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1 Two different characteristic functions can be the same
on a finite interval but not on the whole real line

If there exist two characteristic functions ¢; and ¢o which are coincided in the interval
[—1,1], are these functions also the same on the whole real line R? Let us consider the
following example :

x, if x| <7w/2

hz) = {o, if |z| > /2

We define c(t)=/%_ h(z)h(x + t)dxz. Then

t) 1+3r 1t =273, if —n<t<0
C
o1 (t) = a0~ 1=3n M+2n733, f0<t<nm

0, if |[t] > 7

is a characteristic function, because ¢;(0) = % =1, and ¢4(t) is positive definite.

=

Furthermore, we can define ¢,(t) as follows :

Pa(t) = ¢1(t), for |t| < 7
Go(t +2m) = ¢o(t), for t € R

Now, we will prove that ¢,(t) is a characteristic function. Then we can obtain
characteristic functions which coincide in [—7, 7] but not on the whole R and our proof



will be completed.
By using Fourier Transform, we can describe that ¢o(t) is a characteristic function.
Because ¢,(t) is an even function, its Fourier expansion must be of the form

1 [e.9]
S0+ > " ay, cos(nt) (1)
n=1

2 1 gym
where ay = —/ oo(t)dt, a, = —/ ¢a(t) cos(nt)dt
mwJ—7 mwJ—7
If we calculate the coefficients, it can be illustrated :
ap =0, a, =67 2[n"%(1 + cos(nt)r) + 47 *n"*(1 — cos(nm))], n =1,2,...

It is easily proved that the series in (1) converges uniformly, all of the coefficients are
non-negative and the sum of the coefficients is equal to 1.

Proof. (i) %ao + >0 ap cos(nt) < %ao + >0 lan] = 302, a, = 1. Therefore, series
converges uniformly. (ii) 1 + cos(nm) have values between 0 and 2. Accordingly all of
the coefficients are non-negative. (iii) >0°; a,, = ¢2(0) = 1.0J

Remark 1.1. If ¢,(t) are positive definite for each n then so is any linear
combination ¢(t) = >, anPn(t) with non-negative weights a,. If each ¢,(t) is
normalized with ¢,(0) =1 and ¥, a, = 1, then of of course $(0) =1 as well.

Now let ¢,(t) = cos(nt). Then ¢,(0) =1 and ¢,(t) is positive definite for all n € N.
Proof. (i) ¢,,(0) = cos(0) = 1.
(i) ¢n(t) = cos(nt) = 0.5(e"™ + e~"") is the characteristic function of the probability
distribution which take values n and —n with probability 0.5 respectively. Therefore, it
is positive definite. [J

According to the remark 1.1 ¢5(0) = 1 and ¢o(t) = Y02, a, cos(nt) is positive definite.
Therefore, ¢5 is a characteristic function. Consequently, we can conclude that ¢;(¢) and
¢2(t) are not always coincide for all t € R although ¢;(t) = ¢2(t) for t € [—m, 7.

Based on the result above, it is observable the following interesting phenomenon. Let
say F; and Fy are distribution functions of ¢;(t) and ¢9(t), respectively. Then the
following equation will be satisfied.

O1(0)o1(t) = ¢1(t)Pa(t) for all t € R

This equation can be replaced by distribution functions F; and Fy:
Fl * F1 = Fl * F2

However the calcellation law will not be satisfied here. This is, F; = F3 is not valid. As
a consequence, we can recognize that the quotient of two characteristic functions will
not be always a characteristic function. The exact example with this phenomenon will
be illustrated in the following section.



2 Is the ratio of two characteristic functions also a
characteristic function?

Assume that there are two characteristic functions ¢; and ¢,. And the interesting point
is now whether or not the ratio ¢;/¢, is also a characteristic function. Through the
counterexamle, it is allowable to see that it is not always true. Before illustrating the
example, let us introduce both the definition of an analytic characteristic function and
one of the properties of such a function.

A characteristic function ¢ is said to be analytic if there exists a number r > 0 such
that ¢ can be expressed with a convergent power series in the interval (—r,7), i.e.
o(t) = S22y arth k!t € (—r, ), with some complex coefficients ay,.

Corollary 2.1. A necessary condition that a function, which is analytic in some
neighbourhood of the origin, be a characteristic function, is that in either half-plane
the singularity nearest to the real axis be located on the imaginary axis.!

This corollary will be used to prove whether or not the following functions are
characteristic functions. Consider the following functions :

=12~ 5 (- )] o= (- 2) e

where a > b > 0. The functions ¢; and ¢, are both analytic and have singularities at
—ai,—ai + b and —ai — b for ¢ and —ai for ¢9, respectively. Therefore, based on the
corollary 2.1, both of them are characteristic functions. Now let ¢ (¢) be the ratio of
them, that is,

vit) = m B Kl - afz‘b) <1 Ta ffibﬂl

¥ (t) has singularities at both —ai + b and —ai — b. And both of the singularities are
not located on the imaginary axis. Therefore, it leads to figure out that (¢) is not a
characteristic function and we have proved that the ratio of two charicteristic function
is in general not a characteristic function.

3 If a distribution function F is absolutely continuous, is
the characteristic function absolutely integrable?

One of the properties of a characteristic function is that, if a characteristic function ¢ is
absolutely integrable on R, then the distribution function F is also absolutely continuous

lsee E. Lukacs. 1970, p.193.



and it’s density f = F’ can be calculated from the inverse Fourier transform of ¢. In
this example, it will be proved that the converse statement is not true. To do that, we
will introduce a theorem, which is called the "Theorem of G. Pélya'.

Theorem 3.1 (Theorem of G.Pdlya.). If ¥(t),t € R is a real-valued continuous
function, which satisfies following conditions:

(i) 6 (0)=1

(ii) (1) = (1)

(iii) (t) is convex for t>0, that is, Y(BE2) < 2(Y(t) + ¥(t2)) for all t1 > 0,15 >0
(1v) limy_,00 ¥ (t) = 0

Then 1) is a characteristic function of an absolutely continuous distribution.?

Let us discuss the following examples.

1
¢1<t>_1+|t|7lft€R
-t ,ifo<|t <2
Uo(t) = 2
a0 Jf ) > 5.

It can be proved that these two functions satisfy all of the four conditions of the The-
orem J3.1.

Proof. (i) ¢1(0) = ﬁlﬂl =1, Y(0) =1—10] = 1.
(i) | —t] = [t] => (=) = Du(t), Ya(—t) = a(t).
(iil) ¥y (t) = —ﬁ and ¢} (t) = ﬁ >0 for t > 0. Hence v (t) is convex for ¢ > 0
Yy(t) = =1 for 0 < ¢ < fand — gz for t > 1, 5(t) = 0for 0 < ¢t < § and 55
for t > 3. So 15(t) > 0 and t(t) is convex for all ¢ > 0.
(iv) limy_yo0 t1 (t) = limy_so0 ﬁ =0, limy_y00 ¥o(t) = limy_,oo ﬁ = 0.

Therefore, we can conclude that they are characteristic functions of absolutely
continuous distributions although they are not absolutely integrable. In conclusion,
it means that the converse statement is not true.

4 Absolute value of a characteristic function |¢| can be
an infinitely divisible characteristic function, although
¢ is not infinitely divisible

Definition 4.1. Let X be a random wvariable with o distribution function F and a
characteristic function ¢. Then X as well as F and ¢ are infinitely divisible if for each

2for the proof see E. Lukacs. 1970, p. 83-84.



n > 1 there exists independently identically distributed random variables X1, ..., Xun
such that

X=Xu+...+Xuwm
or equivalently,
F=F,x--xF,=(F,)" or ¢ = ()"

Remark 4.1. A characteristic function of an infinitely divisible random variable can be
expressed in following Lévy-Chintschin-Formel.

ey itu 1+ u?
t) = vt ] — ) dG
o(t) exp{w w7 (e ) <u>}
where v € R, and G(x),z € R, is a non-decreasing left-continuous function of bounded
variation and G(—o0) = 0.

One of the properties of an infinitely divisible characteristic function is followings.
If ¢(t) is an infinitely divisible characteristic function, then |4(t)| is also an infinitely
divisible characteristic function.

Proof. Let ¢(t) be an infinitely divisible characteristic function. Then ¢(—t) is
also an infinitely divisible characteristic function. It follows that |¢(¢)|? is an infinitely
divisible characteristic function because |¢(t)|* = ¢(t)d(t) = ¢(t)p(—t) and the product
of a finite number of infinitely divisible characteristic function is also infinitely divisible.
Consequently (|¢(t)|2)zn = |¢(t)=] is a characteristic function. It means that for every
integer n, there exists |¢(¢)w | such that |¢(¢)] = [|¢(¢)=[]". Hence, |6(t)] is an infinitely
divisible characteristic function.[]

However, generally speaking, the converse statment is not true. It can be proved with
the following counterexample. That is, |¢| is infinitely divisible, but ¢ is a characteristic
function which is not infinitely divisible.

Consider the function

l—le—ae_“
1—a

¢(t):[ ],teR

a — bett

where 0 < a < b < 1. By applying the formula for a geometric series, it can be
transformed like

1-5
1—a

] { —ae " 4 (1 — ab) i bke“k}

k=0

o) = |



It is easy to see that ¢ is the characteristic function of a random variable X with the
following distribution:

1-0b
1—a

P[X:—u:—a[ ] P[X = k] = {1_[)}(1—@5)5’“, k=0,1,2,...

1—a

Let’s look whether ¢ is infinitely divisible or not. It is able to find that
log(¢(t)) = D_[(=1)* &~ a" (e7™ = 1) + 0"k~ (" — 1))
k=1

Then, log(¢(t)) can be written in the Lévy-Khintchine representation with

_Z k2+1

Also, G(x) can be a function of bounded variation with jumps of size kb*/(k? + 1) at
r =k and (—1)*1ka*/(k* + 1) at x = —k for k = 1,2,.... In this case, G is not
monotone, which means that ¢ is not infinitely divisible.

It is possible to see that the function

oo -]

1—alla—be

is also a characteristic function, which is not infinitely divisible.
Now we are focusing on whether or not the following function is infinitely divisible.

Y(t) = [o(t)]* = o(t)e(t)

Note that
10g Z )k 1 k] —itk +Zk )k 1 k]( itk 1)

We have v = 0 and G(z) is a function with jumps of size k(k? + 1)7[b* + (—1)*"1aF]
at the points x = £k, k = 1,2, ... in the Lévy-Khintchine representation. Since G(zx) is

a non-decreasing function, v is infinitely divisible. Furthermore, |¢| = (|¢|?)!/? is also
infinitely divisible.
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