Prof. Dr. Evgeny Spodarev Dr. Jürgen Kampf

6. Übungsblatt Abgabe: 13. Januar, 16:15

Aufgabe 1: Die Dichte von Ordnungsstatistiken (3 Punkte)

Seien X_1, \ldots, X_n u.i.v. Zufallsvariablen mit differenzierbarer Verteilungsfunktion F und Dichte f. Zeigen Sie, dass die Ordnungsstatistik $X_{(i)}$ die Dichte

$$f_{X_{(i)}}(x) = \frac{n!}{(i-1)!(n-i)!} f(x) F^{i-1}(x) (1 - F(x))^{n-i}$$

besitzt.

Aufgabe 2: Die Größe D_n für empirische Verteilungsfunktionen (1+1+2=4 Punkte)

Seien X_1, \dots, X_n u.i.v. Zufallsvariablen mit stetiger Verteilungsfunktion F. Wir betrachten die Größe

$$D_n := \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| = \max_{i \in \{1, \dots, n\}} \max \{ F(X_{(i)}) - \frac{i-1}{n}, \frac{i}{n} - F(X_{(i)}) \}. \tag{1}$$

- a) Sei $X_1 \sim U(0,1)$. Erzeugen Sie in R eine Realisierung der Zufallsvariable D_{100} , indem Sie 100 gleichverteilte Zufallsvariablen erzeugen und (1) verwenden.
- b) Wir wollen die Dichte von D_{100} plotten. Erzeugen Sie hierzu 500 Realisierungen von D_{100} und plotten Sie mittels plot() und density() einen Kern-Dichte-Schätzer. Für Bandweite und Schätzkern können Sie die default-Einstellungen von R verwenden.
- c) Plotten Sie nun die Dichten von D_{100} und D_{1000} für $X_1 \sim U(0,1)$ und $X_1 \sim N(0,1)$ alle vier in ein gemeinsames Diagramm. Hierfür müssen Sie, wenn Sie die erste Funktion zeichnen, mit Hilfe der Parameter xlim und ylim einen geeigneten Plot-Bereich festlegen. Um die verschiedenen Funktionen unterscheidbar zu machen, können Sie über die Parameter col, lwd und lty verschiedene Farben, Dicken oder Punktierungen wählen.

Aufgabe 3: Die Momentenmethode

(0,5+1+1+2,5+2=7 Punkte)

Seien X_1, \ldots, X_n u.i.v. Zufallsvariablen. Bestimmen Sie die Punktschätzer für den Parameter θ mit der Momentenmethode oder begründen Sie, warum dies nicht möglich ist, falls ...

- a) ... $X_i \sim \text{Exp}(\theta) \text{ mit } \theta > 0.$
- b) ... X_i die Dichte $f(x;\theta) = \frac{\theta}{x^2} \mathbf{1}_{[\theta,\infty)}(x)$ für $\theta > 0$ hat.
- c) ... X_i die Dichte $f(x;\theta) = \exp(-(x-\theta))\mathbf{1}_{[\theta,\infty)}(x)$ für $\theta > 0$ hat.
- d) Berechnen Sie die Verzerrung des Momentenschätzers aus Teil a) und zeigen Sie, dass er stark konsistent ist.
- e) Berechnen Sie den Momentenschätzer für (λ, p) , wenn $X_i \sim \Gamma(\lambda, p)$.

Aufgabe 4: Maximum-Likelihood-Schätzer (2+3=5 Punkte)

Diese Aufgabe wird Ihnen nach der Vorlesung am 7.1. leichter fallen.

Seien X_1, \ldots, X_n u.i.v. Zufallsvariablen. Bestimmen Sie mit der Maximum-Likelihood-Methode Punktschätzer für den Parameter θ , falls ...

- a) ... X_i die Dichte $f(x;\theta) = \frac{\theta}{x^2} \mathbf{1}_{[\theta,\infty)}(x)$ für $\theta > 0$ hat,
- b) ... X_i die Dichte $f(x;\theta) = \frac{1}{\theta_1} \exp\left(\frac{-(x-\theta_2)}{\theta_1}\right) \mathbf{1}_{[\theta_2,\infty)}(x)$ hat, wobei $\theta = (\theta_1,\theta_2)$ mit $\theta_1 > 0$ und $\theta_2 \in \mathbb{R}$.