Prof. Dr. Evgeny Spodarev Dr. Jürgen Kampf

5. Übungsblatt Abgabe: 16. Dezember, 16:15

Aufgabe 1: Die t-Verteilung (1+3=4 Punkte)

Sei $X \sim t_r$. Zeigen Sie:

- a) $\mathbb{E} X = 0$, falls $r \geq 2$.
- b) $\operatorname{Var} X = \frac{r}{r-2}$, falls $r \ge 3$.

Hinweis: Benutzen Sie die Definition der t-Verteilung, nicht deren Dichte.

Aufgabe 2: Ein Schätzer für die Exponentialverteilung (2+1+1+2=6 Punkte)

Es sei eine Zufallsstichprobe von unabhängigen und identisch $\operatorname{Exp}(\lambda)$ -verteilten Zufallsvariablen X_1, \ldots, X_n gegeben, wobei der Parameter $\lambda > 0$ unbekannt ist.

- a) Zeigen Sie: $\min_{i=1,...,n} X_i \sim \text{Exp}(n\lambda)$.
- b) Zeigen Sie, dass $n \cdot \min_{i=1,\dots,n} X_i$ ein erwartungstreuer Schätzer für λ^{-1} ist.
- c) Berechnen Sie die mittlere quadratische Abweichung des Schätzers aus Teil b) für λ^{-1} .
- d) Zeigen Sie, dass der Schätzer aus Teil b) weder stark noch schwach konsistent für λ^{-1} ist.

Aufgabe 3: Schätzer für die Gleichverteilung (3,5+1,5+1=6 Punkte)

Seien X_1, \ldots, X_n unabhängig und identisch verteilte Zufallsvariablen, wobei $X_i \sim U(\theta - \frac{1}{2}, \theta + \frac{1}{2})$ mit Parameter $\theta \in \mathbb{R}$. Es seien zwei Schätzer $\widehat{\theta}_1$ und $\widehat{\theta}_2$ für θ gegeben durch

$$\widehat{\theta}_1(X_1,\ldots,X_n) = \overline{X}_n$$
 und $\widehat{\theta}_2(X_1,\ldots,X_n) = \min\{X_1,\ldots,X_n\} + \frac{1}{2}$.

- a) Berechnen Sie den Bias von $\widehat{\theta}_2$ und die Varianz der beiden Schätzer.
- b) Berechnen Sie den mittleren quadratischen Fehler der beiden Schätzer. Für welche Zahlen $n \in \mathbb{N}$ hat welcher Schätzer den kleineren mittleren quadratischen Fehler?
- c) Zeigen Sie: $\hat{\theta}_2$ ist stark und schwach konsistent.

Aufgabe 4: Starke Konsistenz der Stichprobenvarianz (2 Punkte)

Seien X_1, X_2, \ldots unabhängig identisch verteilte Zufallsvariablen mit $\mathbb{E} X_1^2 < \infty$. Zeigen Sie: Die Stichprobenvarianz S_n^2 ist stark konsistent für Var X_1 .

Neuer Klausurtermin

Die erste Klausur wurde auf Donnerstag, den 27. Februar 2014, verlegt.