,...,k1, 19 =1,..., ko, also the linear functions a( ) _ (1) and a(2) ( ) are estimable without
bias for arbitrary 41,7} = 1,...,k; with iy # i} and for arbltrary Q9,05 = 1,..., ko with is # i},
respectively.

The following lemma, which is an extension of Lemma 3.6, is needed to derive two general criteria for linear
functions a' B of the parameter vector B to be estimable without bias.

Lemma 3.7 Let (XTX)_ be a generalized inverse of X X. Then it holds that

X(X™X)"X'X =X. (46)

Proof In Lemma 3.6 we have shown that

e the transposed matrix ((X X)) " is a generalized inverse of X T X as well and that XTX(XTX) X =

XT.
e Hence, it is X 'X((XTX)7)'XT =X,
e This leads to (46) by swapping columns and rows. O
Theorem 3.9 Leta = (a1,...,a,) € R™ be an arbitrary vector. The linear function a' B of the parameter

vector 3 is estimable without bias if and only if one of the following conditions is fulfilled:
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1. There is a ¢ € R", such that
a' =c'X. (47)

2. The vector a fulfills the following system of equations:

al(X™X)"X"X=a'. (48)

Proof

e Let a' 3 be an estimable function of the parameter vector 8.
— Then it follows from (43) that

a'B=E(c'Y)=c'EY=c'XB  and hence (cTX - aT)ﬁ =0

for each B € R™.
— Therefore, we get that a' = c'X.

e Conversely, let ¢ be a vector satis{ying condition (47).
— Then
E(c'Y)=c'EY=c'XB=a'3, VB ecR™.
— Thus, also the sufficiency of condition (47) is proved.
e In order to show the necessity of condition (48), we use the result of Lemma 3.7.

— Let a' B be an estimable function of the parameter vector 3.
— Then it follows from (47) and (46) that
al(XTX) X' X=c'XX'X) X' X=c'X=a'.
e In order to show the sufficiency of condition (48), one only has to observe

— that (48) impliesa’ =c' X forc’ =a’ (X"X)"X".
— Now the first part of the statement implies that a' 3 is estimable without bias. |

Remark

e If the design matrix X has full rank, i.e., (XTX)~™ = (XTX)™!, then condition (48) is obviously
fulfilled for each a € R™.

e In this case, every linear function of the parameter vector B is estimable without bias, which has
already been shown in Theorem 2.2.

In the case that the design matrix X = (z;;) does not have full rank, we show

e how the second part of the statement in Theorem 3.9 implies that the following linear functions a' 3 of 3
are estimable without bias.

e In doing so, the vector (of weights) c of the linear unbiased estimator ¢’ Y for a’ 3 can be chosen as in the
proof of Theorem 3.9, i.e.,
c'=a'(X™X)"XT. (49)

Theorem 3.10 The following linear functions of the parameter vector B3 are estimable without bias:

1. the components Z;nzl 185, -, Z;nzl ZnjfB; of the expectation vector EY =X,

2. each linear function of estimable functions,
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3. the components 3;, ..., of the so—called projected parameter vector 3 = (B1,...,3,,)", where

B =(X"X)"X"X3. (50)

Proof
e Let a; = (z41,...,Tim) | foreachi € {1,...,n}. Then it holds that

T T
a a

XTX)"XTX=X(X"X)"X'X=X= : ,
T T

a a

where the last but one equality follows from Lemma 3.7. Now Theorem 3.9 implies that every linear

combination >0 x1;B;, ..., > 1L Tnjf is an estimable function.
e In order to prove the second part of the statement, we consider a (finite) gamily a/3,...,al B of s
estimable functions, which we write in the form A3, where A = (ay,...,a,) is an s x m-dimensional

matrix and s € N is an arbitrary natural number.

e Theorem 3.9 implies that
AX™X)"XTX=A.

— Thus, for each s—dimensional vector b = (b1,...,bs)" € R® it holds that
bTAX'X)"X'X=b"A.

— Therefore, it follows by use of Theorem 3.9 that the linear function b” A3 of the estimable functions
A is an estimable function itself.

e In the third part of the statement the family AS of linear functions of the parameter vector 3 is
considered, where the m x m matrix A is given by A = (XTX)"XTX.

— Hence,
AXTX) XTX=X"TX) " XTX(X"X)"X"X=(X"X)"X'X=A,

where the last but one equality follows from the definition of the generalized inverse in (26).
— Now Theorem 3.9 implies that the components 37, ..., 3., of the projected parameter vector

B =A8=(X"X)"X"Xg3

are estimable functions. |

3.2.4 Best Linear Unbiased Estimator; Gauss—Markov Theorem

e In this section we show how BLUE-estimators for estimable functions of the parameter vector B can be
constructed.

e Recall: A linear unbiased estimator is called BLUE—estimator if there is no linear unbiased estimator with
lower variance (BLUE = best linear unbiased estimator).

e In the theory of linear models, the following result is called Gauss—Markov theorem.
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Theorem 3.11

o Leta' 3 be an estimable function of the parameter vector 3, let (XTX)~ be an arbitrary generalized inverse
of the m x m matriz XX and let B = (XTX)"X"Y.

e Then a' B is a BLUE-estimator for a' 3, where

Var (a' B) = o%a’ (X'X) a. (51)

Proof

e First, we show that a3 is a linear unbiased estimator for a' 3.
— It is clear that B
a'B=a’(X'X)"X'Y
is a linear function of the random sample Y = (Y1,...,Y,).

— As we assume that a’ 3 is an estimable function of the parameter vector 3, Theorem 3.9 implies
that there is a ¢ € R™ such that
a =c'X. (52)

— Hence, it holds that
E(a'B) = ¢'XEB = ¢'X(X'X) X'EY = ¢'X(X'X)"X'X38 = c'XB=a"p

for each B € R™, where the last but one equality follows from Lemma 3.7.
— Therefore, we have shown that a' 3 is a linear unbiased estimator for a' 3.

e It follows from the calculation rules for the variance of random variables (cf. Theorem WR-4.13) that

m m m

Var (a"B) = Var (Y- aiB,) = > 3" aia; Cov (B,,5,).
=1

i=1 j=1

— Moreover, we have shown in Theorem 3.7 that

Cov (B, B;) = o*(XTX) X X((X™X)7) ), .

)

— This leads to

Var(a'B) = o’ Z Z a;a; ((XTX)_XTX((XTX)_)T)U'

where the last but one equality follows from (52) and the last equality follows from Lemma 3.6.
— Applying (52) again yields the variance formula (51).

e It remains to show that the estimator a' 3 has minimum variance in the class of all linear unbiased
estimators for a' 3.

— Let b € R™, such that b'TY is a linear unbiased estimator for a’ 3. Then it holds that
a'B=E(b"Y)=b"Xs, VB ecR™

and thus
b'X=a'. (53)
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— For the covariance of a’ 8 and b'Y it holds that
Cov(a’B,b'Y)=Cov(@a"(X'X)"X'Y,b'Y)=0c%a'(X'X)"X'b=0a"(X"X)"a,

where the last equality follows from (53).
— This result and the variance formula (51) imply that

0 < Var (aTB — bTY) = Var (aTB) + Var (bTY) —2Cov (aTB, bTY)
= o%a’(X'X) a+Var(b'Y) —20%a’"(X'X) a
= Var(b'Y)-0c’a’"(X"X)"a = Var(b'Y) — Var (a'3).

Remark

e In the proof of Theorem 3.11 it has never explicitely been used that rk(X) < m.

e In other words: If the design matrix X has full rank, i.e., tk(X) = m, then a' 3 is estimable without
bias for each m-dimensional vector a’ € R™ and a'3 = a' (XTX)"!XTY is a BLUE-estimator for

a'ps.

The following invariance property of the generalized inverse (XTX)~ of XTX implies that the BLUE-estimator
a' 3, considered in Theorem 3.11, does not depend on the specific choice of (X TX)~.

Lemma 3.8 Let A and A’ be arbitrary generalized inverses of the matriz X X. Then it holds that

XAXT = XA'XT. (54)

Proof

e In Lemma 3.7 we have shown that
XAX'X =X = XA'X'X (55)

for arbitrary generalized inverses A and A’ of the matrix X X.

e If this chain of equations is multiplied by AX T from the right, one obtains
XAX XAX" = XA'XTXAXT. (56)

e formula (55) implies for the left-hand side of the last equality that XAXTXAX T = XAXT.

e Furthermore, we have shown in Lemma 3.6 that X TXAXT = X7 for each generalized inverse A of
XTX.
e If this is plugged into the right-hand side of (56), one obtains (54). O

By using Lemma 3.8, we can now prove the invariance property of the BLUE-estimator a' 3 considered in
Theorem 3.11 which was already mentioned above.

Theorem 3.12  Let a' B be an estimable function of the parameter vector 3. Then the BLUE-estimator
a'B=a’(X"X)"XTY does not depend on the choice of the generalized inverse (XTX)™.
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Proof

Example

Example

Recall: Tt follows from Theorem 3.9 that for each estimable function a’ 3 of 3 there is a ¢ € R™, such
that a’ =c'X.

Together with Lemma 3.8 this implies that
a'f=a' (X' X)) X'Y=c"X(X"X)"X'Y

does not depend on the choice of the generalized inverse (XTX)™. ]

(one—factor analysis of variance)

For the reparametrized model of one—factor analysis of variance u + a; and «a; — o are estimable
functions of B for i = 1,...,k and 7,7’ = 1,..., k, respectively, cf. Theorem 3.10.

Theorem 3.11 implies that i+@&; and @; — &, are BLUE-estimators for g+ «; and «; — 7, respectively,
where -

B=X"X)"X"Y = (fi,ay,...,a) "
with 7 = Y. and @; = Y;. — Y .. is the solution of the normal equation (25), which was already
considered in Section 3.2.1.

(two—factor analysis of variance with balanced subsamples)

For the model of two—factor analysis of variance with balanced subsamples introduced in Section 3.1.3

() + ol? + ov,i, of the parameter vector

the linear functions p + a;, i

8= (u,agl),...,a,(cll),a?),...,a,(i),an,...,aklk2)

are estimable without bias for arbitrary i, = 1,...,ky, 2 =1,..., ke, cf. Theorem 3.10.
ONIPNC)

i1 2

Theorem 3.11 implies that ﬁ—|—&(1> +a% 4 Qi i, is a BLUE-estimator for 1+«

i i + o,4,, Where

B=X"X)X"Y=mal,....al.a®,....a> @, ..., k)

with

is the solution of the normal equation (25) already considered in Section 3.2.3.

Furthermore, it follows from Theorem 3.10 that in the model of two—factor analysis of variance without
interactions, i.e., o, i, = 0 for arbitrary ¢y = 1,...,k1, 12 =1,..., kg, also agll) —ag,ll) and ozg) —ozl(./j) are
estimable without bias for arbitrary i1,7) = 1,...,k with iy # i} and i9,45 = 1,..., ko with is # i},
respectively.

Therefore, Theorem 3.11 implies that agj) — ag,l” and af.j) — ai) are BLUE-estimators for ozl(ll) — 0[2(./11)
and agj) — ag), respectively.

3.3 Normally Distributed Error Terms

In addition to the model assumptions made at the beginning of Chapter 3, we now assume again that n > m and
that the random error terms €1,...,&, : Q@ — R are independent and (identically) normally distributed, i.e., in

particular,

that ¢; ~ N(0,0?) for each i = 1,...,n.
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3.3.1 Maximum-Likelihood Estimation

e In the same way as in the case of a design matrix with full column rank, which has been discussed in
Section 2.2.1, Theorem 1.3 implies that the vector Y = X3+ € of response variables is normally distributed
with

Y ~ N(X3, 0°1). (57)

e In other words: The distribution of the random vector Y is absolutely continuous with density

1

oV 2T

) = (=) e (- o 0~ XB) (v~ X)) (59)

for each y = (y1,...,yn) | € R™.

e Therefore, the loglikelihood function log L(y; 3,0?) = log fv(y) has the form
n n 1
log L(y; 8,0%) = — & log(2m) — = log(0®) — 5 ly — XA, (59)

e In order to specify a maximum-likelihood estimator for the parameter vector (3,0?), we first consider the

mapping
R™ > B~ log L(y; 8,0°) (60)

for arbitrary but fixed y € R™ and ¢ > 0 (just as in the proof of Theorem 2.6).

e It follows from (59) and (60) that the following expression e(3) has to be minimized, where
1 , 1 .
eB)=_ly-XB"=_(y-XB) (y -Xp).
e Hence, Theorem 3.6 implies that the LS-estimator 8 = (X" X)~X Y simultaneously is an ML-estimator
for B (which does not depend on o?).

e Moreover, one obtains just as in the proof of Theorem 2.6 that an ML-estimator for (B,0?) is given by
(B,7?%), where

B=X'X)"X'Y and o°=-(Y-XB) (Y-X3). (61)

SRS

Remark

e In Section 3.2.2 we have shown that in general 3 is not an unbiased estimator for 3.

e Similarly, 32 is not an unbiased estimator for o%; however, an unbiased estimator for o2 can be derived
by a simple modification of 2.

e In order to show this statement, the following properties of the matrix
G=I-XX'X)"Xx' (62)

are useful, which can be perceived as a generalization of the corresponding matrix properties derived
in Lemmas 2.1 and 2.2 for the case of a design matrix X with full column rank.

Lemma 3.9 Let tk(X) =17 < m. Then for the matriz G given in (62) it holds that

1) G is idempotent and symmetric,

2) GX=0and 3) tr(G) = tk(G) = n—r.
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Proof

By use of Lemma 3.9 one now obtains a formula for the expectation of the ML—estimator &

Lemma 3.6 implies that
G = I-XX'X)X")(I-XX'X)"X")
I-2X(X'X) X" +X(X'X)"X'X(X"X)"X"
=XT
= I-2X(X'X)" X" +X(X'X)"X" =G.

In Lemma 3.6 we have shown that ((XTX)_)—r is a generalized inverse of X X. Hence, it follows
from Lemma 3.8 that

GT=(1-XX"X)X") =1-X(X"X)") X" =1-XX"X)" X" =G.
Thus, the first part of the statement is proved. In order to prove the second part of the statement, it
suffices to observe that
GX=(I-XX'X) " X")X=X-XX'X)X'X=X-X=0,
where the last but one equality follows from Lemma 3.7.

The third part of the statement can be proved as follows:
— Lemmas 3.3 and 3.7 imply that

r=1k(X) = rk(X(X'X)"X"X) < 1k(X(X'X)"X") < 1k(X) =7,
ie.,
rk(X(X'X)"X") =7r. (63)
— Tt follows from Lemma 3.6 that the matrix X(XTX)~XT is idempotent because it holds that
(XX'X) " XT)(XX'™X) " XT) =XX'X)" X'X(X'X)"X"=X(X"X)"X".

=XT

— Since additionally X(XTX)~X " is symmetric, Lemma 1.3 together with (63) implies that
tr(G) = tr(I, - X(X'X)"X")
= tr(I,) - r(X(X'X)"X")
= n-— rk(X(XTX)fxT) =n-—r. O

2 considered in (61).

Theorem 3.13 It holds that

Ec? = o, (64)

Proof Due to the properties of the matrix G = I — X(XTX)~XT derived in Lemma 3.9, it holds for the
ML-estimator o2 = (Y — XB)T (Y — X3)/n considered in (61) that

Es? = —E((Y-XB) (Y-XB))
= %E(YT - XXTX) XT) (1-XXTX)"X")Y)
- %E (Y GTGY> ~ ~E(GY[] ) - % E(|G(Xﬁ+e)|2)
- Laier) - da(orc) - Laea

3‘Q 3
3
|
<
[V
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Remark By using the notation

' v-xB) (Y-XB) and 5=

n—r n—r

S% = e’ Ge, (65)

Theorem 3.13 implies that E S? = 02, i.e., S? is an unbiased estimator for o2.

For being able to specify the distributions of the estimators 3 and S?, we need the notion of the degenerate
multivariate normal distribution, cf. Section 1.2.5.

Theorem 3.14 Let tk(X) =r < m. Then it holds that

B~ N((XTX)"X"X8, o>(X X)X X((X"X)7) ") (66)
and &
w=nD e (67)

where the random variables B and S? are independent.

Proof

e For the estimator 3 given in (61) it holds that
B=X"X)"X"Y=(X"X)"X")(XB+¢€) =pn+Be,

where
p=(X"X)"X"'X3, B=X'X)"X", e~ N(o,01,).

e Now the definition of the (degenerate) multivariate normal distribution implies that 8 ~ N(u, K),
where -
K=0¢’BB' =*(X'X)" X'X((X'X)") .

e Thus, (66) is proved. In order to prove (67), we use the identity derived in the proof of Theorem 3.13,
ie.,
1

n—r

52 = e'Ge, whereG=1-X(X"X)"X". (68)

e As e~ N(o, 0%1,) and as we have shown in Lemma 3.9 that
— the matrix G is idempotent and symmetric
— with 1k(G) =n—r,

it follows from Theorem 1.9 that the quadratic form (n — )52 /02 has a (central) x?—distribution with
n — r degrees of freedom, i.e., (n —1r)S%/0? ~ x2_,.

e Since every idempotent and symmetric matrix simultaneously is positive semidefinite and since
BG=X"X)"X"I-XX'X)"X")=X"X) X" -(X'X)" X' X(X'X)"X"=0

=XT

due to Lemma 3.6, it follows from Theorem 1.10 that the random variables Be and e Ge are inde-
pendent. Thus, also the random variables B and S? are independent. (]
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3.3.2 Testing Linear Hypotheses

In this section we discuss a generalized version of the test for linear forms of 3 which we considered in Section 2.2.3
for the case of a design matrix X with full column rank, c¢f. Theorem 2.11. However, we now assume that
k(X)) =7 < m.

e Let s € {1,...,m}, let H be an s x m matrix with full rank rk(H) = s and let d € R®.

e The hypothesis to be tested is
Hy:HB=d versus H, :HB #d, (69)

where we assume that the entries of the matrix H = (hy,.. .,hs)T and the components of the vector
d=(dy,...,ds)" are known.

e In order to verify the null hypothesis Hy : H3 = d considered in (69), we construct a test statistic whose
distribution does not depend on the unknown parameter vector (3, 0?) (in a similar way as in Theorem 2.11).

e For this purpose, we introduce the following term for assuming that the components of the vector H3 are

estimable without bias.

Definition The hypothesis Hy : HB = d is called testable if all components h{ 3,...,h] 3 of the vector H3
are estimable functions of the parameter vector 3.

Remark Theorem 3.9 implies that the hypothesis Hy : H3 = d is testable if and only if

e there is an s X n matrix C, such that
H=CX, (70)

or
e the matrix H fulfills the following equation:
H(X'X)"X'X =H. (71)

In order to construct a test statistic for the verification of the null hypothesis Hy : H3 = d considered in (69),
the following lemma is useful.

Lemma 3.10

o Let s <m, let H be an s x m matriz with full rank vk(H) = s which fulfills (70) or (71) and let (X X)~
be an arbitrary generalized inverse of X X.

o Then the s x s matriz H(XTX)"HT is positive definite (and thus invertible).

Proof
e One can show that the symmetric m x m matrix X "X with rk(X"X) = r < m can be represented in
the form:
XTX — Pfl IT 0 —1
0 0

where the m X m matrix P is invertible and symmetric; cf. also Lemma 3.4.
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e In the proof of Lemma 3.5 we have shown that in this case

I 0
P P=PP
0 Imf'r
defines a generalized inverse of X T X, which obviously is positive definite.
e Now it follows from Lemma 1.8 that also the matrix HPPH is positive definite.
e This implies that H(XTX) HT is positive definite for any arbitrary generalized inverse (X X)~ of
XX as it follows from (70) that
HX'X)"H' =CX(X'X)"X'C" =CXPPX'C" =HPPH',

where the second equality holds due to Lemma 3.8. ]

Remark

e Lemma 3.10 implies that the test statistic Ty with

o (HB- d)' (H(XTX)"H') ' (HB - d) )
" 552
is well-defined, where 3 and S? are the estimators for 3 and o2 which are given in (61) and (65),
respectively.

e This test statistic is a generalization of the corresponding test statistic Ty considered in Section 2.2.3
for a design matrix X with full rank. The distribution of the test statistic Ty given in (72) can be
specified as follows.

Theorem 3.15 Let the hypothesis Hy : HB = d be testable. Then, assuming that Hy : HB = d is true, it holds
that T ~ Fg p_p, i.e., the test statistic Tu given in (72) has an F-distribution with (s,n—r) degrees of freedom.
Proof Assuming that Hy: HG = d is true, the following statements hold.
e The definition of B in (61) implies that
HB-d=HX'X)"X'Y -d=H(X"X)"X")(XB+¢) —d=p+Be,
where
p=HX'X) " X'XB-d=CX(X'X)"X'X3-d=HB-d=o,
S —
=X
B=H(X"X)"X" and € ~ N(o, 02L,).
e Hence, or the numerator Z = (HB3 — d)T (H(XTX)*HT)f1 (HB —d) of the test statistic Tq given in
(72) it holds that
Z = ¢ BT(HX'X)"H') 'Be
e HX X)X (HXX) H") 'THX'X)"X'e

= e'Ae,

— where the matrix A = X(X"X)"H' (H(XTX)_HT)_lH(XTX)_XT is idempotent as due to
(71) it holds that
A’ = XXTX)HT(HXX)HT)™
X H(XTX)—XTX(XTX)—HT(H(XTX)—HT)‘1H(XTX)—XT
—_—
- XXTX)"H'(HX'X)"H") 'HX'X) X" =A.
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Remark

— Since A is also symmetric with tk(A) = s, Theorem 1.9 implies that the quadratic form Z/o? has
a x>-distribution with s degrees of freedom.
Furthermore, it has been shown in Theorem 3.14 that (n — r)S?/0? ~ x2_, and that the random
variables B and S? are independent.

Therefore, the random variables Z and S? are also independent and it holds that

Z/s0*
Ty = W ~ Fs,nfr- 0

The choice of the test statistic Ty in (72) can be motivated in the following way: Theorem 1.9 implies
(in a similar way as in the proof of Theorem 3.15) that the quadratic form Z/o? with

Z=MHB-d) (HX'X) H") '(HB - d)

in general (i.e., without assuming that Hy : H3 = d is true) has a noncentral x?-distribution XE,A
with
(HB—d) (HX'X)"H') '(HB - d)

A= . .

g

This implies that
Z d tZ

E(z)=gBew(z)|,, =t

where the last equality follows from the formula for the moment generating function of the X?,,\*
distribution which has been derived in Theorem 1.8.

— In other words: It holds that

. (Z) e, (HB- d)' (H(X'X)"H") ' (HB - d)

(73)

S S

and Theorem 3.13 implies that E (S?) = o2

— Hence, assuming that the null hypothesis Hy : HG = d is true, the expectations of numerator and
denominator of the test statistic Ty are equal.

On the other hand, Lemmas 1.8 and 3.10 imply that the inverse matrix (H(XTX)*HT)f1 is positive
definite and thus,

(HB—d) (HX'X) H') '(HB—d) >0
if the hypothesis Hy : HB = d is false. In this case, it follows from (73) that

E (%) > 02 = E(S?). (74)

In general, we have ETy = E (Z/s)E (1/52) (due to the independence of Z and S?) and the Jensen
inequality implies that E (1/52%) > 1/E (S?).
So (74) implies that
E g)
ETyg > Wéz) >1
in the case that Hy is false.

Therefore, it is reasonable to reject the null hypothesis Hy : H3 = d if the test statistic Ty takes
values which are significantly larger than 1.
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e Thus, due to the distributional property of the test statistic 73y which has been derived in Theorem 3.15,
the null hypothesis Hy is rejected if Ty > Fs ey 1—a-

In some cases it is more convenient to consider an alternative representation of the test statistic Ty given in (72).
For this purpose, we define the following sums of squared errors SSE and SSEy by

SSE=(Y—-XB)"(Y-XB), where B=X'X)"X"Y, (75)

and

SSEy = (Y —XBy) (Y -=XBy), whee By=8-(X'X) H (HX'X)"H') '(HE-d). (76)

Theorem 3.16  For the test statistic Ty given in (72) it holds that
(SSEg — SSE)/s

= =gggin—r) (77)
Proof
e It holds that
SSEy = (Y =XBy) (Y~ XBy)
= (Y -XB+X(B-Bu) (Y- XB+X(B~By))
= (Y-XB)(Y-XB)+(B~-Bn) X" X(B~-By)
because parts 1 and 2 of the statement in Lemma 3.9 imply that
XY -XB)=X"TI-XX"X)"X")Y = &—T’?Y =o.
e Furthermore, it follows from (70), i.e., H = CX, and from Lemmas 3.6 and 3.7 that
SSEx = (Y -XB)'(Y - Xp)
+(HB-d) (HX'X) H") 'H((X'X)") X"X(X"X) H'
=H(XTX)-HT
x (H(XTX)"HT) ™ (HB - d)
— SSE+ (HB-d) (HX'X) H') '(HB-d). 0

Remark

e From the definition of By in (76) it follows that
HB, = H(B— (X7X) H (X X) HT) ' (HB - d)) = .

i.e., the random vector B given in (76) only takes values in the restricted parameter space O = {,8 €

R™: HB =d}.
e Furthermore, it can easily be shown that B3 minimizes the mean squared error e(3) for all 3 € O,
where

e(B) = Z(Yz — (Brzin + Pawiz + ... + ﬁmwim))2 :
i=1



3 ARBITRARY DESIGN MATRIX; GENERALIZED INVERSE 73

3.3.3 Confidence Regions

e For the construction of confidence regions we proceed in a similar way as in Section 2.2.4, where we considered
the case that the design matrix X has full rank, i.e., rk(X) = m. However, in doing so we now assume that
rk(X) =7 < m as we did in Section 3.3.2.

e Let s € {1,...,m} and let H be an s x m matrix with full rank rk(H) = s whose entries are known, where
H=(hy,....h,)".

e Then Theorem 3.15 immediately leads to the following confidence region for the vector HB with confidence

level 1 —a € (0,1).

Theorem 3.17  Let all components h{ 3,... . h] B of the vector HB be estimable functions of 3. Then the

(random) ellipsoid

(HB—-d) (HX'X)"H") '(HB - d)
552

E— {d ER®: < Fs,nfr,lfa} (78)

is a confidence region for HB with confidence level 1 — a € (0,1), where B and S? are the estimators for 3 and
o2 given in (61) and (65), respectively.

In particular, Theorem 3.17 implies the following result.
Corollary 3.1 For eachi € {1,...,s} the (random) interval

9,0) = (hjﬁ— tnr1-as2Sy/hf (XTX)"h;, h/ B+ tn_r,l_a/QS\/hiT(XTX)*hZ) (79)

is a confidence interval for h] B with confidence level 1 — a € (0,1).

Example

e We cousider the following linear model, cf. N. Ravishanker und D.K. Dey (2002) A First Course in
Linear Model Theory, Chapman & Hall/CRC, S. 235:

Y1 1 1 0 ﬁl €1
Y, = 1 01 B | | e )
1/3 1 1 0 ﬁg €3

where € = (e1,62,e3) " ~ N(o,0%I).

e By means of Corollary 3.1, a confidence interval for 81 + 82/3+203/3 with confidence level 1 —a = 0.95
shall be specified.

e As rk(X) =2 < m = 3, we first need to check whether the function
h'8 =B+ B2/3+203/3 (80)
of B" = (B1, B2, B3) with h™ = (1,1/3,2/3) is estimable without bias.

— Due to criterion 1 in Theorem 3.9, this is the case if and only if there is a ¢
such that hT =c¢"X, i.e,, if

T = (c1,c0,¢3) € R,

1 = c¢1+co+cs
1/3 = Cl+03
2/3 = C9.
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— Since this system of equations obviously is solvable, h' 3 is estimable without bias.

e Moreover, it holds that

3 21
X'X=|2 20
1 01
and a generalized inverse of X "X is given by
1 -1 0
(X™X)"=| -1 3/2 0
0 0 0
e This yields that h" (X"X)"h = 1/2. Thus,
0 1 0 Y,
X™X)"X"=| 1/2 -1 1/2 and  B=X"X)X'Y=| (v, -2Vs+Y3)/2
0 0 0 0

e Hence, one obtains that (X8)" = ((Y1 4+ Y3)/2, Y2, (Y1 + ¥3)/2) and
h'B= (Y] +4Yo+Y3)/6 and  S%=(Y; —Y¥3)%/2.

e Therefore, a confidence interval (8,6) for h™ 3 with confidence level 1 — o = 0.95 is obtained, which

has the form 3
(0,9) = (Vi +4Y3 +Y3) /6 = Z, (Vi + 43 + ¥3) /6 + Z),

where Z = t1,0.975|Y1 — Y3|/2.

By generalizing Theorem 2.12, we now derive a so—called Scheffé confidence band, i.e., simultaneous confidence
intervals for a whole class of estimable functions of the parameter vector 3.

e Let s € {1,...,m}, let H once more be an s X m matrix with full rank, i.e., tk(H) = s, where
H = (hy,...,h,)T, and let all components h] 3,...,h] 3 of the vector HB3 be estimable functions of 3.

e As H has full (row) rank, the vectors hy,..., h, are linearly independent and form the basis of an s—
dimensional linear subspace in R™, which we denote by £ = L(hy,..., hy).

e Due to Theorem 3.10, the function h' 3 of 3 is estimable without bias for each h € L.
e We are looking for a number a,, > 0, such that
h'B—a,Zn <h"B<h'B+a,Z (81)

holds for each h € £ simultaneously with the (given) probability v € (0,1), where Z, = S/h™(XTX)~h
and B3, S? are the estimators for 3 and o2 given in (61) and (65), respectively.

Theorem 3.18 Letay, = +/sVFsn_r . Then it holds that

h'B - h'p)°
Po (?22‘ S(*hT(XTX))h < ) =7 (82)
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Proof

e In a similar way as in the proof of Theorem 2.12, the Cauchy—Schwarz inequality for scalar products,
cf. (65), implies that

I xT (HB - Hp))
(K~ 116) " (R(XTX)"HT) ™ (H — HB) = X<T<H<xrx>—m)>x’

where the maximum extends over all vectors x € R® with x # o.

e By means of Theorem 3.15 we now get that

v = Po((HB-HB) (H(XTX) H)"'(HB -~ HB) < 58 Fonr, )

_ 2
(x" (1B - HB)) o8 an)

= Pl T EXTX) = )x

(HB- )
- Pﬁ(?ﬁ? H ) (XX (Hx) F”W)

_ 2
o
= T T T ~r N 1 < .
Pg max hT(X"X)"h <sS Fsn—ry O

3.4 Examples
3.4.1 F-Test for the ANOVA Null Hypothesis

e We consider the reparametrized model of one—factor analysis of variance, i.e., the design matrix X is the
n x (k + 1) matrix given in (13) with rk(X) =k <m =k + 1, where

1 1 0 0 0 0
11 0 0 0 0
10 1 0 0 0
X = (83)
1 0 1 0 0 0
1 0 0 O 0 1
1 0 0 0o ... 0 1
and the parameter vector B3 has the form 8 = (u,a1,..., o) ".

e It shall be tested whether the levels of the predictor variable are significant, i.e., the hypothesis to be
tested is the ANOVA null hypothesis Hy : a1 = ... = a4 (against the alternative H; : a; # o for some
pair 4,5 € {1,...,k} with ¢ # j). For this purpose, we use the general testing approach introduced in
Theorems 3.15 and 3.16.
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e An equivalent formulation of the null hypothesis Hy : a7 = ... = o is given by
Hy:a1—a3=0,...,00 —ap =0 or Hy:HB =o, (84)

where H is a (k — 1) x (k + 1) matrix with

01 -1 0 ... O 0
o1 0 -1 ... 0 0
H= (85)
01 0 0 -1 0
01 0 0 0 -1

e Obviously, H is a matrix with full row rank, i.e., rk(H) = k — 1. Furthermore, Theorem 3.10 implies that
all components a; — aa, ..., a1 — aj of the vector H3 are estimable functions of 3.

e In other words, the matrix H fulfills the requirements of Theorems 3.15 and 3.16. Thus, the test statistic

(SSEy — SSE)/(k —1)
SSE/(n — k)

Ty =

considered in Theorem 3.16 may be used for the verification of the hypothesis Hy : H3 = o, where the sums
of squares SSE and SSEy defined in (75) and (76), respectively, can be determined as follows.

e Recall: In Section 3.2.1 we have shown that a generalized inverse of X' X is given by (36), i.e.,

1
- 0 0 0 0 0
n
11
- — 0 0 0 0
n nq
. 1 1
XXy = -=- 0 — 0 0 0 (86)
n no
1 1
-=— 0 0 0 0 —
n N
e Together with (83) this implies that
B=(X"X)X'Y=(..,V, -V, .., V,-V)"
and T
XB=X(X"X) XY= (Yo, . Vi, e Vi)
~—_——————— ~——
ni ng

e Hence, one gets for the sum of squares SSE = (Y — X3) (Y — X3) that

Uz

SSEziZ(Yij—YZ-.)Q. (87)

i=1 j=1
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Remark

e Due to the special form (83) of the design matrix X, formula (87) can also be derived directly from
the fact that 3 is an LS—estimator. Indeed, it holds that

SSE = (Y-XB)'(Y -XB) = min (Y -X8)" (Y -Xp)
cRk+1

k n;

- 2l S0} =23 -7)

i= Jj=1 =1 j=1
e Moreover, it follows from the remark at the end of Section 3.3.2 that
SSEw = (Y = XBy) (Y = XBy) = min [Y — X4,
BEOH
where Oy = {3 € R¥*! : HB = o} and {X3: B € O} C R" is the set of those n—dimensional vectors
whose components are all equal.

e Then one gets that

k i

k  n;
SSEH:gleiﬂgzz:(}ﬁj—az)sz:Z(}ﬁj—?..)Q (88)

i=1 j=1 i=1 j=1
v e k n; 2
because the mean V.. minimizes the sum of squares >;_; >0 (Yij — z)”.

e Together with (87) this implies that

k z k uz 2 k
SSEy ~SSE=33 (Y -V.)" = >3 (Vi - Vi) =3 m(¥i -7V,
i=1 j=1 i=1 j=1 i=1
where the last equality follows from the decomposition
k
ZZ g — 4. ZZ( ij 1) +an(?l 7?..)2,
1=1 j=1 =1 j=1 =1

cf. formula (9) in Theorem 3.1.

e Therefore, for the test statistic Ty considered in Theorem 3.16 it holds that

k 5 \2
(SSEy — SSE)/(k—1) (n— )Zlm( -Y.)
Ty = _

SSE/(n— k) o )gm ( )2

i=1j5=1

~ Fr_tn—k- (89)

3.4.2 F-Tests for the Two—Factor Analysis of Variance

Now we construct F—tests for the model of two—factor analysis of variance with balanced subsets, which has been
introduced in Section 3.1.3, i.e.,

e the parameter vector B has the form
= ( (1) 1 (2 (2

T
My Oy 7y Oékl aq 7, .. ak2 a117...,ak1k2) 5

e the design matrix X has the dimension n x m, where n = rk1ke and m =1+ k1 + ko + k1ka,
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e the entries of X only consist of zeros and ones and it holds that rk(X) = k1ks < m.

Significance of the Predictor Variables

We first construct a test to investigate the question whether the levels of the first predictor variable are
significant. For this purpose, we verify the hypothesis that the effects

oy, 1

1)x 1 o

o =y + oy Z:lamz
12=

of the first predictor variable plus their interactions, averaged over all levels of the second predictor variable,
are equal. In other words: The hypothesis to be tested is

H, :agl)* —al(-ll)* =0 Vipe{l,....,k} vs. H :agl)*—ag)* #0 for some iy € {1,...,k1}, (90)
where it is actually sufficient to consider the pair of hypotheses
H, :oz§1)>k —aMr =9 Vip € {2,...,k1} vs. Hy: agl)* —agll)* #0 for some iy € {2,...,k1}.

11 -

e It can easily be shown that the null hypothesis in (90) has the form Hy : H3 = o,

— where
1 1 —1 —1
01 -1 0 0 0 0 = = = = 0 0
01 0 -1 0 0 0 = = 0 0 0 0
H: . .2 2
1 1 -1 -1
01 0 -1 0 ... 0 & ... &£ 0 ... 0 = =

is a (k1 — 1) x m matrix with full row rank rk(H) = k; — 1 and with blocks of rows of the lengths
1,1, k1 — 1, ko, ko and (k1 — 1)ks, respectively,
— and where all components of the vector H3 are estimable functions of 3 because of

1 &
1)x* 1)x*
all* - agl) 5 Z (911'2 —0iyi,) -

ip=1

e In order to verify the hypothesis Hy : H3 = o we can now again use the test statistic Ty considered
in Theorem 3.16, where

(SSEy — SSE)/(ky — 1)

Tu = SSE/(kika(r — 1)) ~ Fry 1, kka(r-1)
with
ki ka2 71 - ,
SSE = Z Z Z(Yilizj - YiliQ-) (91)
i1=1iz=1 j=1
and k
SSEy — SSE = rko Z(?i1~ 7?'“)2. (92)
i1=1

e The formulas (91) and (92) for the sums of squares SSE and SSEy defined in (75) and (76), respec-
tively, can be derived in a similar way as in Section 3.4.1.

e Indeed, the same minimization technique that has been used for the direct derivation of (87) yields
(91). Moreover, the sum of squares SSEp can be determined as follows.
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— Just as before, O = {3 € RIThithetkikz . H3 = o} is the restricted parameter space.

— Due to the special form of the matrices X and H, the minimization in

SSEy = (Y —XBy) (Y — XBy) = Jnin Y - xg/°

with respect to the set {X3 : B € O} C R"™¥1%2 can (in a similar way as in formula (88)) be
replaced by a minimization with respect to the set R x R]I“f X R’}}’” C Ritk2tkiks of those vectors

X = (T,01, oy Thyy T11s - - Thyky) € RIFF2HRIE2 which fulfill the following conditions:
ko k1 ko
E Ty = E E Liiig — 0.
in=1 i1=1is=1

e In more detail, it holds that

kl k}g T

SSEn = mianm Z Z Z(Ym”‘ —(z+z5, + xiliz))z

ko
XERXR ' XRy ™2 41 4,=1 j=1

]{)1 k?g T kl
— min o { Z Z Z(Yilizj - ?mg.)Q + klkﬂ(?m — I)Z + kor Z (?2-1.4 - ?4“)2

k
xERXR? xRy}

i1=1is=1j=1 iz
k2 ki ke
+kr Z (Vg =Y. =) +r Z Z (YVivig = Yiy =Y.y + Y. — $i1i2)2} ’
2=l i1=1iz=1
ie.,
ki1 ko r - ) k1 B B ,
SSEH Z Z Z(Yhizj - YiliQ-) + kQT Z (Y“ — Y) .
i1=1is=1 j=1 =

o Together with (91) this implies (92).
Remark

e In the same way, one can construct a test to investigate the question whether the levels of the second
predictor variable are significant. For this purpose, we verify the hypothesis that the effects

1 &
2)* 2
0452) = 0452) + kil Z Qo

i1=1

of the second predictor variable plus their interactions, averaged over all levels of the first predictor
variable, are equal.

e Thus, the hypothesis to be tested is
Hy : a§2)* - agQ)* =0,..., af)* - 0‘1(32)* =0 vs. Hy: a?)* — ag)* #0 for some iz € {1,...,ka}.

e In this case, one obtains the test statistic

kle(T — 1)7"k1 Z (le — Y)
ig=1
k?l k?z T

(k2 - 1) Z Z Z (}/iﬂzj _?iliZ')

i1=14ip=1j=1

Tu ~ Flo1, kika(r—1)-

2
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Interactions between both Predictor Variables

Now we construct a test to check whether there are significant interactions between the two predictor
variables. For this purpose, the hypothesis

Hozail—oz;hzo V(il,ig)E{l,...,]{}l}X{l,...,k‘g} (93)
is tested, where
Oé;‘ﬂz = 044 —Eil. —a.iz +a..
and
1 ko ki ke
Q. = — Z Q14 s ., = Z Qg s a.. = Z Z Qg -
ko - ky - k1k2 :
ig=1 11=1 i1=11i2=1

e In a similar way as before, one can show that the hypothesis considered in (93) can be written in the
form Hy : HB = o, where
— His a (k1ke — 1) x m matrix with full row rank, i.e., tk(H) = k1ko — 1 and
— all components of the vector H3 are estimable functions of 3 as it holds that

i} 1 ko 1 k1 k1 ko
Ajlig = 0i1i2 - ki E 0i1i2 - L E 91”2 E : E : 91112 .
g — 1 —
1o=1 11=1 21 1lio=1

e For the verification of the hypothesis Hy : HB = o we can thus consider the test statistic
(SSEyg — SSE)/(kiks — 1)
SSE/(kika(r — 1))
considered in Theorem 3.16, where SSE is given by (91) as before while the sum of squares SSEy
results from the following considerations.

e Due to the special form of the matrices X and H, the set {X3: B8 € O} C R"™1%2 in the minimization
in

Ty =

SSEH = (Y ~ XBy) (Y - XByy) = min [Y - X8|

can (in a similar way as before) be replaced by the set R x Rf} x R¥2 < R1+*1+k2 of those vectors

x = (z, xil), .. a?gl) .’L’§2), .. wl(i)) € Ritkitk:

which fulfill the following conditions:

Zm :Z Z—f):O.

i1=1 i0=1
e Indeed, it holds that
kl k}z T

SSEy = mlicn o Z Z Z vinj — erx(l) +x(2)))

XERXR ! xR i1=1iy=1 j=1

and

k1 ko r
SSEH = min ]Q{Z ZZ 11127 7111’2-)2

xERXR}} xR i1=14is=1 j=1
k1 k2
+I€1k2’f‘(?... — 95)2 + kor Z (71-1.. -Y. - %(11))2 + kqr Z (7. ige — Y. — xE?)Q
=1 =1
k1 ko o o o - 9
Y Y (Yigiy = Yi =Yg +Y.) }
i1=1ip=1

k1 r
= Z Z Z Q1427 7111'2.)2 +r Z Z (?i1i2~ —?il.. _?~i2- +?.4.)2 .

’Ll l’LQ 1] 1 i1:1i2:1
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o Together with (91) this implies that

k1 k2
SSEy —SSE= 13> (Vi — Vi — Vo + V.0)7.

i1=1142=1

(94)

e Therefore, for the test statistic Ty considered in Theorem 3.16 it holds that

(SSEy — SSE)/(kiks — 1)
SSE/(klk‘g(T — 1))

ki ks o . —
kle(T - 1)7 Z Z (Yi1i2- - Y“ — le + Y)
i1=11i2=1
N ki k2 ~ Friko—1, kika(r—1) -

Tu =

r

(kikze = 1) 3 3 3 (Yiriaj — Yiria)

i1=1ip=1j=1

3.4.3 Two—Factor Analysis of Variance with Hierarchical Classification

e Instead of the model of two—factor analysis of variance with interactions, introduced in Section 3.1.3, one
sometimes considers the following model of two—factor analysis of variance with hierarchical classification
of the pairs of levels i1, 45 of the two predictor variables.

e Here we consider the representation

GiliQ:u—Fa(l)—Fa@Il) Vilzl,...,k)h Z'2=17...,]<32 (95)

i1 igli1 ?
of the expectations 0;,;, = EY;,;,; of the sampling variables Y;,;, ;.

e In other words: Into each of the k; levels of the first, i.e., superior, predictor variable ko levels of the second
(inferior) predictor variable are embedded.

e This situation can occur, e.g., in clinical trials which are carried out in k; countries (superior predictor
variable) and ks hospitals in each country (inferior predictor variable).

e Then the parameter vector B has the dimension m = 1 + k1 + k1 ko with

_ (1) 1 2 (2[1)y T
ﬁ_(u,al e ag) 7~~>01k2|k1)

e and

1 is again perceived as general mean of the expectations EY;, ;,; of the sampling variables Y; ,;,
(1)

— «;,’ is called the effect of the i;—th level of the superior predictor variable and
- agj“ill) is called the effect of the ia—th level of the inferior predictor variable in the case that the ¢;—th

level of the superior predictor variable is on hand.

e Again, we only consider the balanced case, i.e., we assume that all k; - ko subsamples (Y 4,5, j =1,...,%iy4,)
have the same sample size.

e Hence, it holds that n;;, =7 forall iy =1,...,k; and io = 1,..., ko with r = n/(k1k2), the design matrix
X has the dimension n x m with n = rkiks and m = 1 + k1 + k1ko, and the entries of X only consist of
zeros and ones; 1k(X) = k1ko < m.
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Significance of the Superior Predictor Variable

e Just in the same way as in Section 3.4.2 one can construct a test to investigate the question whether
the levels of the superior predictor variable are significant. For this purpose, we verify the hypothesis

that the mean effects o'V

i, are equal, where

ko
W _ 1, 1 (2/1)
Q="+ ko EO‘izm :
2=

e In other words: The hypothesis to be tested is
Hp: agl)*—az(-ll)* =0 Vipe{l,....k} versus Hi: agl)*—agll)* #0 forsomei; € {1,...,k1}.

e One can show that the null hypothesis has the form Hy : H3 = o, where H is a (k; — 1) X m matrix
with full row rank, i.e., tk(H) = k; — 1, and all components of the vector H3 are estimable functions

of 3.
e For the verification of the hypothesis Hy : HB = o we can thus use the test statistic

(SSEy — SSE)/(ky — 1)

TH = SSE/(kle(T _ 1)) ~ Fk171,k1k2(7‘71)

considered in Theorem 3.16 with

k)l k‘2 T kl
SSE=3"3"5N (Viij — YViria)®, SSEy—SSE=r1ky Y (Vi = Y..)7%, (96)
i1=11i2=1j=1 11=1

where the formulas in (96) are proved in the same way as in (91) and (92), respectively.
Significance of the Inferior Predictor Variable

e In order to check whether the levels of the inferior predictor variable are significant, one can proceed in
a similar way as in the last test in Section 3.4.2 (test for significance of interactions). For this purpose,
the hypothesis

Hy: oV = ol =0 V(iio) € {1, .k} x {1,... Ko} (97)
is tested, where
1 k2 1 k1 k2
W ol m e, m =S el we e >SS
Qo= i1=11i=

e It can be shown that the hypothesis considered in (93) can be written in the form Hy : HB3 = o, where
H is a k1 (k2 — 1) x m matrix with full row rank, i.e., tk(H) = k1(k2 — 1), and all components of the
vector HB are estimable functions of (3.

e For the verification of the hypothesis Hy : HB = o one can thus use the test statistic

(SSEg — SSE)/(ki(k2 — 1))

T = SSE/(kiks(r — 1))

considered in Theorem 3.16, where the sums of squares SSE and SSEp defined in (75) and (76),
respectively, can be determined as follows.

e Just as before, it holds that

k’l kg I

SSE = Z Z Z(Yilizj _?iliz')2> (98)

i1=1ip=1 j=1
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and the set {XB: B € Oy} in the minimization in
SSEw = (Y —XBy) (Y = XBy) = min [Y — Xg|°
BeOH

can be replaced by the set R x R ¢ R1*¥1 of those vectors x = (z, 2", ... (1)) € R'** for which
Zkl 1 2V =0 holds, leading to
i1 i1

SSEy = mmk1 i: 22: Z iving — :17+x( )))

XERXR i1=113=1j5=1

k1 ko r
— min {ZZZ ring *“12.)24-]91]@27“(?...—1@)2

k1
xERXR ir=1iz=1j=1

+kor Z (?il" —Y.. — .Z‘ill +r 21: 22: 1112 - )2}

i1=1 i1=114is=1
ki1 ko r k1 k2
= S 3 Y Y S 2
- ( i192] i112 +T 1112 - ) .
i1:1 i2:1 j:]. Zl 1 ’LQ 1

e Together with (98) this implies that

k1 k2

SSEy —SSE= 1> (Vi — Vi)

Z1 1 7,2 1
e Therefore, it holds that

ki kay _ 2
Z Z (Yi1i2' - Yi1")
i1=1142=1
k2
>

T = 2
Z ( 11927 1112')

=1lip=1j=

kle(T — 1)7’
Ty =

~ Fly(ky—1), kika(r—1) -

Bk — 1) 5
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4 Generalized Linear Models

In Chapters 2 and 3 we always assumed for the linear model Y = X3 + ¢

— that Ee = o, ie., (EY:,...,EY,) =Xg,
— where furthermore Y ~ N(X23, ¢%I) holds if € ~ N(o, 0°I).

e Now, we generalize this model and allow that the expectations EY7,...,EY,, of the sampling variables
Yi,...,Y,

— can be expressed by the components of the vector X3 by using an arbitrary monotone function
g : G — R, the so—called link function, such that

(Q(Eyl)v"'ﬂg(EYn)>T:XB7 (1)

— where the domain G C R of g will be specified more precisely.

Moreover, the (independent) sampling variables Y7,...,Y, do not have to be normally distributed since we
just assume that the distributions of Yi,...,Y,, belong to an exponential family.

In this chapter we will always assume (as in Chapter 2) that the design matrix X has full column rank, i.e.,
rk(X) = m.

In the same way as in the linear models, which have been investigated in Chapters 2 and 3, the goal is to estimate
the parameter vector 3 from the observation of the random sample Y = (Y3,...,Y,)", where we assume that
the link function g : G — R is known.

4.1 Definition and Basic Properties
4.1.1 Exponential Family
We assume that the sample variables Y1, ...,Y,, are independent (but in general not identically distributed),

e where their distributions belong to a one-parametric exponential family, i.e., their densities or probability
mass functions, respectively, have the following form: For each i € {1,...,n} it holds that

— in the absolutely continuous case
P60 = exp( g (0 +aly, 1) —0(6)) . VyeR, 2)
— in the discrete case
Bo, (Vi = y) = exp (5 (01 +aly,m) —b(6)) . VyeC, 3)

where ¢ : R x (0,00) - R and b: © — R are certain functions and C C R is the smallest countable
subset of R, for which it holds that Py, (Y; € C) = 1.

e 72> 0 is a so—called nuisance parameter, which does not depend on the index i, where it is often assumed
that 72 is known.

e Then -

0= {GER: /ooexp(W) dy < oo} 4)
. _ SN e (YT

@{eem.yezc p( 5 )<} (5)

is the natural parameter space, where we always assume that the integrability condition in (4) or (5),
respectively, is fulfilled for at least two different 61,605 € R.
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Remark

In the absolutely continuous case the nuisance parameter 7

85

2 can be seen as an additional variance

parameter, while 72 usually is set to 1 in the discrete case.

Lemma 4.1 The parameter space © C R, given in (4) and (5), respectively, is an interval in R.

Proof

gously.

We only consider the absolutely continuous case since the proof of the discrete case proceeds analo-

e One can easily see that for arbitrary z1,22 € R and « € (0,1) we have

()" ()7 < max ()" ()

i=1,2,

exp(yf) +Ta2(y, T)) dy

[
[ ) (exn(

.

IN

Therefore, it also holds that 6 € ©.

mla}2< et < e"t 4 e"2,
.2,

This and the notation 6 = oy + (1 — a))f2 imply that for arbitrary 61,60, € © and o € (0,1)

(n(*522)) " (e

yb1 + aly, )

vt ol DY) g,

p(W2 AT gy < oo

+e
T2 ) *

O

Because of Lemma 4.1 we will always assume in this chapter that © C R is an open interval such that the
integrability condition in (4) and (5), respectively, is fulfilled for each 6 € ©.

Lemma 4.2

o Let the distribution of the random variable Y : Q — R be given by (2) or

that
E(Y?) < o0

(3) for an arbitrary 0 € © such

Voeo (6)

holds and the function b: © — R is twice continuously differentiable.

e Then it holds that

EY =b(0)  and

Proof

VarY = 7252 (9). (7)

e Once more, we only treat the absolutely continuous case since the proof of the discrete case proceeds

analogously. It holds that

EY /_OO yexp( ! (y0 + aly,7) — 5(9)))

’ /_OCyeXp(1 (40 + aly, )))dy

— b0/ / Xp(% (y0 +aly, 7 ))) dy
— b)) 2 / exp(% y0+a Y, T ))) dy
oo
—b(0)/7* b0)/7* / exp y9+a(y, T) — b(&))) dy
oo

= b(l)(e).

e In a similar way we get that E (Y?2) = 725(2)(0)

+(EY)2.

=1
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4.1.2 Link of the Parameters; Natural Link Function

e Now, we assume that the function b: © — R is twice continuously differentiable with 5 (8) > 0 for each
0 € 0.

e Furthermore, let G = {b()(0) : § € ©} and the link function g : G — R be twice continuously differentiable,

such that g™V (z) # 0 for each = € G. The inverse function of g is denoted by h = g~

e We consider the generalized linear model (GLM) given in (1), i.e., it holds that

(9(EY3),...,9(EY,)) =X8. (8)

— By using the notation X = (v;), x; = (%i1,...,%im) and n = (1,...,7m,)", where n; = x; 3,

formula (8) implies for the expectations p; = EY; (i = 1,...,n) that

pi=h() =h(x]B) andthus g = (hln),....h00)) (9)

where g = (p1,. .., pn) " -

— Because of (7) and (8) the parameters 3 = (B1,...,0m) ' and 8 = (01,...,0,)" are related as follows:
It holds that .
(90D (01)).-..g(0V(0n))) = XB. (10)
e Together with (9) this implies that
O (61),...,6M(0,)) = (h(x{ B),....h(x,B))

and, equivalently,

(01, ,0) = (Y(h(x] B)), ..., ¥ (h(x,B))), (11)
where ¢ = (%)(1))71 is the inverse function of bV).

e Furthermore, it is possible to express the variance o2 = VarY; of the sample variables Y; as a function o2 (3)
of B for each i = 1,...,n as it follows from Lemma 4.2 and (11) that

o?(B) =2 b (p(h(x/B))) Vi=1,....n. (12)

Remark The link function g : G — R is called natural if g = 1. In this case it holds that 6; = ¥(u;) and,
therefore, §; = x| 3 for each i = 1,...,n, i.e.,

01,...,0,)" =XgB. (13)

4.2 Examples
4.2.1 Linear Model with Normally Error Terms

e For the linear model

Y=XB+¢ (14)
with normally distributed error terms € = (£1,...,6,)" ~ N(o,0?I) , considered in Section 2.2, it holds
that

}[iNN(,u‘ivaj) with Mi:XleBa Vi:]-v"'ﬂ% (15)

where we assume that ¢ is known.

e Then the distribution of Y; belongs to the one—parametric exponential family considered in Section 4.1.1
since the density f(y;6;) of Y; can be written in the following form, where 6; = p; for each i = 1,...,n:



4 GENERALIZED LINEAR MODELS 87

— It holds that

9y = 1 1 12) = exp(L (46, (o, ,
Pi) = ——s exp(~ gog (v—m)?) = exp(g (W +aly.7) —b(0)))  VyeR,
— where
v 07 o)
=02, aly) = — 5 and b(0;) = é + o?log V2ro?. (16)

e Because of (15) the link function g : R — R fulfills g(x) = « for each z € R.

— Moreover, (16) yields = = b(!) (z) for each = € R.
— Therefore, it holds that g(z) = x = ¥(x) for each € R, i.e., the natural link function is given by
g(z) = x.

4.2.2 Binary Categorical Regression

e In this section we consider the case that the sample variables Y7, ...,Y,, are Bernoulli-distributed, i.e., they
can only take the values 0 and 1 with positive probability.

— Here, we use the notation

=Py, = 1) (:m - En) Vi=1,...,n,

where it is assumed that 0 < 7m; <1 foreachi=1,...,n.
— In this case the probabilities 71,...,m, are linked to the parameter vector 3 by using a link function
g:(0,1) > R, ie.,
(9(m1),- . g(mn)) " = XB. (17)
e For each ¢ = 1,...,n the Bin(1,m;)—distribution belongs to the exponential family introduced in Sec-

tion 4.1.1, where 0; = log(m; /(1 — m;)).
— Because for y = 0,1 it holds that

_ T 1
By, (Y; =) = (1= m))! ™ = exp(ylog( 1= ) +log(1 — m) ) = exp( =5 (4: +aly,7) —b(6)) )
— where
=1, a(y)=0 and  b(6;) =log(l + €. (18)

Remark

e From (18) it follows that (b))~ (x) = log(x/(1 — x)) for each = € (0,1), i.e., the natural link function
g:(0,1) = R is given by

g(x):log(lfx) Vae(1). (19)

— The GLM, considered in (17), with the natural link function, given in (19), is then called (binary)
logistic regression model.
— In this case the dependency of the probabilities 7; = m;(3) of the linear combinations x,' 3 is given
by
1
M= Yi=1,....n. 20
1+ exp(—x,; B) (20)

e Another (nonnatural) link function g : (0,1) — R, which is considered in this context, is given by
g=o7", (21)
— where ® : R — (0, 1) denotes the distribution function of the N(0, 1)—distribution.

— Then it holds that m; = ®(x; 3) for each i = 1,...,n and the GLM is called the model of the
probit analysis.
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4.2.3 Poisson—Distributed Sample Variables with Natural Link Function

e Now, let the sample variables Y7, ...,Y,, be Poisson—distributed, i.e., let ¥; ~ Poi(};) with 0 < A\; < oo for
eachi=1,...,n.

e The Poi(\;)—distribution also belongs to the exponential family introduced in Section 4.1.1, where 6; = log \;

— because it holds for each y = 0,1, ... that

MeNi 1
Py, (Yi=vy) = ] = exp(y log A\; — log(y!) — )\Z-) = exp( (y9 +aly,7)— b(ﬁz))> ,
— where
=1, a(y) = —log(y!) and  b(6;) = .

e The natural link function g : (0,00) — R is given by

g(z) =logx Vao>0. (22)

4.3 Maximum-—Likelihood Estimator for 3

e Since we assumed, that the distributions of the sample variables Y7, ..., Y, belong to an exponential family,
it is possible to estimate the parameter vector 3 by using the maximum-likelihood method.

e In order to show this, we first discuss some properties of the loglikelihood function log L(Y, 8) of the random
sample Y = (Y7,...,Y,,)" and its partial derivatives with respect to the components i, ..., 3, of B.

4.3.1 Loglikelihood Function and its Partial Derivatives

e From (2) — ( ) and from (11) it follows that the loglikelihood function log L(Y, @) of the random sample
Y = (Y3,...,Y,)" can be written as a function log L(Y, 3) of B.

— From (2) — (3) it follows that

n 1
log L(Y,0) = > ﬁ (Yib; + a(Y;, 7) — b(0;)) . (23)
i=1

— This and (11) imply that
log LY, 8) = 3~ = (Yo (hx B) + ¥, ) — b (h(xT 3))) ) (24)

e For generalized linear models with natural link function, (13) and (23) imply that
~ 1 T T
log L(Y, B) :Z‘T — (Vix{ B+a(Vi,7) = b(x{ B)) (25)

For the computation of the maximum-likelihood estimators, the knowledge of the so—called score function, i.e.,
the partial derivative of the loglikelihood function, is useful, as well as the Fisher—information matrix, which is
defined as follows.
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Definition For arbitrary i,5 =1,...,m let
0
i

Then the m—dimensional random vector U(8) = (U1(B),.. ., Um(,ﬁ))T is called the score vector and the
(deterministic) m x m-matrix I(8) = (I;;(8)) is called the Fisher—information matriz.

Ui(B) =

log L(Y,8) and  I;;(8) = E (U;(B)U;(8)) -

By using the notation
dp; _ dh(s) _rdg(t)\ Tt
df,h (/6) - ds !s:m - ( dt ) |t:h(7]i) (26)

we get the following result.

Theorem 4.1 For arbitrary j,k =1,...,m it holds thatl

U;8) = iy (Vi — m(B) 27
and
or in matrix notation
_ d _ d 2
UEB) =XTVH(B) G (0) (Y~ (@) and  1B)=XTV'(B) (308)) X, (20)
where J J
_ dine(0? dp i
V(B) = diag(o}(8))  and () = diag("(9))
Proof
o The loglikelihood function, given in (23) or (24), respectively, can be written in the form
n 1 ;
log L(Y, ) = 2_; — (90,
where () (6;) = Yi0; + a(Y;, ) — b(6;) and 6; = ¢ (h(x; B)).
e Therefore, it holds for each 7 =1,...,m that
"1 o
U8 =S = 0:), 30
=3 5 55, (30)
where multiple use of the chain rule yields
(9 0@ 90, Ou; On;
0 _ 0 00; Ou; On . (31)

aB; 90; Op; On; 0P,
— On the other hand, it obviously holds that dn;/08; = z;; and from Lemma 4.2 it follows that

o0

o }/Z o b(l) 91 Lcm!ga 4.2 Y.Z .
20, (0:)

Hi

or

(092')—1 _ aul Lemg& 4.2 b(2)(91) Lemr;a 4.2 i 12
Opi 00; 72



4 GENERALIZED LINEAR MODELS 90

— This and (30) - (31) imply (27).

e In order to show (28) it is enough to notice that for arbitrary i,7 =1,...,n

2 . .
o; firi=yj,

E ((Y; — wi)(Y; — py)) =
0 fori#j.

because of the independence of the sample variables Y7,...,Y,.
— From this and (27) it follows that

In(B) = EGEUE) = Srsea(20) —m B0 - wP)
i=1 ¢ v
= ;%zzk <Tm(ﬁ)) 2@
— Therefore, (28) is proved. O

Corollary 4.1 Let (g(IE Yi),... 7g(]EYn))—r = X3 be a GLM with natural link function g : G — R. Then it
holds for arbitrary j,k=1,...,m that

1 & 1
U;(B) = 2 inj (Yz - Mz(ﬂ)) or U(B) = 2 XT(Y — 1(B)) (32)
i=1
and
1 o 1
Lr(B) = — > wyzinei(B)  or  I(B) = = XTV(B)X. (33)
i=1
Proof Since g : G — R is a natural link function, we have 6; = n; for each ¢ = 1,...,n. This and Lemma 4.2
imply that
dpi (2) N
dni =b ( ) 72 05
Now, the statement follows from Theorem 4.1. O

4.3.2 Hessian Matrix

Besides the (score) vector U(8), which consists of the first partial derivatives of the loglikelihood function
log L(Y, B), also the Hessian matriz, i.e., the m X m—matrix

2

W(B) = (Wi;(B) = (W

log L(Y,ﬁ)>,

consisting of the second partial derivatives of the loglikelihood function, is needed.
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Theorem 4.2
e For each GLM it holds that
W(B) = XTR(B)diag(V; — p:(8))X - 1(8), (34)

where 1(B) is the Fisher—information matriz, given in (29), and R(B) = diag(vi(8)) is an (n x n)-diagonal
matric with

1 d?u(s)
’Ul(ﬁ) = ﬁ 12 ’s:xrﬂ and u :d)oh,
o For a GLM with natural link function it particularly holds that
W(B) =-1(B). (35)

Proof

e From formula (27) in Theorem 4.1 it follows that for arbitrary j,k=1,...,m

dn;

9 dui 1 dp; 1 Oy
7 (i @ @) ~ P 7 98 “”) |

8 n
Wik(B) = 27 U;(B) @ En ;% (Vi — 1i(83))

Il
8
.
VR
—
=
=
)
:_’/

— Here with the notation 7; = x; 3 we get from Lemma 4.2 that

L
Yo h(n;)) 72

d//fi 1
i P 23)

and therefore

EAC) (¢ o h(m)) (1o h)® (n;) 250

i d,ui 1 o i . @ N
0Bk (dm 8) of(ﬁ)) - 2 (¢ o )P (i) -

— Furthermore, it holds that
Owi — dpi On;
OBk dni 0By

e Altogether, it follows that

d/,Li 21
mexzk Y Mz) Ui — ;xm zk(%) 0_7? .
e This and the representation formula (29) for the Fisher—information matrix I(3) yield (34).

e Since the superposition u = 9 o h of a GLM with natural link function is the identity function, it holds
in this case that R(3) = 0. Therefore, (35) follows {rom (34). O

Remark For the examples of GLM considered in Section 4.2, we get the following formulas for U(3) and W (3)
from Theorems 4.1 and 4.2 or from Corollary 4.1, respectively.

1. For the linear model EY = X3 with normally distributed sample variables (and with the link function
g(x) = x), one has that (du/dn)(B) is the identity matrix. Therefore, it holds that

Up) = XT(Y-XB), W@ = - 5 XX, (36)

cf. Section 2.2.



4 GENERALIZED LINEAR MODELS 92

2. For the logistic regression model (with the natural link function) it holds that
UB) =X (Y=-m), W(B) = —X"diag(m(1 - m))X, (37)

where 7w = (7y,...,7,) " and the probabilities 7; can be expressed by 3 (cf.(20)).

3. For Poisson—distributed sample variables with natural link function it holds that
UB) =X"(Y-X), W(B) = -XTdiag(\))X, (38)

where A = (A1,...,\,) " and A; = X/ B.

4.3.3 Maximum—Likelihood Equation and Numerical Approach

e In order to determine the maximum-likelihood estimator for 3, the mazimum-likelihood equation

U@p) =o (39)
is considered, which in general is nonlinear and therefore often can be solved only by using iterative methods.

e Because of Theorem 4.1 the equation (39) is equivalent to

XTV-1(8) j—ﬁj(ﬁ) (Y — u(B)) = . (40)

Remark

e From Corollary 4.1 it follows that, in the case of a natural link function, (40) simplifies to:

XT (Y - u(B)) = o. (41)
e Since we furthermore assume that 0 < 0?(8) < oo for each i = 1,...,n and that the design matrix
X has full column rank, the matrix W(8) = — 774XTV(8)X of the second partial derivatives is

negative definite.

e Hence, it holds that if (41) has a solution, then the solution is a uniquely determined maximum-—
likelihood estimator 3 for 3.

Now, we discuss the basic ideas of two numerical iteration methods for solving the maximum-likelihood equation
(39). We consider a _sequence of random vectors ,80, ﬂl, ...t = R™ which converge under certain conditions
to a random vector 3 such that [ is a solution of (39).

1. Newton’s Method
o Let ,@O : Q@ — R™ be a suitably chosen start vector and let the iterations Bl, e 7Bk be already
computed.

e For the computation of the (k+1)—th iteration Bkﬂ from 3, the left hand side U(3) of the maximum-
likelihood equation (39) is replaced by

— the first two terms U(B,) + W(B,,)(8 — B,,) of the Taylor series expansion of U(8) at 8 = S,
— The (k + 1)—th iteration Bk+1 is also a solution of the equation

UB,) + W(B)(B—By) =o. (42)
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o If the matrix W(,@k) is invertible, then it follows from (42) that
Bry1 = Bk -~ W HB,)UB,), (43)

e For the constructed sequence ,@O,,@l, ... to converge to ,@, this vector f’)’ has to be a solution of (39)
and the start vector B3, has to be close enough to 3.

2. Fisher—Scoring
e Now we consider a variation of Newton’s method, the so—called scoring—method of Fisher, where the
Hessian matrix W(3) in (42) is replaced by the expectation matrix E W (3).

— This has the advantage that the (m x m)-matrix E W(3) is invertible.
— From Theorems 4.1 and 4.2 it follows that

EW(@) 2 E(XTR(B)diag(Y: - 1:(8)X - 1(8))
- -19)
2 _xTVE) (e) X,

where the second equality follows from the identity EY; = u;(9).

— The last term is an invertible (m X m)—matrix because we assumed that the design matrix X has
full column rank and that (dp;/dn;)(8) # 0 for each i =1,...,n.

o Therefore, instead of (43) the following iteration equation is considered:
S 3 T3 N NN AU AV =
Biy1 =B+ (X' Z(B,)X) | X'Z(By) (@) B (Y — 1(B)) | » (44)

where

20) =V (L) wd ()= (F) e

e In the case of a natural link function it follows from Lemma 4.2 that

d/,L»L (2) 1 2 1
_ = f = — - = 7V .
Wi 0) = ot o 2B) = V)

e Then the iteration equation (44) has the form:
N N N _1 N
Bisr =B+ 2(XTV(BIX) T (XT(Y - u(By)) -

Remark

e If the random sample Y in (44) is replaced by the so—called pseudorandom variable

Y(8) = X8+ (1) B)(Y — u(s).

the iteration equation (44) can be written in the following form:
(XTZ(B)X) B 1 = XTZ(BY (By,) -

e This equation can be considered as a weighted normal equation for /@k+1 with respect to the pseudo-
random sample Y (3,), where the weights, i.e., the entries of the diagonal matrix Z(8,,) also depend

AN

on the k-th iteration B,.
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4.3.4 Asymptotic Normality of ML Estimators; Asymptotic Tests

e The notion of the convergence in distribution of random vectors is defined as follows.

— Let m € N be an arbitrary natural number and let Z,Z1,Zo,... : @ — R™ be arbitrary random
vectors. We say that {Z,} converges in distribution to Z if

lim P(Z,, <x)=P(Z <x) (45)

n—oo

for each x € R™ with P(Z = x) = 0. Notation: Z, N

e Now, we discuss asymptotic (distributional) properties of maximum-likelihood estimators B for B or asymp-
totic tests if the sample size n tends to infinity.

— Here we only consider the case of the natural link function g : G — R

— and index the random sample Y, the loglikelihood function log L(Y,3), the score vector U(3), the
Fisher—information matrix I(3) and the ML estimator 3 each with n.

1. Asymptotic distributional properties

Under certain conditions (cf. Section VII.2.6 in Pruscha (2000)) one can show that: For each 3 € R™ with
x;/ B €O fori=1,2,... there exists

e a consistent ML estimator ,@n for 3, i.e., for each € > 0 it holds that

lim Ps(|3, — Bl <&, U,(B,) =0) = 1, (46)

n—oo

e a sequence {I',} of invertible (m X m)-matrices, which can depend on 3 and for which it holds that
lim, o Ty = 0,

e as well as a symmetric and positive definite (m x m)-matrix K(3), such that

lim T} 1,(8)T, = K 1(8) (47)

r;'(8,-B8) = NO,K@B) o  2(logL,(Yn,B,) —logL,(Yn,08) -5 x2,.  (48)

2. Asymptotic tests
o For large n the test statistic
T, = 2(10g Ln(Yn,,@n) — log Ln(Yn?IBO))
can be considered for the construction of an asymptotic test for the pair of hypotheses
Hy: B8 =20, vs. H,: B #p3,.

Because of (48), Hy is rejected if T, > X7, 1 _q-

e The null hypothesis Hy : 8 = o is particularly interesting. If it is rejected, more specific hypotheses
can be tested, e.g., for each i = 1,...,m the hypothesis Hy : 8; = 0.
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Remark

e If I,,(B) is positive definite for each sufficiently large n and if

lim I;*(8) =0, (49)

n— oo

then we can put T, = I,'/% in (47) and (48), which implies that K(3) is the identity matrix.

e In (37) we have already shown that in the logistic regression model it holds that
L,(B8) = X"diag(m(1 — m;))X.
— Since we assume that 0 < 7;(8) < 1 for each i = 1,2,... and that the design matrix X has full
column rank, the matrix I,,(8) is positive definite in this case.
— If furthermore inf;>1 7;(1 —m;) > 0 and if the entries z;; of the design matrix X are chosen in such
a way that lim,,_ (XTX)_1 =0, then (49) also holds.

e Now, let K(3) be the identity matrix. Because of (47) and (48), Hy : 8; = 0 is rejected if

ICHA

(I (Bn),;

where z1_,/2 is the (1 — a/2)—quantile of the N(0, 1)-distribution.

> Zl—a/2; (50)

4.4 Weighted LS Estimator for Categorical Regression

Instead of the maximum-likelihood approach to estimate the parameter vector 3, discussed in Section 4.3, we
now consider a weighted LS estimator for 3 for the categorical regression model.

4.4.1 Estimation of the Expectation Vector

Recall (cf. Section 4.2.2): In the binary categorical regression model all sample variables Y1, ..., Y, are Bernoulli—
distributed, i.e., they can only take the values 0 and 1 with positive probability.

e We use the notation
m=PY; = 1) (:m - EY) Vi=1,...,n,

where it is assumed that 0 < m; < 1 foreach i =1,...,n.
e In this case the probabilities m,...,m, are linked to the parameter vector 3 by using a link function
g:(0,1) = R, ie,
-
(g(ﬂ-l)7ag(7rn)) :XI@ (51)
e In order to estimate the vectors # = (my,...,m,) " or g(mw) = (g(m),...,g(wn))T, we assume that we
are able to observe n; > 0 independent and identically distributed “copies” Y;i,...,Yi,, of Y; for each
i=1,...,n. The total sample size is then equal to > ., n;.
e Foreachi=1,...,n
1 &
F= ZYU (52)
j=1
is a natural estimator for ;.
e This leads to the estimators @ = (71,...,7,) " or (%) = (g(71), ... ,g(%n))—r for 7 or g(m), respectively.
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One can easily see that the estimator 7 is unbiased for 7 and that its covariance matrix K (@) = (Cov (7, 7;))
has the following form.

Lemma 4.3 It holds that

E;'\I'ZTI'7 Var%i:m(l—m)/ni (53)
and
K(7) = diag(Var ;) . (54)
Proof The statement follows directly from the fact that the random variables n171, ..., n,T, are independent
and binomially distributed with n;7; ~ B(n;, ;) for each i = 1,...,n. ]
Furthermore, the following central limit theorem implies that the estimator g(7) = (9(71), . .. ,g(%n))T is asymp-
totically normally distributed.
Theorem 4.3 Ifn;, — oo for eachi=1,...,n, such that
"oon
@—mie[mo) Vi=1,...,n, (55)
ng

then it holds that 12
(X m) " (e@) - g(m) < Ne.K), (56)

where
K = diag(«;) and o = /\Z-(g(l)(m))zm(l — 7). (57)
Proof
e Since we assume that the link function g : (0,1) — R is twice continuously differentiable, by Taylor
series expansion we get that for each i =1,...,n
9(57\1') - 9(7%‘) = 9(1)(771‘)(771‘ - 7Ti) + 9(2)(21‘)(%1‘ - 7Ti)2 = 9(1)(771')(7?1‘ - 7Ti) +R;,

where R; = 9(2)(211)(7?1‘ — 777;)2 and Z; : Q — R is a random variable taking values between 7; and ;.

e From the central limit theorem for sums of independent and identically distributed random variables
(cf. Theorem WR-5.16) it follows that

n? (7 —m) <5 NO,m(1-m)  Vi=1,...,n. (58)

K2

e Since 7; —m; — 0 and therefore also Z; —m; — 0 or ¢ (Z;) — ¢® (7;) with probability 1, it also holds

that nl/QRZ- L 0 or
n 1/2
n 1/2 .M
(Spm) = (B5) ot o
J= i

ng
e Altogether, Slutsky’s theorem (cf. Theorems WR-5.9 und WR-5.11) implies

, no N2 n 1/2
(7 )" (o0 —gm0) = (Z_) o mnt 2= m) + (X m) R,

n; J=

L NN (Y (7)) m(1 = 7)) -

e As the random variables ¢g(71) — g(71),...,9(7;) — g(m;) are independent, the statement is proved. O
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4.4.2 Asymptotic Normality of the LS—Estimator

The following approach for the estimation of the parameter vector B is motivated by the form of the asymptotic
covariance matrix K in Theorem 4.3.

o~

e In a similar way as is Section 2.1 we now consider the method of least squares for getting an estimator 3
for the unknown regression coefficients B1,..., Bm-

e A random vector [A")' = (Bl, e E,,,,)T shall be determined, such that the weighted squared error
n ~ 2
9(7i) —x/
e(B) =) (9F) —x/8)° = ) (59)

gets minimal for B = 3, where 62 = (30— ni/ni) (9 (7:))?7Ti(1 — 7;) and it is assumed that the weights

/\2 Ll
o;; are positive.

Remark

e The weighted sum e(8) of the squared residuals (g(7;) — XIB)Z in (59) can be written as follows: By
using the notation K = diag (32) it holds that

e(B) = (g(7) — XB8) 'K ' (g(7) — XB). (60)

e In the same way as in the proof of Theorem 2.1 one can show that the weighted squared error e(8) is
minimal if and only if 3 is a solution of the following normal equation:

XTK'X8=X"K 'gx). (61)

e Since the matrix X 'K~!X is invertible, (61) has the uniquely determined solution

o~ ~

B=X"TK'X)'X"K 'g(#). (62)
Now we show that the weighted LS—estimator @ in (62) is asymptotically normally distributed if the (sub-) sample
sizes n; grow unboundedly for each i = 1,... n.

Here we need the following vectorial versions of Slutsky’s theorem (cf. Theorems WR-5.9 and WR-5.11) and of
the “continuous mapping theorem” (cf. Theorem WR-5.12).

Lemma 4.4

o LetmeN, letY,Y,,Z, : Q— R™ be arbitrary random vectors over the very same probability space and
let c € R™.

o IfY, -5 Y andZ, ¢, then Yo +Zn -5 Y +cand Y Z, -5 cTY.

Lemma 4.5

o LetmeN, let Z,Z1,2Z,,...: Q — R™ be arbitrary random vectors and let ¢ : R™ — R be a continuous
function.

e Then it holds that p(Z,,) N »(Z) provided that Zy, =N

The proofs of Lemmas 4.4 and 4.5 are similar to the proofs of Theorems WR—-5.9, WR-5.11 and WR-5.12.
Therefore, they are omitted.
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Theorem 4.4 Ifn;, — oo for eachi=1,...,n, such that

ZJ 1n

%

(m)

where K = diag(«;) is the diagonal matriz considered in Theorem 4.3.

— X\ € [1,00) Vi=1,...,n, (63)

then it holds that 1/2
(B-5) -5 N(o, (XTK X)), o0

Proof

It follows from the definition of 3 in (62) that
B-B = X'K'X)'X'K'g@) - = (XK 'X) XK (g(7) - Xg)
= XTKT'X) XK (g(@) - < ).
where in the last equality we used that g(7) = Xg3; cf. (51).
e In Theorem 4.3 we have already shown that
n 12 a
(X m) " (e®) ~ g(m) < N(o.K),

where the asymptotic covariance matrix K is given in (57).
e Moreover, it holds that K -5 Kif n; — oo foreach i =1,...,n.
o Altogether with

— Slutsky’s theorem (cf. Lemma 4.4),

— the “continuous mapping theorems” (cf. Lemma 4.5) as well as

— Theorem 1.3 about linear transformations of normally distributed random vectors,
it follows that

1/2 .

() B-n) = (X ) XTRIX)TXTR (g(7) - s(m)

_ (Z"_lnj) (XTR'X) X TR (XK 'X)'XTK 1)

-1

Ny
x (XTK'X)"'XTK ' (g(7) — g(m))
4 N(o, (XTK'X) "' XK ) K (XTK'X)"'X"K1)")
= N(o,(XTK'X) 7). O

Remark

e If ny +...+ n, is a large number, the test statistic

e (5,m) AR

can be considered for the construction of an asymptotic test for the pair of hypotheses Hy : 5; = 0 vs.
: B # 0, where k‘“ is the i-th diagonal entry of the matrix K= (XTK 1X) "

e Because of Theorem 4.4, Hy is rejected if |T'] > z1_q /2.
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4.4.3 Evaluation of the Goodness of Fit

An important problem is the choice of a suitable design matrix X in order to fit the model g(w) = X3 in the
best possible way to given data. It is possible to answer this question by using the following result.

Theorem 4.5 Under the conditions of Theorem 4.3 it holds that

> (8(7) - XB) 'K (g(7) ~ XB) 5 Xl (65)

Proof

e In Theorem 4.3 we have already shown that the random vector (Z?:1 nj)l/2 (g(7) — XB) is approxi-
mately N(o, K) distributed.
e Since a RN B3 and K- K, the statement follows with

— Slutsky’s Theorem (cf. Lemma 4.4),
— the “continuous mapping theorems” (cf. Lemma 4.5) as well as
— Theorem 1.9 about quadratic forms of normally distributed random vectors. (|

Remark
e Because of Theorem 4.5 the quantity Y7, n; (g(%) —XB)TIA{’l (2(7)—XB) can be seen as a measure
for the goodness of fit of the model g() = X3 to given data.
e The goodness of fit is appraised as sufficiently good if

~

> n; (g(7) — XB) K@)~ XB) < A2 10
j=1

e On the other hand, the dimensions of X should be as small as possible, which means in particular that
for each i = 1,...,m the null hypothesis of the test Hy : 8; = 0 vs. H;y : B; # 0 should be clearly
rejected.
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5 Goodness—of—Fit Tests

e In this chapter the sample variables are denoted by Xi,..., X,, where we will assume from now on that
X1,..., X, : Q = Ris a sequence of independent and identically distributed random variables.
e The assumptions, we made so far regarding the distribution P of the sample variables Xi,...,X,, either

have been strictly qualitative (discrete or absolutely continuous distribution) or parametric, where in the
latter case it has been assumed

— that P belongs to a parametric family {Py, € O} of distributions with ©® C R™ for some integer
m>1,
— and that merely the parameter vector = (6,...,6,,)" or some of its components, respectively, are
unknown.
e In the following, we discuss so—called goodness—of—fit tests.
— To begin with, we consider a test to verify the hypothesis Hy : P = Py that the distribution P of the
sample variables is equal to a given (hypothetical) distribution Pp.

— Afterwards, we construct tests to check if P belongs to a given (parametric) class of distributions
{Pg, 0 e @}

5.1 Kolmogorov—Smirnov Test
5.1.1 Empirical Distribution Function; KS Test Statistic

e There are different tests suggested in literature to verify the hypothesis Hy : P = Py that the distribution P
of the independent and identically distributed random variables X1, ..., X, is equal to a given distribution
Py.

e This kind of null hypothesis is considered for the Kolmogorov—Smirnov test, which is based on the analysis

of the empirical distribution function ﬁn : R x R™ — [0, 1], introduced in Section I-1.5, where

#i:1<i<n,z; <t}

Fo(t;x1,...,2n) = -

(1)
e The sample function T), : R" — [0, 00) is considered with

Tn(mla”'awn) = \/ﬁ Su£|ﬁn(t§1’1v--~axn) _FO(t>| . (2)
te

e In Section I-1.5.3 we have already shown that the distribution of the KS test statistic T,,(X1,...,X,) does
not depend on Py if it is assumed that the distribution function Fy : R — [0, 1], which corresponds to Py,
is continuous, cf. Theorem I-1.19.

e Let s,,1-4 be the (1 — a)—quantile of the distribution of T},(X7y,...,X,) under an arbitrary continuous
distribution function Fy. The Kolmogorov—Smirnov test rejects the null hypothesis Hy : P = Py if

To(Z1, .o, Tn) > Spi—a- (3)

Remark

e The quantiles s, 1_, can be determined using Monte Carlo simulation, where the distribution function
Fy of the standard—uniform distribution on [0, 1] can be taken as a basis, cf Corollary I-1.3.

e If it is not assumed that Fj is continuous, then the decision rule, considered in (3), provides a test
whose level can be smaller than a.

e However, if it is possible to determine the quantile s’ of T,(X1,...,X,) under Fy, e.g., using MC

n,l—a
simulation, then Ty, (21, ..., Tn) > 8, 1_, is a test, which taps the full level a even if Fy is discontinuous.
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5.1.2 Asymptotic Distribution

We now analyze the asymptotic distribution of the KS test statistic T,,(X71, . .., X, ), introduced in (2), as n — oo.
To begin with, we provide some auxiliary tools.

In particular we need the following continuity theorem for characteristic functions of random vectors, which is a
multidimensional generalization of Theorem WR~-5.20 and which we will state without proof.

Lemma 5.1 Letm € NandletZ,Z,,Zs,...: Q2 — R™ be arbitrary random vectors with characteristic functions
wz, and pz. It holds that Z, N/ if and only if

lim ¢z, (t) = pz(t) vVt e R™. (4)

n— oo

Moreover, we need a multivariate central limit theorem for sums of independent and identically distributed random
vectors,

e whose proof can be reduced, using Lemma 5.1, to the corresponding central limit theorem for real-valued
random variables (c¢f. Theorem WR-5.16).

e In literature this approach is sometimes called the Cramér—Wold device.

Lemma 5.2

o Let m € N and let Z1,Z5,... : Q — R™ be a sequence of independent and identically distributed random
vectors with expectation vector i = (pi1,. .., jtm) ' and covariance matriz K.

e Then it holds that

lim P((Zl +...+Z,) —nu
n—oo \/ﬁ

where Pk : R™ — [0,1] denotes the distribution function of the N(o, K)-distribution.

< x) = Dg(x) VxeR™, (5)

Proof
e Let Z, = (Zn1,---, Znm)". Because of Lemma 5.1 the convergence in distribution stated in (5) is
equivalent to
lim @, (t) = ¢(t) vVt e R™, (6)
n—r oo

— where ¢, (t) is the characteristic function of (Z; + ...+ Z,, — nu)/+/n with

m

. (Z1j+...+an)—nuj
W) =Eexp(i Yt )
eul®) =B exp(i 3y NG

— and p(t) is the characteristic function of the N(o, K)-distribution with

o(t) = exp(— % tTKt) . (7

e Furthermore, one can easily see that

NIE!

0 2 t(Zkg — 1)
on(t)=E exp(i kz::l “T>

and
m m

E(th(zkj—ﬂj)):o, Var(th(ij—uj))thKt VkeN. 9)

j=1 =1
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e If t 'Kt = 0, then it follows from (9)

— that >0, t;(Zk; — p1j) = 0 with probability 1 for arbitrary k= 1,...,n and n > 1.
— This and (7) — (8) imply that ¢, (t) = 1 = ¢(t) for each n > 1, i.e., (6).
e Now let tTKt > 0.

— From (8) it follows that ¢, (t) is equal to the value of the characteristic function of the real-valued
random variable > ;_, Z;”:l ti(Zk; — 1) /v/n at L.

— Moreover, it follows from (7) that ¢(t) is the value of the characteristic function of the one-
dimensional normal distribution N(0,t"Kt) at 1.

— On the other hand, Theorem WR-5.16, i.e., the (1-dimensional) central limit theorem for sums of
independent and identically distributed (real-valued) random variables, implies that for n — oo

or

n

3 (Zkg = 15)

> 77 4 N(0,tTKt). (10)

k=1

— This, (7) — (8) and Theorem WR-5.20, i.e., the continuity theorem for characteristic functions of
real-valued random variables, imply the validity of (6). O

The following limit theorem, already mentioned in Section [-1.5.3, provides an approximation formula for the
distribution function of T, (X1, ..., X,) for a large sample size n.

Theorem 5.1 Let the distribution function Fy : R — [0,1] be continuous. Assuming that Hy : P = Py is true,
it holds that
lim P(Tn(Xl,...,Xn)gx):K(x) VreR,

n—oQ

where K : R — [0, 1] is the distribution function of the so—called Kolmogorov distribution with

1-2 ioj (—=1)k~lexp(—2k22?), ifz >0,
K(z) = = (11)
0, ifz <0,

Proof

e We only sketch the idea of the proof since the full proof of Theorem 5.1 (cf., e.g., A. van der Vaart and
J. Wellner (1996)) exceeds the scope of these lecture notes

— as it requires profound tools from the theory of stochastic processes.

— In particular, the term of convergence in distribution in function spaces as well as a so—called
functional central limit theorem is needed,

— which can be seen as an (infinite dimensional) generalization of the classical central limit theorems

for sums of real-valued random variables (cf. Section WR-5.3) or of finite-dimensional random
vectors (cf. Lemma 5.2).

e As the distribution of T,,(X3,...,X,) does not depend on Fy (cf. Theorem I-1.19), we can w.l.o.g
assume that Fp is the distribution function of the uniform distribution on [0, 1], i.e., Fy(t) = ¢ for each

t € [0,1].
— In order to analyze the asymptotic distribution of T,,(X1,...,X,) for n — oo, we use the abbre-

viating notation R
B,(t) =vn (Fo(t; X1,...,X,) — Fo(t)) Vtelo,1], (12)

— where the family of random variables {B,(t), t € [0,1]} is a stochastic process, which is called an
empirical process in literature.
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e For arbitrary ty,...,t, € [0,1] it then holds that

n

\/{E(Bn(tl)v .. ~aB7L(tm)) = Z(K(tl) - tla N 7}/1<tm) - tm)a

i=1
where
1, it X <t
Yi(t;) = _
0, if X;> tj.
— For each n > 1 the random vector /n(By,(t1),..., Bn(ty)) can be written as a sum of n inde-

pendent and identically distributed random vectors with expectation vector o, whose covariance
matrix K = (07;) is given by o7; = min{t;, t;} — t;t;.
— From Lemma 5.2 it now follows that for n — oo

(Bu(t1), -, Bu(tm)) —= (B(t1), ..., B(tm)) , (13)

where (B(t1),...,B(tn)) is a normally distributed random vector with
(B(t1), ..., B(tm)) ~ N(o,K).
— This and the continuous mapping theorem for random vectors (cf. Lemma 4.5) imply that

max /1| Fu(ts X1, ..., Xp) — Fo(t:)| == max |B(t:)|. (14)

=1, i=1,....m

e It is easy to see that the distribution N(o, K) of the random vector (B(t1), ..., B(tm))

— can be considered as the finite-dimensional distribution of the so—called Brownian bridge process
{B(t), t € [0,1]} with B(t) = X(t) — tX(1), where {X(t),t € [0,1]} is a (standard—) Wiener—
process,

— ie., {X(t), t € [0,1]} is a stochastic process with continuous trajectories and independent incre-
ments, such that X (0) = 0 and X (t2)— X (¢1) ~ N(0,t2—t1) for arbitrary ¢, t5 € [0,1] with t; < to,
cf. Section 2.4 of the lecture notes “Elementare Wahrscheinlichkeitsrechnung und Statistik”.

e Using the theory of convergence in distribution in function spaces as well as a corresponding functional

central limit theorem, it is possible to show that not only the “finite-dimensional” convergences (13)
and (14) hold but also

(Bu(t), t € [0,1]) 5 (B(t), t € [0,1]) (15)
and
tren[gﬁ] \/ﬁ|ﬁn(t;X1, D N Fo(t)’ 4, tren[g,)f]|B(t)’ i (16)

e Furthermore, one can show that the distribution function of the maximum max;e(o 1)|B(t)| of the
Brownian bridge {B(t), ¢ € [0, 1]} is given by (11).

Remark

e Because of Theorem 5.1 the hypothesis Hy : P = P, is rejected for a sufficiently large sample size (as
a rule of thumb it holds that n > 40, cf. the remark at the end of Section 1-1.5.3) if

To(x1, ..y 2n) > &1—a,

e where &1_, denotes the (1 — a)—quantile of the Kolmogorov—distribution, given in (11), i.e., &1, is a
solution of the equation K(§1-4) =1 — .
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5.1.3 Pointwise and Uniform Consistency

In this section we consider some properties of the Kolmogorov—Smirnov test.

In order to show the (pointwise) consistency of the KS test, we need the Glivenko—Cantelli theorem (cf. Theorem I-
1.18), i.e.,

IP’FO( lim sup |F, (6 X1, ..., X,) — Fo(t)| = 0) —1. (17)

n— 00 tER

Theorem 5.2  Let the distribution function Fy : R — [0,1] be continuous. Then the Kolmogorov—Smirnov test
is pointwise consistent for each distribution function F of the sample variables with F # Fy, i.e., it holds that

nh_)H;OIP)F(T;L(le7Xn) > Sn’lfa) =1. (18)

Proof

e From (17) it follows that for each F' # I

]PF( lim sup |F, (6 X1, ..., Xo) — Fo(t)] > 0) 1.

n—oo teR

e This implies that T, (X1, ..., X,) — oo with probability 1 under F' # Fy.

o Since sp,1—q — &1 < 00 for n — oo, where & _,, is the (1 — o)—quantile of the Kolmogorov distribu-
tion, given in (11), it also holds that T, (X1,..., X,) — (Sn1—a — &1-a) 2% ~0 and therefore

nlggo ]P)F (TIL(X17 e aX'n,) > Sn,l—a) = nh_{gC PF (TIL(X1? ce. 7Xn) - (Sn,l—oc - fl—a) > 51—0{)
= nlggo Pr (Tn(Xla e 7Xn) > 51—&) =1. 0

Remark

e As an strengthening of Theorem 5.2 one can show that the KS test is also uniformly consistent if the

Kolmogorov distance

A,:Fp) = inf F(t) — F,
di (An; Fo) FlenAnjlelﬂlgl (t) — Fo(t)] (19)

of the family A,, of alternative distribution functions and the (hypothetical) distribution function Fj
does not converge too fast to 0 as the sample size n increases.

e In this context, we need the following strengthening of Glivenko-Cantelli’s theorem, which is called
inequality of Dworetsky—Kiefer—Wolfowitz in literature and which we state without proof.

Lemma 5.3 For arbitrary ¢ > 0 and n > 1 it holds that

Pg (sup ‘ﬁn(t;Xl, L Xn) - F()] > c) < Cexp(—2nc?), (20)
teR

where C' < 2 is an universal constant, which does not depend on F.

Remark

e From Lemma 5.3 it follows that for each £ > 0 there is a ¢’ > 0 which does not depend on F' and which
fulfills N
inf Pr (\/ﬁ sup |Fu(t; X1,..., X,) — F(t)| < c’) >1—¢. (21)
n2 teR
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e In order to see this, it is sufficient to choose the threshold value c in (20) for € € (0,1) in such a way
that ¢ = ¢ /y/n, where
1 €
/
-\ reels)
¢ 2 Ble

e Since ¢’ does not depend on F, it also holds that for each € > 0 there is a ¢/ > 0 such that

inf Pr, (Vi sup |Fu(ti X1, 0 Xa) = Fa(®)] < ¢) 2 1-¢, (22)
nz teR

where {F,} is an arbitrary sequence of distribution functions.

With these tools it is possible to show the uniform consistence property of the KS test for the case that the
Kolmogorov distance di (A, ; Fp) of the family A,, of the alternative distribution functions and the (hypothetical)
distribution function Fj does not converge too fast to 0 as the sample size n increases.

Theorem 5.3 If there is a sequence {0, } of positive numbers with 0,, — oo such that

\/HdK(An;FO) Z 571 Vn Z la (23)
then it holds that
”11_{20 FienAfn Pr (T,,(Xl7 X)) > Sn,l—a) =1. (24)

Proof

e Let {d,} be a sequence of positive numbers with 4,, — oo, which fulfills (23), and let {F,} be an
arbitrary sequence of distribution functions such that for n > 1

F,e A, and therefore Vn dg (Fn; Fo) > 6, , (25)

where di (Fp; Fo) = supyeg |[Fn(t) — Fo(t)].

e It is sufficient to show that

lim ]P)Fn (Tn(Xl, R ,Xn) > Sn,l—oz) =1. (26)

n—oo

— From the triangle inequality it follows that
A (Fn, Fo) < dic(Fr, Fy) + dc(Fp, Fy) .
— This and (25) imply that
To(X1,..., X)) > 6, — /n di(F,, Ey) .
— Therefore, it holds that
Pr, (Tn( X1y, Xn) > $ni—a) > Pr, (Vi di(Foy Fn) < 80 — $n1-a) - (27)

o Since sp.1—a —* {1—a < 00 and therefore 6,, — s,,1—o — 00 for n — oo, formulas (22) and (27) imply
the validity of (26) . O

Remark

e In particular, condition (23) is fulfilled if dx (Ay; Fy) > d for each n > 1 and ¢ > 0 is a constant, which
does not depend on n.
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o If \/n dx(F,; Fy) > 6, and 6, > Sp 1—q, then (27) implies that for each n > 1 holds the following
(non—asymptotic) lower threshold for the power of the KS test:

Pg, (Tn(Xla co X)) > Sn,l—a) >1- QGXP(*Q(&L - sn,l—a)z) ) (28)

where we have obtained a lower bound of the right—hand side of the inequality in (27) by applying
Lemma 5.3 (for F' = F,,).

e However, notice that for a given (finite) sample size n < oo it is possible that the “rejection probability”
Pg, (Tn(Xl, ey X)) > Sn,ka) is smaller than a.

On the other hand, the (asymptotic) power of the KS test can become arbitrarily small, i.e., arbitrarily close
to «, if the Kolmogorov distance di(A,; Fp) of the family A, of alternative distribution functions and the

(hypothetical) distribution function Fj converges sufficiently fast to 0 as the sample size n increases.

Theorem 5.4

o Let {F,} be an arbitrary sequence of continuous distribution functions such that

lim /n dg(F,; Fy) = 0. (29)
n— 00
e Then it holds that
limsup Pp, (T (X1,...,Xy) > sn1—a) < . (30)

n—oo

Proof

e From the triangle inequality it follows that
Pr, (Ta(X1,- s Xn) > sn1-a) < Pr, (Vv dic(Fo; o) + Vi dic (Foi Fo) > sp1-a)

e From this and (29) the validity of (30) follows because the distribution of v/n di(F,: F,) under F,
does not depend on n. O

5.2 Y?>-Goodness—of-Fit Test

We now discuss an asymptotic goodness—of—fit test, where a test statistic is considered, which is approximately
x2-distributed for a large sample size. However, in this context the hypothesis

Hy:P =P, @mm m;P¢%) (31)

analyzed in Section 5.1, is usually not considered since we “coarsen” the model of the random sample (X7, ..., X,,)
by use of aggregation.

5.2.1 Aggregation; Pearson—Statistic

e For a (sufficiently large) natural number r we partition the range of the random variables X1,..., X, into
r classes (a1,b1], ..., (ar, b] with
—o<a<bp=ay<by=...=a,<b. <00.
e Instead of the sample variables X;,..., X,, we consider the “class sizes” Z1, ..., Z,, where

ZJZ#{Z:[SZSTL,GJ<XZ§Z)J} Vi=1,...,r. (32)
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To begin with, we show that the random vector (Z,...,Z,) has a multinomial distribution with parameters
n > 1 and

p=1,...,pr_1) €[0,1]"7F, where p; = P(a; < X7 <b,) Vi=1,...,7r—1.

Lemma 5.4 For arbitrary natural numbers ky,... k. > 0 with k1 + ...+ k, = n it holds that

n!

]P)(Zl:kl,...,Zr:k7~):ﬁpfl...pﬁr, (33)
where pr =1— (p1+ ... +pr—1).

Proof

e Since the random variables X, ..., X, are independent and identically distributed, it holds that

n
]P(Xl S (ail,bil}, X, € (ain,bin]) = H]P’(aij < X; < sz) = p]fl .. .pr (34)
j=1
for each sequence of intervals (a;,,b;,],. .., (ai,,b;,], which contains ki-times the interval (a1,b1],...,

k,-times the interval (a,, b;].

e The statement (33) follows from summation of the probabilities, considered in (34), over all permuta-
tions of sequences (a;,, b, ], ..., (ai,,b;,] of this kind. O

Remark

e We denote the multinomial distribution with the parameters n > 1 and p = (p1,...,pr—1)" €[0,1]" 71
by M,_1(n,p). It is easy to see that for » = 2 the multinomial distribution My (n,p1) coincides with
the binomial distribution Bin(n, p1).

e Instead of analyzing the test problem (31), we verify the hypothesis Hy : p = po (against the alternative
H, : p # po) for a given (hypothetical) parameter vector
T 1 —
Po = (pot1,---,por—1) € (0,1)" with > poi < 1.
i=1

— We thus partition the family A of all considered distributions of the sample variables X1, ..., X,
into the subsets

AO:{P:Pp(aj<X1Sbj):pojijl,...,rfl} and AliA\AQ (35)

— In this context we consider the sample function T, : R™ — [0, c0) with

T 2
(Z'(xl, B npoj)
To(z1,...,Tn :§ / , 36
(@1 ) — npo; B0
=
— where Zj(x1,...,2,) denotes the number of the sample values 1, ..., z,, which belong to (a;, b;].

e Assuming Hy : p = po is true, it holds that E Z;(X;, ..., X,,) = npo; for each j € {1,...,7}.
— Therefore, it makes sense to reject the hypothesis Hy : p = po if Tp,(z1,...,z,) is significantly
larger than 0.

— In order to make a decision, we need knowledge of the distribution of the test statistic T,, (X1, . .., Xn),
introduced in (36), which is called the Pearson—statistic.
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5.2.2 Asymptotic Distribution

We show that T, (X1,...,X,) converges in distribution to a y2-distribution with » — 1 degrees of freedom if
n — oo. This is the base of the x?-goodness—offit test, which has been introduced by Karl Pearson (1857-1936).
Theorem 5.5 For each P € A it holds that

lim Pp (T, (X1, .., Xn) > Xoi11-a) = Q, Ya e (0,1), (37)

n—oo

where X%,M,a denotes the (1 — o)—quantile of the x?—distribution with r — 1 degrees of freedom.

Proof
e In Lemma 5.4 we have shown that the random vector Z, = (Zn1,...,Zn.) ", given in (32), where
Zn; = Z;(X1,...,Xn), has a multinomial distribution under P € Ay with parameters n € N and
p0:(p01,.‘.,p0,r_1)—r€ [0,1}T71, Where poj:]P’p(aj <X1 Sbj) Vj:].,...,T'f]..

— This in particular implies that for arbitrary 4,5 € {1,...,r}

—nNPoiPoj » iti#y,

E Zni = NPos , Cov (Znn an) = (38)

npoi(1 —poi), ifi=j.

— Moreover, it follows from (32) that Z; = 3" Ty4,<x,<p,}, 1-€., Zy can be written as a sum of n
independent and identically distributed random vectors, where 1, - x,<p,} is the indicator of the
event {a; < X; < b}
e With the notation
Zn,r

7 _ (an v o )T 39
=\ npot; - - -, NG npo,r—1 (39)

it therefore follows from Lemma 5.2 that for n — oo it holds that

7z, % 7' ~ N(o,K), (40)

— where the (r — 1)—-dimensional random vector Z’ has a (nondegenerate) multivariate normal dis-

tribution,

— whose covariance matrix K = (o7;) is given by

—Poq j o if 4 '7
52 D0iPoj 7 (41)
poi(1 —poi), ifi=j.

o It is easy to see that K is invertible, where the entries a;; of the inverse matrix A = K~! are given by

1

or ifi#j,
— + ,ifi=j.
DPoi DPor

— From (40) and the properties of linear transformations of normally distributed random vectors
(cf. Theorem 1.3) it now follows with Lemma 4.5 that AI/QZ; 4, N(o,I,-1), where I,_; is the
(r —1) x (r — 1)—dimensional identity matrix.

— The repeated application of Lemma 4.5 yields

(AI/QZ;L)T (AI/QZ;) i> Xa—l .
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e Now it is sufficient to note that
(AV2Z)) (AY?Z)) = Ty (Xy, ..., X,) -

— It namely holds that

(AY2z) " (AV?z)) = (z,) AZ,
r—1 1 Zn 2 r—1r—1 an Zn
= nz:llg (TJ —P()j) + pzr 22:1( " —Pm‘) (TJ _p()j>,
1= =1 j=

— where the second summand of the last term can be written in the form

r—1r—1 r—1
n i L n D 2 n (7 2
S (B o) = 2 (D% ) =2 (B )
por i3m0 T n Por MM T Por \ 1
— because it obviously holds that Z;;i Znj =n — Zp, and Z:;i poj = 1 — por. U

Remark
e In order to practically use the x2-goodness—of—fit test for the verification of the hypothesis Hy : p = po,
first the value of the test statistic T),(z1,...,,), defined in (36), has to be computed.
— For sufficiently large sample sizes n the hypothesis Hy : p = po is rejected if

To(x1,...,xn) > X$71,17a )

— where x2_, ;_,, denotes the (1—a)—quantile of the y*~distribution with (r —1) degrees of freedom.

e A rule of thumb for n being sufficiently large, is the validity of the inequality npo; > a for each
j€{l,...,r} and for a constant a > 0.

— In literature there are different opinions about the required size of a > 0, which range from a = 2
to a = 5. Some authors even demand a = 10.

— Other authors think that for a large number of classes (about r > 10) the approximation is
sufficiently good, even for a = 1.

5.2.3 Goodness—of-Fit; Local Alternatives

It is not difficult to show the following (pointwise) consistency of the y*>-goodness—of-fit test.

Theorem 5.6 The x> -goodness—of-fit test is pointwise consistent for each vectorp = (p1,...,pr—1) €[0,1]"7!
with p # po, 4.e., it holds that
lim Py (T (X1, .., Xn) > Xo11-0) =1. (43)

n—oo

Proof
e From p # pyg it follows that
pj # Po,j (44)
for some j € {1,...,r —1}.

e Furthermore, it follows from the strong law of large numbers (cf. Theorem WR~5.15) that Z,,; /n == p;
for n — oo under Pp,.
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e This and (44) imply that under P

an 2 a.s.
To(X1,..., Xn) >n( — *po,j) — 0.

n

o Hence, the validity of (43) is shown. O
Remark

e Instead of considering a fixed vector p # po, there are also local alternatives p, = (pn1,- - - ,pm,._l)T

possible of the form
h,; ,
pnjzpoj+7% Vi=1,...,r—1, (45)

which may depend on the sample size n, where
> hp=0. (46)
j=1

e Then one can show that for n — oo the asymptotic power of the y?-goodness—of-fit test vs. such
alternatives may be smaller than 1.

In order to prove the statement, we need the following estimate, which is called the Berry—Esseen theorem in
literature.

Lemma 5.5 Let Y7,Y5,...: Q — R be a sequence of independent and identically distributed random variables
with E (|Y1[*) < co. IfEY; =0 and VarY; = 1, then it holds for each n > 1

E (|v1]3)
—n

where ® : R — [0,1] denotes the distribution function of the N(0,1)-distribution and C < oo is a universal
constant, which does not depend on the distribution of the random variables Y1,Ys, .. ..

sup P(L\/;Yn < x)—@(x)’ <C (47)

z€R

Theorem 5.7 Let {p,} be a sequence of vectors, which is given by (45) and (46).

e Then it holds for each x > 0 that

lim P, (Tn(Xl7 oy Xn) < Jc) =F._1(2), (48)

n—oo

where F._1  : R — [0,1] is the distribution function of the noncentral x>—distribution with r — 1 degrees of
freedom, whose noncentrality parameter \ is given by

r

2
z:: e (49)

o Ifh; #0 for some j =1,...,r, then the power of the x*>—goodness—of—fit test converges, in the case of the
local alternatives {p,}, to a limit, which is larger than o and smaller than 1, i.e.,

a< lim Py (T,(Xy,..., X,) > Xi11-a) <1. (50)
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Proof
e The proof of the first part is analogous to the proof of Theorem 5.5 since due to (45) and (46) it holds
that
Zn L T
Z;:\/ﬁ<71 —DPnls - o Tl —pn7r_1) +h, where h = (hy,...,h._1)". (51)

for the random vector Z! , introduced in (39).

e Because of (51) one can show in a similar way as in the proof of the multivariate central limit theorem
in Lemma 5.2 that
lim Py, (Z, <x) = Fymi)(x) VxeR™L. (52)

n— oo

e In this context it is sufficient to notice that one can show, by using Berry—Esseen’s theorem in
Lemma 5.5 that (analogously to formula (10) in the proof of Lemma 5.2)

— for arbitrary t = (t1,...,t,_1)" € R""! and 2 € R it holds that

r—1
lim Py, (n_1/2 th (an — npnj) < m) = Ntk (7)),
j=1

n—oo
— where K is the covariance matrix, introduced in (41).
e In the same way as in the proof of Theorem 5.5 we now get from (52) that

lim Py, (AY2Z), <x) = Fy(areng, ) (X)  VxeR™.

— From this and from the definition of the noncentral x?-distribution in Section 1.3.2 it follows that

lim Py, ((AY2Z)T(AY?Z)) <2)=F,_1,(z) VzeR,

n— oo

— where A is the inverse matrix A = K~! in (42) and the noncentrality parameter ) is given by

T2
A= (AY?h)T(AY?n)=hTAR =) L.
j; Poj
e Thus, (48) is proved and because of @ <1— F._1 (X711 _,) < 1 also (50) is valid. O

5.3 Pearson—Fisher Test

e The null hypothesis Hy : p = po, considered in Section 5.2, is in fact a compound hypothesis since it is
equivalent to the hypothesis
H() . Pe Ao,

where Ay is the subset of distributions of the sample variables, which has been introduced in (35).

e If it shall be verified whether the distribution P of the independent and identically distributed sample
variables X1, ..., X, belongs to a given (parametric) class of distributions {Pp, 0 € ©} with © C R™, then
we can proceed in a similar way as in the case of the x?-goodness—of-fit test, discussed in Section 5.2.

e The sample function T;, : R™ — [0, 00), which has been considered in the definition of the Pearson—statistic
T (X1,...,Xp) in (36), is replaced by a modified sample function T, : R™ — [0, 00).
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5.3.1 Pearson—Fisher Test Statistic

e In the same way as in Section 5.2.1, we “coarsen” the model, i.e.,
— we partition the range of the sample variables X, ..., X,, into r classes (a1,b1],..., (ar, b, with
—00<a; <by=as<by=...=a, <b. <oo, where r is a (sufficiently large) natural number.

— Instead of the sample variables Xi,..., X,,, we once more consider the “class sizes” Z1,..., Z,, which
have been introduced in (32), where

Zj:#{izlgign,aj<X,;§bj} VjZI,...,’I‘.

e According to Lemma 5.4 it holds that (Z1,...,2,) ~ M,_1(n,p), where we now assume

— that the parameter p = (p1,...,pr—1)" € [0,1]""! of the multinomial distribution M,_;(n, p)

— is a (known) function 6 — p(8) of the (unknown) parameter vector 8 = (6y,...,60,,)" € © C R™ with
m<r—1.

e The hypothesis to be tested is Hy : p € {p(0), 0 € O}.

— In order to be able to proceed with the verification of this hypothesis in a similar way as in Section 5.2,

one first has to determine an estimator 6 = (61, ..., aAm)T for @ = (01,...,0,)7

~ o~

— This also provides an estimator (p1,...,p.) = (p1(0),...,p-(0)) for the probabilities
(p1y---,0r) = (p1(0),...,p-(0)), where

pj(0) =Po(a; < X1 <by) Vi=1,...,r.

Definition The random variable T}, (X1,...,X,), which is given by the sample function T, :R" — [0, 00) with

r

2
~ (Z-(xl ceyTp) —npi(Te, ... xn))
Tz, 2n) = I J ’
($17 y L ) Z nf)\j(xlm-wxn) (53)

j=1

is called Pearson—Fisher statistic.

Remark

e If the mapping 0 — p(0) is continuous and fisa (weakly) consistent estimator for 6,

— then it follows from the law of large numbers (cf. Theorem WR-5.15) that for arbitrary
je{l,....,r} and 0 € ©

1
lim Eg - Zj(Xh...,Xn)—]/)\j(X]_,...,Xn) =0.
n

n—oo

— Therefore, it is reasonable to reject the null hypothesis Hy : p € {p(8), 8 € O} if T, (z1,..., %)
is significantly larger than 0.

e In order to be able to make this decision,

— we first of all discuss conditions for the mapping 8 — p(0) which enable the construction of a
sequence of consistent, (maximum-likelihood) estimators 8., for 6 that are asymptotically normally
distributed.

— Then we determine the (asymptotic limit) distribution of the test statistic T, (X1,...,X,), intro-
duced in (53), for n — oo.
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5.3.2 Multivariate Central Limit Theorem for ML Estimators

In a similar way as in Section [-2.4.2, where the case m = 1 has been considered, it is possible to derive a
multivariate central limit theorem for consistent sequences of maximum-likelihood estimators for the parameter
vector 6.

In this context we need the following regularity conditions.

e The family {Py,0 € O} either consists only of discrete distributions or only of absolutely continuous
distributions, where © C R™ is an open set.

e It holds that
Py # Py if and only if 0+0.
e Theset B={x € R: L(x;0) > 0} does not depend on 6 € O, where the likelihood function L(x; @) is given
by
p(z;0) in the discrete case,

L(x;0) =
f(z;0) in the absolutely continuous case

and p(x;0) or f(x;0) is the probability function or density of Py, respectively.

e Furthermore, let the mapping @ — L(x;0) for each € B be three times continuously differentiable and
suppose that for each « € B it holds that

o 9

20 a5 | L = | 7o L(=z; 1,2,3Y, i1, ..., ik € {1,...

892189%/ (%,B)dx /8911 . aeik (x’e)dl‘ Vke{ ) ’3}7 11, ’ZkE{ 5 ,m},ee(‘),
B B

(54)
where the integrals have to be replaced by the corresponding sums in the discrete case.

e For each 8y € ©, a constant cg, > 0 and a measurable function gg, : B — [0, 00) exist such that for each
triple (i1,42,13) € {1,...,m}3

3 .
and
]Egoggo(Xl) < 00. (56)
Remark
o Recall :
— In general, the maximum-likelihood estimator 0= a(X 1,...,Xp) for 0 is defined as the solution
of the following optimization problem (cf. Section 1-2.2.2).
— 1In this context 8 : R* — © C R™ is a sample function with
L(gcl,...,xn;O)gL(xl,...,xn;a(xl,...,xn)) V(x1,...,2,) ER", 0 €O (57)
and
x1;0)...p(xy;0) in the discrete case,
L1, 2n;0) = p(1;0) ... p( )
f(x1;0) ... f(z,;0) in the absolutely continuous case.
e Under the above mentioned regularity conditions one can show that for arbitrary z1,...,z, € R the
estimate 6(x1,...,x,) fulfills the following system of equations:
o ~
L(z1,...,20;0(21,...,2,)) =0 Vi=1,...,m. (58)

00;
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e To formulate the multivariate central limit theorem, we need the notion of the Fisher—information
matriz, which has already been introduced in Section 4.3.1.

— For each 8 € © the m x m matrix I(0) = (I;;(0)) is considered with

0 0
I,;(0) = Eg(aei log L(X136) 5- log L(X136)) , (59)
— where it is assumed that the expectation in (59) exists for arbitrary i,57 € {1,...,m} (and is a

finite real number).

As a generalization of Theorem I-2.11, where the 1-dimensional case has been considered, it is possible to derive
the following multivariate central limit theorem for weakly consistent sequences of maximum-likelihood estimators
{0(X1,...,Xn), n > 1} for the parameter vector 6 which fulfill the system of equations (58).

Theorem 5.8

o Let the Fisher—information matriz 1(0) be positive definite (and therefore invertible) for each @ € © and let
{0(X1,...,Xn), n>1} be a weakly consistent sequence of maximum-likelihood estimators for 6.

e Then it holds for n — oo that

V(0(Xi,...,X,) — 68) < N(o,171(8)). (60)

The proof of Theorem 5.8 proceeds in a similar way as the proof of Theorem [-2.11. It is therefore omitted, cf.
for instance E.L. Lehmann und G. Casella (1998) The Theory of Point Estimation, Springer—Verlag, New York.

5.3.3 Fisher—Information Matrix and Central Limit Theorem in the Coarsened Model
e We now return to the “coarsened” model, already considered in Section 5.3.1.
— Here we assume that L : R x © — (0, 1) is the likelihood function with
L(z;0) =p;(0),  if x € (a, b, (61)
— where the probabilities p;(0) = Pgo(a; < X1 < bj;) are positive and smaller than 1.

e Furthermore, we agssume that the regularity conditions, formulated in Section 5.3.2; are fulfilled for the
likelihood function given in (61).

Lemma 5.6 Then it holds for the Fisher—information matriz 1(0) that

I(6) =C(6) C(9), (62)
where 0p1(6)/06,  9pi(0)/00  Opi(6)/06,,
p1(0) P1(9) vV pl(e)
Ip2(0)/06,  9p2(8) /06> o Op2(6)/06m
c(6) = p2(0) p2(0) p2(0) : (63)
Op.(0)/00, 0p,(0)/00;  0p,(0)/00,

p(0) p(0) pr(0)
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Proof
e Because of (61) it holds for each x € R that

-
log L(x;0) = Z Tia, <a<p,y logp; (0).
j=1
e From this it follows for the entries I;;(6) of 1(8) that

T

10) = By, 0w L0X:0) g 10 £(X130)) = 3 (g 1) (g 1064(0)) 0

(@) = (cO)TCo)) . .

)

\
[]-
/N
Ll
=
x~
=
N———
—
S
o~
N
N
/N
S
sy
o

Thus, Theorem 5.8 implies the following result.

Corollary 5.1 If the matriz 1(8) = C(0) T C(8), given in (63), is positive definite for each 6 € ©, then it holds
that
VAB(Xi,.., X,) = 0) = N(o, (C(0)" C(0) ) (64)

for each weakly consistent sequence {@(Xl, ooy Xn), n > 1} of mazimum—likelihood estimators for @ which are
obtained from observations of the “coarsened” model.

Remark

e From (61) it follows for the likelihood function L(z1,...,z,;0) that

or for the loglikelihood function log L(z1, ..., z,;0) that

log L(x1,...,2,;0) = Z Zj(x1,...,xn)logp;(0). (65)
j=1
e Each maximum-likelihood estimate 6 = a(Zl (1, Tn)ye oy Zr(21, ... 7an)) for 8 which is obtained
from the coarsened data Z1(z1,...,%n),..., Z(x1,...,x,) satisfies the system of equations
Olog L ey T3 0 .
%8 (%0 i) o i1 (66)

because of the above-mentioned regularity conditions.
o Here it follows from (65) that for arbitrary ¢ =1,...,m and 6 € ©

dlog L(xz1,...,2,;0) _ i Zj(x1,...,x,) Op;(0)

90; =  p0) d0;
or .
alOgL(Ila"'aIn;e) :sz(xlw"vxn)*npj(e) ap](0> (67)
891 = pj(e) 891 ’
where the last equality is due to the fact that
ZM:O, Vi=1,...,m. (68)
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5.3.4 Asymptotic Distribution of the Pearson—Fisher Statistic
The following theorem is the basis for the y2- goodness—of-fit test of Pearson-Fisher. Here we always assume that

e the likelihood function of the coarsened model, considered in (61), fulfills the regularity conditions of Sec-
tion 5.3.2,

e the Fisher-information matrix I(0), given in (62), is positive definite and {6,} = {0(X1,...,X,), n>1}is
a weakly consistent sequence of ML estimators for 8 which is obtained by considering the coarsened model.

Theorem 5.9

o Let IA“”(Xl7 ..., X,,) be the Pearson—Fisher test statistic given in (53), i.e.,

2

T (Zi(Xe,. s X)) — 0P (X0, X
7Xn):Z ( J( 1 5 n) npj( 1, 5 ))

T (X4, ... — , 69
(X1 = np;(X1,...,Xy) (69)
where p;(X1,...,Xpn) =p; (@(Xl, . ,Xn)),
e Then it holds that
lim Po(Th(X1,- -, X0) > X2 1 mia) =@,  Yae(0,1) (70)

n— oo

for each 8 € ©, where szﬂ—l—m,l—a denotes the (1 — a)—quantile of the x?~distribution with r — 1 —m degrees
of freedom.

It is possible to give a full proof of Theorem 5.9 by reinterpreting the x?-goodness—offit test of Pearson-Fisher as
a likelihood-ratio test, cf. for instance Section 4.7 in H. Pruscha (2000) Vorlesungen iber mathematische Statistik,
Teubner—Verlag, Stuttgart.

However, as this method of proof is rather complex, we only show a derivation of Theorem 5.9, which is partly
heuristic.

o Let p(6) = (p1(6),...,p(0))" and Z,(8) = (Z,1(6),. .., Znr(8)) " with

Z,;(6) = Zj(Xl"";j?L;npj(e) . g=1r (71)

e Since Ein(O) = o and since it is possible to write Zn(H) as a sum of n independent and identically
distributed random vectors, it follows from the multivariate central limit theorem (in the same way as in
the proof of Theorem 5.5) that

Z,(0) % Z(6) ~ N(o,B(9)K()B(8)), )
where
1/Vp(®) 0 0
so | O VRO o L@,

pi(0)(1 —p;(0)), ifi=j.
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— Thus, for the covariance matrix B(6)K(0)B(0) in (72) we get that

B(O)K(0)B(6) =1, — q(8)q" (8),  where q(8) = (vp1(0),....\/p:(0)) . (73)
— For the matrix C(0), introduced in (63), it holds because of (68) that q' (8)C(6) = o and thus
((c7©)c0) "' cT9) (1. - a0)a” @) ((CTB)C(E) ' CT(0))
= ((cT©®c®)'cT0)) (1. —a®)a’ ©))co)(CT(0)C(0)
(cT(o)C(O) "

— From (72) and (73) it now follows that

(CT(6)C(0)) ' CT(0)Z(8) ~ N(o, (CT(6)C(8)) ). (74)

e Furthermore, Corollary 5.1 and the Taylor series expansion yield

Vi B(8)(p(8,) — p(8)) = v C(6)(8,, — 0) + 0(8,, — 8) —% N(o0,C(6)(CT(8)C(8)) 'CT(9)).
— This and (74) imply that
Vi B(8)(p(8,) — p(8)) - C(6)(CT(6)C(6)) ' CT(6)Z(0). (75)
— Moreover, it follows from (69) and (71) that
To(X1,..., Xn) = Z(an(én)f
J: )
- Zni (0) + Zy,; 2, () VI () (8,) — py (8
g( (0) + Z,;(0) e ) pj@n)(m )~ 1;(6))
2
= Z (Zm(a) - \/ﬁ,\ (pj(/én) p7(0)) +0(1)> )
j=1 p;(0)

— where the last equality follows from the convergence

Zu@ ([0 1) T i
pj(gn)

which is due to 8,, — 6 and the continuous mapping theorem for random vectors (cf. Lemma 4.5).

T

e In other words: With the notation ¢(21,...,2.) = >.7_, 27 it holds that

o~

Tu(X1,. ., X0) = 9(Z(8) = Vi B(8) (p(8) — B(8)) +0(1)) (76)

— Together with (72) and (75), the asymptotic approximation formula (76) suggests the conjecture that
for n — o0 R X . _
Tu(X1,..., X0) 5 o( (T - C(0)(CT(0)C(8))'CT(9))Z(9)) - (77)

— However, the convergence in (77) does not directly follow from (72), (75) and (76), but needs a separate
proof, which is omitted here.
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e We now show that . _
(1.~ CO)(CT(6)C(8) ' CT(0))Z(6)) ~ X2 -1 (78)
e In (72) and (73) we have shown that

Z(0) ~ N(o,I, —q(8)q" (8)),  where q(0) = (Vm(8).....\/p.(0)) .

— Furthermore, it follows from q' (6)q(@) = 1 that

I
[a—
3
|
DO
2
2
o]
—
N
+
2
2
o]
—
N
=}
o)
~
o]
—
S
~

(1~ a(0)a™(0))”

— i.e., the covariance matrix

L—p1(8)  —/p1(O)p2(8) —/p1(0)ps(0) ... —\/p1(6)p,(6)

—/p1(@)p2(0 1— po(0 /2 @)ps(0) ... —/p2(0)p,(O

L — q(6)q"(8)) VP (: )p2(6) 1:7 (6) p (: )p3(0) p (: )p(0)
_\/pl(e)pr(e) —\/P2(9)Pr(9) _\/p3(9)pr(0) 1 _pr(e)

of the random vector 2(0) is symmetric and idempotent.

— This and the last part of Theorem 1.4 imply the representation formula
5 d
Z(0) < (1. —a(6)a’ (6))e, (79)
where € ~ N(o,1,).

e Moreover, also the matrix I, — C(6) (CT(H)C(O))_lCT(O) is symmetric and idempotent and from
q'(8)C(0) = o it follows that

(1. - cO)(CTO)c6)'CT(9)) (L — a(B)a” (6)) = I ~ C(B)(CT(H)C(8))'CT(6) ~ aB)a” (6).

— This implies that the matrix R = (IT - C(H)(CT(H)C(B))_lCT(H)) (Ir - q(B)qT(O)) is symmetric
and idempotent as well.

— From (79) and Theorem 1.9 we now get that
-1 5 d
#((L = CO)(CT(0)C(9))'CT(0)Z(9)) £ ¢(Re) =& Re ~ Xy
— Due to Lemma 1.3 it holds for the rank rk(R) of the symmetric and idempotent matrix R that
tk(R) = tr(R)
= u(L,) - t(CO)(CT(O)c)'CTO)) - tr(a(6)a” (0))

- (L) — tr((cT(e)C(e))‘1CT(9)C(9)) - tr(qT(a)q(e))

= r—m-—1.

e This proves the validity of (78).

Remark For the practical usage of the x?- goodness—of-fit test of Pearson-Fisher one can proceed in a similar
way as described in Section 5.2.2 in order to verify the hypothesis Hy : P € {Py, 6 € O}.
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~

First of all, a ML estimation 5(1‘1, ceyTp) = (51(331, oy @p)s e O, . ) T for @ = (6y,...,0,,)"
is determined by solving the system of equations (66).

Then the value of the test statistic T),(x1,...,x,), defined in (53), is calculated.

For sufficiently large sample sizes n the hypothesis Hy : P € {Pg, 0 € O} is rejected if

2
To(x1,...,2p) > Xr—1-m,1—a>

e where x7_; ,,, , denotes the (1 — a)—quantile of the x*-distribution with (r — 1 —m) degrees of
freedom.

5.4 Examples

5.4.1 Pearson—Fisher Test for Poisson—Distribution

e By observing the (independent and identically distributed) sample variables X1, ..., X,, it shall be tested if
the distribution P of X; belongs to the family of Poisson—distributions.

— So let ©® = (0,00) with @ = X and let {Pg, @ € ©} = {Poi()\), A > 0} be the family of Poisson—
distributions.

— We consider the following r classes {0}, {1},...,{r =2} and {r — L,r,r +1,...}, i.e.
(al, bl] = (—O0,0], (CLQ, bg} = (O, 1], ‘e (CL7~_1, b,«_l] = (’/‘ — 3,7" — 2], (ar, b.,} = (T - 2, OO] .

— The probabilities p;(A) = Pa(a; < X1 < bj;) then are given by

)\jfl B ) o0 )\ifl a
pj()\):(j_l)!e A vji=1,...,r—1 and pr()\)zzme A (80)

=7

e According to (66), every maximum-likelihood estimate X for A which is obtained from grouped data satisfies
the equation

d
- o PN

— Here it follows from (80) that

< (5 -
d d .
RSPV Lo 2

= -1 VvVj=1,...,r—1 and = -
;N A / pr () = il

L (i —1)!

— This and (81) imply that the ML estimate X fulfills the following equation:

i—1 .
i( X -1
r-1 - 2 (- 1)
lej(xl,...,wn) (% —1) 4 Zolor, ) = =0. (82)
" 2 (i —1)!

1=r
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e For each n there is one 1o = ro(n) € N, such that Z,(x1,...,2,) = 0 for each r > ro. This and (82) imply
that for r — oo

o~

~ 1 &
An = A yeey Tp) — Ty = — G-
(z1 Tp) > T n;x

— For a sufficiently large number r of classes {0}, {1}, ..., {r—2}, {r— 1,7, r+1,...} the sample mean
Tpn, which is a ML estimate for A in the non-aggregated Poisson—model, is a good approximation for
the ML estimation A, for A in aggregated Poisson—models.

— The null hypothesis Hy : P € {Poi()\), A > 0} is therefore rejected if

2

.  (Zj(x1,. . @) — i@, .., 2n))
Toar,..oay) = Y G Z) Zbs(on o))
n($17 ;In) ]2:; npj(l‘ly---7$n) Xr—2,1—a»
where p;(z1,...,2,) = pj(T,) with the function p; : (0,00) — [0,1] given in (80) and the estimation

T, for A

5.4.2 Pearson—Fisher Test for Normal Distribution

e Now let © =R x (0,00) with @ = (u,02)" and let {Pp, 8 € O} = {N(i1,02), u € R,02 > 0} be the family
of (one—dimensional) normal distributions.

— The probabilities p;(0) = Pg(a; < X1 < b;) are then given by

bj
— : P (x — p)?
;(0) = / f@0)de,  where [(5:0) = —— exp(~ 4. (83)
— According to (66), each maximum-likelihood estimate
O(x1,... xn) = (21, 20), 02 (21, .y 20)) T
for @ = (u,0%) " which is obtained from the aggregated data satisfies the system of equations
b.
i 0

. J 5gf(w:0)dx

Y Zi(wr, . wn) ————— =0 fori=1,2. (84)
. J

J=1 [ f(x;0)dx

— Here it follows from (83) that
Q. T o, 0 o e (x —p)? 1
o @0 =" [0 o o rw6) = f:0) (o~ ).
e This and (84) imply that the ML estimate g(xl, ..., Ty) satisfies the following system of equations:
bj bj
, J(@—n)f(z;0)dx , J (@ = p)? f(2;0) do
ZZj(l‘l,...,.’L‘n)aj b :O, ZZj(xl,...,xn)aj b, —naQZO,
i=t [ f(x;0)dx J=t [ f(x;0)dx

where the first equality of this system of equations is equivalent to
bj
. [ xf(z;0)dx .
o
ZZj(lEl,.‘.,.’L‘n) iji —MZZj(xl,...7$7l) =0.
=1 f(x;0)dx =1

aj
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e Thus, the ML estimate 5(371, vy xy) = (w1, ..., 20), 0% (21, ..., 2,)) | fulfills the system of equations
b; b,
. [ af(z;p,0%) da , [ (@ —p)?fz;p,0%) dx
1 a; 1 a;
M:ﬁ ZZj(Il,...7IIJn) ij s 0215 ZZj(iL’l,...,CCn) ! b s
j=1 [ fz;p,0?) da =1 [ f(@;p,0%) dx
aj {lj
— which for a sufficiently large number r of classes (a1,b1],..., (ar,b;] can be solved approximately in

the following way:

T

> (e =) Zj(r,. . x), (85)

Jj=1

~
~

S|

=)
S|

r
ZCij(l’l,...,(En), 6'2N
j=1

— where ¢; = by is the right endpoint of the first class, ¢, = b,_; is the left endpoint of the r—th class
and ¢; = (bj_1 +b;)/2 is the center of the j—th class for j =2,...,r — 1.

e The null hypothesis Hy : P € {N(u,02), p € R,0? > 0} is rejected if

T ~ 2
eal (Zj(xlw"?l'n)7npj(xla"'7l'n))
To(z1,...,2n) = E 5 o)

= i (X1, T

2
> Xr73,1704 ’

where pj(z1,...,7,) = p;(ii,5%) with the function p; : R x (0,00) — [0,1] given in (83) and (i,5?) is the
estimation for (u,0?), given in (85).

Remark
e The approximate solution (85) of the system of equations (84) shall now be used if the number r of
classes is large enough.

— This requires a sufficiently large sample size n.

— In other words: If the sample size n is small, then the y2-goodness—offit test is not suited to verify
the hypothesis for normality.

e Alternative tests for normal distribution are the following goodness—of—fit tests of Shapiro—Wilk—type,
which lead to acceptable results even for a small sample size n.

5.4.3 Goodness—of-Fit Tests of Shapiro—Wilk—Type

e In this section we discuss two goodness—of-fit tests of Shapiro-Wilk—type which can also be used to verify
the hypothesis Ho : P € { N(i,0?%), u € R,0? > 0}.

e Here the order statistics X(1),..., X of the (independent and identically distributed) sample variables
Xi,..., X, are considered, which have already been introduced in Section I-1.4.

— Recall: The order statistics are defined by using the sample function ¢ : R® — R”, where
(1, 2n) = (1), 2m)) = (21, .., T0) with z(;) = min{z; : #{k : x, < z;} > i} (86)

for each ¢ € {1,...,n}.

— The mapping ¢ : R” — R", given in (86), is a permutation of the components of the vector (z1, ..., %),
such that
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— For each w € Q) let now
(X(l)(w), o ,X(n)(w)) = @(Xl(w), . 7Xn(w))
be the (measurable) permutation, given in (86), of (X1 (w), ..., X,(w)), such that
— The random variables X (1), ..., X(n) : @ — R are called the order statistics of (X1,..., X,).

o If X; ~ N(u,0o?) for certain p € R and o2 > 0, then it is easy to see that the following representation
formula holds for the expectation b; = E X(;) of the order statistics X (;):

b; = p+ oa; Vi=1,...,n, (88)

— where a; = EY{;) is the expectation of the i—th order statistic Y{;) for N(0,1)-distributed sample
variables Yi,...,Y,.

— The benefit of the representation formula (88) is that the expectations ay,...,a, are available in the

form of tables or can be determined using Monte Carlo simulation.

e Since the vectors (b1, ...,b,) and (X1, ..., X(,)) should differ only little under Hy, the following empirical
correlation coefficient is considered to verify the null hypothesis
Hy: P € {N(u,0?%), peR,0? >0}
N ;(bi -b) (X — X)
T(Xy,...,X,) = = (89)

\/i (b =52y 3 (X — X)”

~.

where b= """ b;/nand X =Y | X;/n.

1. Shapiro—Francia test

e Since correlation coefficients are invariant under linear transformations, we are able to replace b; in
(89) by a; for each i € {1,...,n}, wherea =Y., a;/n = 0 holds.

e Furthermore, it holds that

fj(xm ~-X)* = i(xi ~-X)*  and iaiY: 0,
=1

i=1 =1

i.e., the definition of T(X1,...,X,) in (89) is equivalent to

2 aiX(Z-)

X)) = =1 .
St Een 7

e Since it always holds that |T(X1,..., X,)| < 1, the null hypothesis H is rejected if T(Xy,...,Xn) <
dn.a, Where g, o, denotes the a—quantile of the distribution of T'(X7, ..., X,).

T(X,

e This is the so—called Shapiro—Francia test for normal distribution, where the quantiles g, o of the

distribution of T(X 1,-..,Xp) can either be taken from a table or be determined using Monte Carlo
simulation.
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2. Shapiro—Wilk test
e In (90) it is possible to consider the linear transformation
(a),...,a)T =K Yay,...,a,)"
instead of a1, ..., an, where the covariance matrix K = (k;;) is given by
kij =E((Yu) —ai)(Y) —a;))  with Y ~ N(0,1).

e The test constructed in this way is called Shapiro—Wilk test.
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6 Nonparametric Localization Tests

6.1 Two Simple Examples of One—Sample Problems
6.1.1 Binomial Test

e The x? goodness—offit test considered in Section 5.2 can be replaced by the following binomial test if r = 2,
i.e., if only two classes are considered (for example when dealing with binary data).

— Then we partition the domain of the (independent and identically distributed) sampling variables
X1,..., X, into two subsets (a1, b1] and (az, bs], such that

(a1,b1] N (ag,bo] =0 and  P(X; € (a1,b1] U (ag,bs]) =1,
and consider the “class size”
T(X1,...,Xp)=#{i: 1<i<n,a1 < X; <b}.
— One can easily see that T = T(X,...,X,) is binomial distributed, i.e.,
T ~ Bin(n, p), where p = P(a; < X1 < by). (1)

e To begin with, we consider the problem of testing Hy : p = po versus Hiy : p # po, where pg € (0,1) is an
arbitrary fixed number.

— Due to (1), Hy is rejected if T < t,, or T > t1_q,,

— where the “critical values” t,, and t1_,, for arbitrary a;, as € (0,1) with oy + as = « are given by

ta, = max{teR: P, (T <t)<ai}

k
max{k €{0,1,...,n}: Z (?)pé(l —po)" Tt < Oq}
i=0

and

tia, = min{teR: P, (T >t) < as}
n n ] )
= min{ke{0,1,...,n}: Y i (1 — po)—i < }
minfie 0.1,y 3 (i1 <

— For pop = 0.5 one usually chooses oy = g = /2. If pg is close to 0 or 1, it is advisable to choose
smaller or greater than as, respectively.

— The quantiles t,, and ¢1_,, of the binomial distribution Bin(n, pg) can either be taken from tables or
be determined using Monte Carlo simulation.

e The (one-sided) problem of testing Hy : p < pg versus Hy : p > po can be treated in a similar way. Here
Hy is rejected if T > t1_4.

e In an analogous way, one obtains a decision rule for the (one-sided) problem of testing Hy : p > po versus

H, : p < pg, where Hy is rejected if T' < t,,.

Remark
e The binomial test described above is also called sign test because the generation of 2 classes can be
perceived as binarization of the original data.

e In the two one—sided problems of testing, the critical values t;_, and ¢, are determined for p = pg
although the null hypothesis is Hy : p < pg or Hy : p > po, respectively.
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— Considering the values t;_, and t, anyway does here not contradict the fact that for each p < pg
or p > pg the critical value would be smaller than t;_, or greater than t, and that Hy would thus
have to be rejected more often.

— The choice of the critical values ¢;_,, and ¢, can be explained by the fact that one does not consider
a single p with p < py or p > pg, but that p can be arbitrarily close to pp and hence, in particular,
also p = pg is allowed.

o If the sample size n is large and if pg is close to 0 or 1,

— the direct computation of the quantiles ¢;_, and ¢, of the binomial distribution Bin(n,pg) is
difficult.

— The law of rare events (cf. Section WR-3.2.2) implies that t1_, and ¢, can be approximated
by quantiles of the Poisson distribution Poi(\) in this case, where A = npg or A = n(1l — pg),
respectively.

e Moreover, for arbitrary fixed pg € (0, 1) the critical values ¢1_,, and t,, can be approximated by suitably
transformed quantiles of the normal distribution N(0,1) if the sample size n is ,sufficiently large”.

— In this case, it follows from the central limit theorem of DeMoivre-Laplace (cf. Theorem WR-3.6)

that the transformed test statistic
r_ T —npo

npo(1 — po)
is approximately N(0, 1)—distributed, i.e., that

t — npg

P(T<t)=PT <t)=~d{), where /= —(————
npo(1l — po)

and @ : R — [0, 1] is the distribution function of the N(0, 1)—distribution.

— Therefore, one gets that t, & npy + zo\/npo(1 — po), where z, is the a—quantile of the N(0,1)-
distribution.

e Possible criteria for “sufficiently large” which are mentioned in literature are, e.g., the conditions n > 20
and 10 < npyg < n —10.

— When investigating the (two—sided) problem of testing Hy : p = po versus Hy : p # po, then Hy is
rejected if

T < npo + 2o, V1po(1 — po) or T >mnpy+ z1—a,vV1po(l —po).

— Similar approximation formulas can be derived for the critical values of the one—sided tests men-
tioned above.

Example
e Let the distribution function F : R — [0, 1] of the sampling variable Xy, ..., X, be continuous and let
~p be the p—quantile of F, i.e., let F(v,) = p for p € (0,1).

e In order to verify the hypothesis Hy : v, = 72, one can consider the “coarsened” random sample
(Y1,...,Y,) with

1, if Xi <,
0, ifX7;>’)/p.

5/7;:

e Then Y; ~ Bin(1,p) for each i = 1,...,n and the hypothesis Hy : v, = 72 with respect to (X1, ..., X,)
is equivalent to the hypothesis Hy : p = pg with respect to (Y7,...,Y,).

e Hence, the binomial test can in particular be used to verify the hypothesis Hy : v9.5 = 0.
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6.1.2 Run Test for Randomness

e In this section it is not assumed that the sampling variables X, ..., X, are independent.

— We merely assume that X,..., X, can only take the values 0 or 1, where the value 0 shall occur n;
times and the value 1 shall occur ns times; no = n — nq.

— Thus, there are altogether (") possible realizations of the random sample (X1,..., X,).

n

— We now want to verify the null hypothesis Hy that each of these (m
probability.

) realizations occurs with the same
— In other words: We want to check whether the localization, i.e., the order in which the n; ones and no
zeros are arranged, is “purely at random”.
e As a test statistic T : © — {0,1,...} we consider the number T(w) of runs in the (concrete) sample
w=(x1,...,2n), i.e., the number of (sub—) sequences of consecutive equal symbols w = (x1,...,zp).
Example

e Let n =20 with nqy = 12 and ny = 8. For
w=(1,1,0,0,0,0,1,1,1,0,0,0,0,0,1,1,0,0,0, 1) (2)

one then gets that T(w) = 7.

e We now investigate the question whether the data given in (2) is compatible with the hypothesis Hy
that the order is “purely at random” or whether Hy should be rejected.

e For this purpose, we specify the distribution of T' by considering a suitably chosen (Laplace) probability
space, cf. Section WR-2.4.1.

Theorem 6.1  Assuming that Hy is true, it holds for each i =1,2,...,min{ny,na} that

2(’/7/1 — 1) (ng — 1>
-1 i1 , wenn k = 21,
n
ni
P(T = k) = (3)
-1 -1 -1 -1
(")) (o))
! ! ! , wennk=2i+1.
n
ni
Furthermore, it holds that
2 2 2 —
ET—1+ 29" g Varp = 2rane(une —n) (4)

n?(n —1)

Proof

e We only prove (3) for the case k = 2i since the proof for the case k = 2i + 1 proceeds analogously.

— Hence, let k = 2i. Then there are at a time ¢ runs consisting of ones and zeros, respectively.

— For the decomposition of the ny zeros into i subsets, there are ("11_711) possibilities.

no—1

2 ) possibilities to divide the ns ones into ¢ subsets.

— For each of these decompositions, there are (
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— If we now additionally assume that the sample w = (x1,...,x,) can begin either with 1 = 0 or
with 21 = 1, we obtain a total of 2("' ") ("27") decomposition possibilities.

— Therefore, (3) is proved for the case k = 2i.
e In order to determine the expectation ET', we use the following consideration.

— For each j =2,...,n we consider the indicator variable Y; : Q@ — {0,1} with

v 1, if a run starts at the j—th position,
j =
0, else.

— Then it holds that {w € Q: Yj(w) =1} ={w € Q: X;_1(w) # X;(w)}, ie., there are 2 (7?121)
possibilities that a run starts at the j—th position. '
— Therefore, one gets

n—2
EY, = ]P)(Y :1) = 2< P ) — 92 (’I’L—Q)'(n—nl)'nll B nl(n—nl)

<n> T (n—=ng—Dl(ng —Dn!l 2 n(n —1)

— Together with the identity

this implies that

ET = 1+Y EY; = 4ol —n)

=2

n

e The variance formula in (4) can be proved in a similar way because (5) implies that

VarT = E (ZEYj) — (ZEYj)
j=2 j=2
n n 2
= YEV + Y E(WY) - (LEY)
j=2 2<j1,J2<n, j1#j2 Jj=2
n n 2
= ZEYJ + Z E<YJ1Y]2) B (Z]EYJ) ’
j=2 2<71,J2<n, j17#j2 Jj=2
hence one only needs to specify the moments E (YJIYJQ) ([l

Remark
e A possible alternative to the null hypothesis Hy that the localization of the zeros and ones is “purely
at random” is their trend to form clumps or clusters.
e As rejection region of Hy one then chooses the left—-hand end of the distribution of T'.

e In other words: Hy is rejected if T < r,(n1;m2), where
ro(ni;ng) = max{r e{1,2,...} : P(T<r)< a}

is the a—quantile of the distribution of the test statistic 7.

e The quantiles r,(n1;n2) can be computed using the formulas for the probabilities P(T = k) given in
Theorem 6.1. They can be taken from tables in literature.



6 NONPARAMETRIC LOCALIZATION TESTS 128

Example (continued) For a = 0.1 and ny = 12, ny = 8 one obtains that 7 1(12;8) = 7. Moreover, it holds for
the sample considered in (2) that

Tw) =7 (<r1(12;8)),

i.e., Hy is rejected.

If the (sub—) sample sizes n; and ng are large, the determination of the quantiles r,(n1;n2) of T = T,,, », involves
a considerable computational cost. A way out is offered by the following central limit theorem, which we state
without proof.

Theorem 6.2 Ifnq, no — oo such that n1/(n1+n2) = p or equivalently na/(n1+n2) = 1—p forap € (0,1),
then it holds that

lim ET,, n, = 2p(1 —p) and lim

T, = 4p3(1 —p)?
n1,n2—=00 N + No ni,m2—00 N1 + No Var n1,n2 D ( p) (6)

as well as

TI n —2(n 1-
lim IP’( iy = 2(m + n2)p(1 = p) Sa:):fb(a:) VzeR, (7)

n1,n2—00 2y/n1 +n2p(l —p)
where ® : R — [0, 1] is the distribution function of the N(0, 1)—distribution.

Remark Theorem 6.2 implies that for large ni,no the null hypothesis Hy is rejected if

TVL],TLQ - 2”1”2/(”1 + n2)

[e2%] 8
2n1ns /(N1 + n9)3/2 >z (8)
where z,, is the a—quantile of the N(0, 1)—distribution.
6.2 Wilcoxon—Rank Test
6.2.1 Model Description; Median Test
e We now return to the case that the sampling variables X1, ..., X, are independent and identically distributed

with the distribution function F': R — [0, 1].

— At the end of Section 6.1.1, in the context of the binomial or sign test, we have discussed a median
test for verifying the hypothesis
Ho:v5 =0, 9)
where 705 is a median of F'| i.e.; F(y0.5) = 0.5.
— In this section we consider another (more efficient) approach for testing the hypothesis given in (9).

e In doing so, we assume that the distribution function F' of the sampling variables X1, ..., X, belongs to
the following (nonparametric) class of distribution functions.

— Let G : R — [0, 1] be an arbitrary continuous distribution function with the following kind of symmetry
with respect to the origin: For each z € R it holds that G(—z) =1 — G(z).
— This implies in particular that G(0) = 1/2, i.e., zero is a median of G.

— Let the family A of distribution functions of the sampling variables X1,..., X,, which is taken into
account in the (two-sided) Wilcoxon test be given by A = {Fs : Fs(z) = G(z —6) Vz,0 € R}.
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— Since G is continuous, one then gets that
P(X; =2) =P(X; = X;) =0 (10)
for each € R and for arbitrary i,j = 1,...,n with i # j.
e We discuss the (two-sided) problem of testing Hy : § = dg vs. Hy : § # Jp for some &y € R.

— Here we can (w.lo.g.) set dp = 0; otherwise, the transformed sampling variables X7,..., X, with
X! = X,; — o can be considered.

— In a similar way, also the (one-sided) problem of testing Hy : 6 =0 vs. Hy : 6 > 0 can be treated.

e For the verification of the null hypothesis Hy : § = 0 we consider the ranks Ry,..., R, of the random
variables |X1|,...,|X,| with

R¢:Z][{|XJ‘S|X1‘} Vi=1,...,n,

Jj=1

where the indicator variable Ty x; <|x,} : € = {0,1} is given by

)1, i X (w)] < [ Xa(w)],
Ly <) xay (W) =

0, else.
e Then we consider the test statistics
T} =Y Rillx,50;p and T, => Rill{x,co}. (11)
i=1 i=1
Remark
e Due to (10) it holds with probability 1 that
- n+1
T, = s —TF = ~Tr. 12
DB G (12)

e One can show that, assuming that Hy : 6 = 0 is true, it holds that T, 4 TFs cf. (18).

e Thus, in the case that Hy : 6 = 0 is true, the test statistics 77 and 7, should take values that are
approximately equal. Because of (12), this means that T, ~ (") /2.

e Very small or very large values of T, hence indicate that the alternative hypothesis Hy : § # &y might
be true, i.e., Hy : 6 = 0 is rejected if
T < tay2 or ) > ti—ay2, (13)

where the “critical values” ¢,/ and t;_, /o are the («/2)-quantile and the (1 — a/2)-quantile of the

distribution of T)F, respectively.

6.2.2 Distribution of the Test Statistic 7, for Small Sample Sizes

e If the sample size n is not too large, then the quantiles ¢,/ and t;_,/2 in (13) can be determined by
combinatorial considerations.

— Due to (10), the random vector R = (Ry,...,R,) of the ranks Ri,..., R, of |Xi|,...,|X,]| is a
(random) permutation of the numbers 1,...,n.
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— Then the test statistic 7, given in (11) can be represented as follows:
Th=YiZ, where Z;=1lx 50 (14)
i=1 ‘

—and R7! = (Rfl, ..., R;1) denotes the inverse permutation of R, i.e., if R; = j, then it holds that
R =i
J

e Moreover, the following lemma is useful to determine the distribution of 7).

Lemma 6.1 Assuming that Hy : 6 = 0 is true, it holds that:

e The random vectors (]I{X1>0}, e ]I{Xn>0}) and R = (Ry,...,R,) are independent.
o The components Z1,...,Zy of (Z1,...,Zy,) are independent and identically distributed with Z; ~ Bin(1,1/2).

Proof
e We first show that the random variables 1,0y and | X;| are independent for each i =1,...,n.
— For each = > 0 it holds that
1
]P)(]I{Xi>0} =1, ‘Xl| < l‘) = P(O < X; < 1‘) = G(Z‘) — 5
and
1 1 1
P(Lx,50) = ) P(Xi| <2) = 5 (Glr) = G(=2)) = 5 (G2) = (1-G(@))) = Gz) = 5
— Moreover, it obviously holds for each = < 0 that
— In the same way, it can be shown that
for each = € R.
e Since the independence of the sampling variables Xy, ..., X, implies the independence of the random
vectors (Lix, >0y, [X1l), ..., (Tix, >0}, [Xnl),
— it follows that (I;x,>0},---, I{x,>01) and (|X1],...,|X,|) are independent random vectors.
— Since R = (Ry, ..., Ry) is a Borel measurable function of (|X1/,...,|X,|), also the random vectors

(I{x,>0},---> I{x,>01) and R are independent.
e Therefore, one gets for arbitrary ¢ € {1,...,n} and z € {0,1} that

P(Zi=z) = P(Iix, ,>0) = 2)

- ZP(]I{XR_—1>O} =z | R:I') P(R:r)

D P(Iix ,s0p=z2|R=1)PR=1)

1 1
ZP(][{X"_1>O} :Z) PR=r) = 3 ZIP’(R:I‘) = 3

where the summation extends over all permutations r = (rq,...,7,) of the numbers 1,... n.



6 NONPARAMETRIC LOCALIZATION TESTS 131

e This implies that

}P’(Zl =21,y Lp = zn) = IP’(]I{XRI_QO} =Z21,..., ]I{XR;1>O} = zn)

= ZP(]I{XR;1>O} = Zl""’]I{XR;1>0} =z, |R=r)P(R=r)

= ZP(][{XT71>0} = Zly"'a]I{XT;1>O} = Zn | R = I‘) P(R: I‘)

= ZIP(]I{X1>O} = Zrys -5 Lx,>01 = 2r,

= Y P(Ix, 500 = 2y -5 Agx, 50y = 2r, ) PR =1)

1

for arbitrary z = (z1,...,2,) € {0,1}™.

Theorem 6.3  Assuming that Ho : 6 = 0 is true, the distribution of T, is given by

R=r)PR=

P(TH =k) = ;‘7’1 Vk=0,1,...,n, (15)
where .
ak:#{z:(zl,...,zn)6{0,1}": Zzzlzk} (16)
i=1
Moreover, it holds that
1 1)(2 1
Err = "D g varr - et D+l (17)
4 24
Proof
e The representation formula (14) for 7.7 and Lemma 6.1 imply that
n
. ar
P(TH=k) = ]P’(ZzZi:k) - 3 | P(Zi =21, Zn = 2) = o
i=1 z=(z1,...,2n)€{0,1}": 31 | iz;=k
for each K =0,1,...,n.
e Furthermore, one obtains that
N " 1 /m+1 nin+1)
+ _ A T _
ET; _E(;z&) _Z;ZE& - 2( ; ) .
and
— - 1 & n(n+1)(2n+1)
+ — . frd 2 . = — 2 frd
VarT,” = Var (;ZZZ) i:le Var Z; 1 i:le 2 . 0

Remark

e From (12) and (14) it moreover follows with Lemma 6.1 that

_ n+1 n+1 “ ) d .
T; _( ) )—Tn+ _( ) )—ZzZi =Y i(l-2) <> iz =T
=1 ] 3

i.e., under Hp : § = 0 it holds that

(18)
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e Thus, (12) implies that for each £k =0,1,...,n
1 1
P(szk):P(ngm—k):P(TJ‘:M—I@),
2 2
i.e., the distribution of 7 is symmetric with respect to the expectation ET,S = n(n + 1)/4.

e This means that also the quantiles ¢, ,, = max{t € R : P(T}] <) < a} have this property of symmetry,
i.e., for each a € (0,1) it holds that

n(n+1
toz,n = % - tl—a,n .

e The quantiles ¢, , can either be taken from tables or be determined using Monte Carlo simulation.

6.2.3 Asymptotic Distribution

e The direct determination of the quantiles /o and ¢;_, /o by using Theorem 6.3 is difficult if the sample
size n is large.

— Another way to approximatively determine the distribution of the test statistic 7,7 is based on the
representation formula (14).

— In this context the fact is used that 7,7 = >""" | i Z; is a sum of independent random variables, which

follows from Lemma 6.1.
— In fact, the central limit theorem for sums of independent (but not necessary identically distributed)
random variables implies that 7. is normally distributed.

e For this purpose we consider the following stochastic model: For each n > 1 let X,,1,..., Xpn : @ = R be
a sequence of independent random variables,

— where we (w.l.o.g.) assume that for each k € {1,...,n}
EX,. =0, 0 <02, = Var X, < o0 and Z@%k =1. (19)
k=1
— If the random variables X1, ..., X,, do not satisfy the conditions formulated in (19), then we consider
the transformed random variables X/ ,,..., X/ with

r Xnk - EXnk
nk T /nVar Xpn

— We denote the distribution function of X,; by F,r, where we do not exclude the case that F,j for
each k € {1,...,n} can depend on the number n of considered random variables X,1, ..., Xpnn-

(20)

The following central limit theorem of Lindeberg (cf.Theorem WR-5.22) is the basis to show that 7} is asymp-
totically normally distributed.

Lemma 6.2

o For eachn € N let Xp1,...,Xnn : @ = R be a sequence of independent random variables, which satisfy the
conditions (19).
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o [f furthermore for each ¢ > 0

lim / 22 dF(z) =0, (21)
LD Dy A
then it holds for each x € R that
lim P(an +.o X < (17) =d(z), (22)
n—oo

where ® : R — [0,1] 4s the distribution function of the N(0,1)—distribution.

Theorem 6.4 Under Hy: 6 = 0 it holds that

TH-ET+
lim IED(u <z) = ®(x) VazeR. (23)
n—o00 \/Var Tﬁ‘— )
Proof
e Because of (14) it is sufficient to show that the random variables X,,1,..., X, with
kZ, —kEZ
Xpp = 8 22k (24)

VVar T;F

satisfy the conditions of Lemma 6.2.
— It follows directly from equation (24) that (19) is fulfilled.
— Therefore, it merely remains to show that the Lindeberg—condition (22) is satisfied.

e For the distribution function F,j : R — [0, 1] of the random variable X, introduced in (24), it follows
from Lemma 6.1 that

—k
0, ifex< ——,
24/ Var T,

Fra(e) 1 . —k c e k
nk\L) = o I —F/— =7 D i
k 2 ov/Var T;F 2v/Var T,

k
1, if ——— <z
24/ Var TiF

— This implies that fR\(_E o 22 dF,;(x) = 0 for each k € {1,...,n} if n is chosen in such a way that
n? 612 9

= < ,
4Var T;F nn+1)(2n + 1) ©

where the last equality follows from the formula for Var 7.} in Theorem 6.3.
— Therefore, the validity of the Lindeberg—condition (22) is shown. O

Remark

e Because of Theorem 6.4 the following critical area is considered in the case of the (two-sided) test
problem Hy: 6§ =0vs. Hy: § #0.
e For sufficiently large n, Hy : § = 0 is rejected if
TrF —ETr
‘ V/ Var T;f

where ET,5 or Var T, are given in Theorem 6.3 and z,_q/5 is the (1 — a/2)—quantile of the N(0,1)—
distribution.

2 Zl—a/? ) (25)

e In the literature the condition n > 20 is suggested as a possible criterion for “sufficiently large”.
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6.3 Two—Sample Problems

e In this section we discuss nonparametric tests for the case that two independent random samples (X1,..., Xy, )
and (Y1,...,Y,,) are observed.

e In other words: We assume that the random variables X,,..., X,,,Y1,...,Y,, are completely independent
with the (unknown) distribution functions F' and G, i.e.,

F(z) =P(X; <x) and G(y) =P(Y; <y) Vez,yeR,i=1,...,n,7=1,...,m.
e Then, a (two-sided) test problem is for example given by
Hy: F(z) =G(z) VzeR vS. Hy,: F(z) # G(z) Jz eR. (26)

e As a one-sided alternative to Hy : F(x) = G(z) Va € R the following hypotheses can be considered:
Hy: F(z)>G(x) YVreR and F(z)>G(z) JzeR (27)

or
Hy: Flx) <G(z) VzeR and F(zr) <G 3FJzeR. (28)

6.3.1 Run Test of Wald—Wolfowitz

e For the analysis of the test problem, given in (26), one can apply the run test for randomness, which has
been discussed in Section 6.1.2.

— For this purpose, we combine the sample variables Xi,...,X,, and Y1,...,Y,, to one random sample
(X1, ., X)) = (X1, ., X0, Y1, Y0, where n = ny + no,
and consider the ordered sample (XE1)’ e ,X{n)).
— Here we assume that the distribution functions F' and G are continuous, i.e., the mapping
(X1 X)) = (X1 X ()
is uniquely determined with probability 1.

e Under Hy : F(z) = G(z) Vo € R it is to be expected that the Xi’s and Yj’s in (X{,),..., X(,)) are “well
mixed”,

— since the sample variables X(/1)7 . ,Xén) then are independent and identically distributed.

— If the trend for “clumping and clustering” is considered as an alternative, then Hy is rejected if the
number T of iterations in the (binary) sample (Z1,...,Z,) is “too small”, where Z; = 0 if X(’i) =X,
for some j € {1,...,n} and Z; =1 ifXEi) =Y; for some j € {1,...,n}.

Examples

e In a medical study the body heights of n; = 8 girls and ny = 10 boys were analyzed.

e The measurement results are:

117 121 122 124 125 126 128 132
yj‘ll() 113 114 115 116 118 119 120 123 127

i
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e If we order these measurements by size and assign a 0 to the heights of the boys and a 1 to the heights
of the girls, then we obtain the sequence

w = (0,0,0,0,0,1,0,0,0,1,1,0,1,1,1,0,1,1)  with T'(w) = 8. (29)

e Otherwise, Theorem 6.1 implies that for the a—quantile r, (n1;n2) of the distribution of T it holds that
r0.05(8; 10) = 6 for o = 0.05.

e In this case Hy is therefore rejected because T'(w) = 8 > 6 = r(.05(8; 10).
Remark

e The run test considered in this section is not able to identify alternatives of the type (27) or (28).

e The example given in (29) makes this clear: Since the number of iterations T'(w) = 8 does not change,
if we (in contrast to the previous approach) assign a 1 to the heights of the boys and a 0 to the heights
of the girls.

e Also for two—sided alternatives the run test of Wald—Wolfowitz, also called “omnibus—test”, should only
be used if the form of the alternative is not specified further.

e For special alternatives, which for example only affect location or variability characteristics, other test
methods are more efficient, cf Section 6.3.2.

6.3.2 Wilcoxon Rank—Sum Test for Location Alternatives

e We now discuss another nonparametric test for the case that two independent random samples (X1, ..., Xp,)
and (Y7,...,Y,,) are observed.

e However, we will here consider more special alternatives as in (26) — (28).

— We assume that the random variables X;,...,X,, and Y1,...,Y,, are completely independent with
the (unknown) continuous distribution functions F' and G.

— Similar as in Section 6.2 it is assumed that there is some 6 € R such that
F(z) = G(x +9) VreR.

— A (two-sided) test problem, which is consistent with the above mentioned more general test problem
(26), is then given by
Hy:6=0 vs. Hy:6+#0. (30)

— The following hypotheses can be considered as one—sided alternatives to Hy : § = 0:

Hi:6>0 or Hi:6<0. (31)

e In the same way as in Section 6.3.1 we merge the sample variables Xi,...,X,, and Yi,...,Y,, to one
combined random sample (X7],..., X)) = (X1,...,Xn,, Y1,..., Yn,), where n = ny + na.

— Furthermore, we consider the (random) vector of the ranks R’ = (RY,..., R})) of the sample variables
X{,..., X} in the combined sample, where

R;:Z]I{XJ’SXI,} Vi=1,...,n.

j=1

— Asin Section 6.3.1 it has to be expected under Hp : § = 0 that the X;’s and Y}’s in the combined sample
(X(1y - - -» X{(,,) are “well mixed” because then the sample variables X{,), ..., X{, are independent and
identically distributed.
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— Thus, for the two—sided test problem in (30), Hy is rejected if the rank—sum
ni
Tnl,nz = Z R; (32)
i=1

is “too small” or “too large”.

e In order to perform the test, the distribution of the test statistic T}, n,, introduced in (32), has to be
determined. For this purpose the following lemma is useful.

Lemma 6.3

o Let X:Q —{...,-1,0,1,...} be a discrete random variable such that E|X| < oo and that for some u € R
the following symmetry property is fulfilled:

PX=pu—k)=P(X =pn+k) Vked{ ..,—1,0,1,...}. (33)
o Then it holds that EX = p.

Proof

e We can w.l.o.g. assume that u = 0 since otherwise the transformed random variable X’ = X — i can
be considered.

e Then it follows from (33) with p = 0 that

EX = EP(X =k) = — EP(X =—k) + EP(X =k) = 0.
2o, PSR = T RS g kR =R .
Theorem 6.5
e Under Hy : 0 =0 the distribution of T, n, is given by
BT,y = ) = oSomanz_ gy mlmtl) L mmt D) (34)
ni,n2 ni + no 9 g oo ey 101102 2 ’
ni
where
ni+ns
Ak,ny1ny = #{Z = (Zl’ . '7Zn1+712) € {Oa 1}n1+n2 : #{7’ PR = 1} = N, Z iz = k} ' (35)
i=1
o Furthermore, it holds that
P(Thym, =k) = P(Thyne =2u— k) Vked{ ..,—1,0,1,...} (36)
and therefore
ETnl,nz =M, (37)
where p=mny(ny +n2+1)/2.
Proof
e Under Hy: § = 0 the sample variables X7,..., X}, ., are independent and identically distributed.
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— Hence, each of the ("1;"2) partitions of the ny variables Xi,...,X,, into the n; + na existing
rank spots has the same probability.

— Moreover, it holds for the minimum and maximum value t,in, and tmax, respectively, of T),, ,, that

ni na+ni
. ni(ng +1 . ni(ny+1
f'min:ZZ: 1(; ) and tmalez 1 = ning + 7(2 )

=1 i=no—+1

— From this the validity of (34) — (35) is obtained.
e In order to prove (36) we use the following symmetry property.
— Each z = (21,...,2n,4n,) € {0,1}" "2 with
ni+nz
#izi=1}=m and Z iz; = k
i=1
corresponds to some Z = (21, ..., 2n, 4+n,) € {0,112 with
ni+ng
#{’L : Z,L1+"2+1_i = 1} =N and Z (n1 +ng+1— Z) Zi = nl(nl + n9 + 1) —k.

i=1

— Since the sample variables X 21), X E") are independent and identically distributed, it thus fol-
lows for each k € {...,—1,0,1,...} that

]P(Tnl,ng = k) = ]P(Tnl,ng = nl(nl + n2 + ]-) - k) = ]P)(:rnl,nz = 2:“’ - k) 3 (38)

where 2u = nq(ng + ng + 1).
In order to show (37) it is sufficient to substitute k = p — ¢ in (38).
— Then (38) implies that

BTy = = 1) = P(Tyng =i 44) Vi€ {or,=1,0,1,...}.

— From this and Lemma 6.3 the validity of (37) is obtained. O

Remark

Now, (38) implies the following symmetry property for the quantiles to ny ny Of Ty ns-
— For each o € (0,1) it holds that
ta,nl,nQ = na (nl +ng + 1) - tlfa,nl,ng .

— The quantiles ¢4 n, n, can either be taken from tables or be determined using Monte Carlo simu-
lation.

The null hypothesis Hy : § = 0 is rejected in favor of Hy : 6 # 0 if

Tn17”2 < ta/2,n1,n2 or Tnhnz > nl(nl +ng + ]-) - ta/2,n1,n2 :

Analogously, the null hypothesis Hy : § = 0 is rejected in favor of H; : d <0 or Hy : § > 0 if

Tnl,nQ Z ni (nl + na + 1) - ta,nl,nQ or Tnl,ng S ta,nl,ng .

If the sample sizes n; and ny are large enough, it is difficult to determine the quantiles tq n, n, directly via
Theorem 6.5. However, then the distribution of the test statistic T}, », can approximatively be determined from
the following central limit theorem.
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Theorem 6.6 If ny, no — oo such that n1/(n1 +n2) = p or na/(ny +n2) = 1 —p for some p € (0,1), then
it holds that

= ®(x) VzeR, (39)

lim IP’(

ni,n2—>00

Tnl,nz_]ETnl,nz < (E)

v VarTy, .

nl(nl + ) + ].)
2 )
and @ : R — [0,1] is the distribution function of the N(0,1)—distribution.

where
nan(nl + no =+ ].)

ETh n, = B

VarT,, n, =

Remark

e Because of Theorem 6.6 the null hypothesis Hy : 6 = 0 is rejected for large ny, no in favor of Hy : 6 # 0
if

‘Tnl,ng - nl(nl + no + 1)/2
\/nlng(nl +n2+1)/12

where 2z, is the a—quantile of the N(0, 1)-distribution.

> Z1-a/2;

e Analogously, Hy : § = 0 is rejected in favor of Hy : § >0 or Hy : § <0 if

Tnla”Q _nl(n1+n2+1)/2 > Tnl,nz _nl(nl +n2+1)/2

Z Zl-a or < —Zl—a-
\/nan(nl +77,2+].)/12 \/TLlTLQ(TLl +n2+1)/12




