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Chapter 1

Introduction

Monte Carlo methods are methods that use random numbers to solve problems or gain insight
into problems. These problems can be `probabilistic' in nature or `deterministic'. Probabilistic
applications of Monte Carlo methods include:

• Estimating probabilities and expectations.

• Estimating the sensitivity of random objects to changes in parameters.

• Getting a sense of what random objects 'look like' and how they behave.

Deterministic problems which can be solved using Monte Carlo methods are, for example:

• Estimating solutions to di�cult integration problems.

• Approximating or �nding solutions to complicated optimization problems.

• Solving mathematical problems by transforming them into `probabilistic' problems (an exam-
ple is probabilistic methods for solving partial di�erential equations).

Monte Carlo techniques are not always the best tools, especially for simple problems. However,
they are the best (or only) solutions for a lot of realistic problems.

1.1 Monte Carlo Integration

A simple problem that can solved using Monte Carlo methods is to compute an integral of the form

I =

∫ 1

0

f(x)dx,

5



6 CHAPTER 1. INTRODUCTION

where f is an arbitrary function. This can be written as

I =

∫ 1

0

f(x)dx =

∫ 1

0

1

1
f(x) dx.

Note that 1/1 is the probability density function (pdf) of the uniform distribution on (0, 1). So, we
can write

I =

∫ 1

0

f(x) dx = E f(X),

where X ∼ U(0, 1). Now we can approximate E f(X) by

I ≈ ÎN =
1

N

N∑
i=1

f(Xi),

where X1, X2, . . . , XN are independent and identically distributed (iid) copies of X. Then, under
suitable technical conditions (e.g. E f(x)2 <∞), the strong law of large numbers implies that

lim
N→∞

1

N

N∑
i=1

f(X)→ E f(Xi) almost surely (a.s.) and in L2

We can easily establish some important properties of the estimator ÎN .

1.1.1 Expectation, Variance and Central Limit Theorem

We have

E Î = E

(
1

N

N∑
i=1

f(Xi)

)
=

1

N

N∑
i=1

E f(Xi) =
N

N
E f(x) = I.

Therefore, ÎN is unbiased. Likewise, we have

Var(ÎN ) = Var

(
1

N

N∑
i=1

f(Xi)

)
=

1

N2

N∑
i=1

Var(f(Xi)) =
1

N
Var(f(X)).

So the standard deviation is

Std(ÎN ) =

√
Var(f(X))√

N
.

Under suitable technical conditions (e.g. Var(f(X)) < ∞), a central limit theorem holds and we
additionally get that (

ÎN − I
)

D−→ N
(

0,
Var(f(X))

N

)
as N →∞.

Example

Estimate
∫ 1

0

e−x
2

dx
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Listing 1.1: Matlab Code

1 N = 10^5;

2 X = rand(N,1);

3 f_X = exp(-X.^2);

4 I_hat = mean(f_X)

1.1.2 Higher Dimensional Integration Problems

Monte Carlo integration is especially useful for solving higher dimensional integration problems.
For example, we can estimate integrals of the form

I =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xn) dx1 dx2 · · · dxn.

Similarly to the one-dimensional case, observe that I = E f(X), where X is a vector of iid U(0, 1)
random variables. This expected value can be approximated by

ÎN =
1

N

N∑
i=1

f (Xi) ,

where the {Xi}Ni=1 are iid n-dimensional vectors of iid U(0, 1) random variables.

Example

Estimate
∫ 1

0

∫ 1

0

ex1 cos(x2)dx1 dx2.

Listing 1.2: Matlab Code

1 N = 10^6;

2 f_X = zeros(N,1);

3 for i = 1:N

4 X = rand(1,2);

5 f_X(i) = exp(X(1))*cos(X(2));

6 end

7 I_hat = mean(f_X)

1.2 Further Reading

Very good reviews of Monte Carlo methods can be found in [1, 2, 4, 6, 9, 10, 11]. If you are
interested in mathematical tools for studying Monte Carlo methods, a good book is [5].
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Chapter 2

Pseudo Random Numbers

The important ingredient in everything discussed so far is the ability to generate iid U(0, 1) random
variables. In fact, almost everything we do in Monte Carlo begins with the assumption that we can
generate U(0, 1) random variables. So, how do we generate them?

Computers are not inherently random, so we have two choices:

1. Using a physical device that is `truly random' (e.g. radioactive decay, coin �ipping).

2. Using a sequence of numbers that are not truly random but have properties which make them
seem/act like `random numbers'.

Possible problems with the physical approach are:

1. The phenomenon may not be `truly random' (e.g., coin �ipping may involve bias).

2. Measurement errors.

3. These methods are slow.

4. By their nature, these methods are not reproducible.

A problem with the deterministic approach is, obviously, the numbers are not truly random.

The choice of a suitable random number generation method depends on the application. For
example, the required properties of a random number generator used to generate pseudo random
numbers for Monte Carlo methods are very di�erent from those of a random number generator used
to create pseudo random numbers for gambling or cryptography.

2.1 Requirements for Monte Carlo

In Monte Carlo applications there are many properties we might require of a random number
generator (RNGs). The most import are:

9
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1. The random numbers it produces should be uniformly distributed.

2. The random numbers it produces should be independent (or at least they should seem to be
independent).

3. It should be fast.

4. It should have a small memory requirement.

5. The random numbers it produces should have a large period. This means that, if we use a
deterministic sequence that will repeat, it should take a long time before it starts repeating.

Ideally, the numbers should be reproducible and the algorithm to generate them should be
portable and should not produce 0 or 1.

2.2 Pseudo Random Numbers

2.2.1 Abstract Setting

S �nite set of states,

f transition function f : S → S,

S0 a seed,

U output space,

g output function g : S → U .

Algorithm 2.2.1 (General Algorithm)

1. Initialize: Set X1 = S0. Set t = 2.

2. Transition: Set Xt = f(Xt−1).

3. Output: Set Ut = g(Xt).

4. Set t = t+ 1. Repeat from 2.

2.2.2 Linear Congruential Generators

The simplest useful pseudo random number generator is a Linear Congruential Generator (LCG).

Algorithm 2.2.2 (Basic LCG)

1. Initialize: Set X1 = S0. Set t = 2.

2. Transition: Set Xt = f(Xt−1) = (aXt−1 + c) mod m.
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3. Output: Set Ut = g(Xt) = Xt

m .

4. Set t = t+ 1 and repeat from step 2.

We call a the multiplier and c the increment.

Example
Take a = 6, m = 11, c = 0 and S0 = 1.
Then X1 = 1 U1 = 1/11

X2 = (6 · 1) mod 11 = 6 U2 = 6/11
X3 = (6 · 6) mod 11 = 3 U3 = 3/11
X4 = (6 · 3) mod 11 = 7 U4 = 7/11

Sequence: 1, 6, 3, 7, 9, 10, 5, 8, 4, 2︸ ︷︷ ︸
period = 10 = (m−1)

, 1, 6, . . .

Listing 2.1: Matlab Code

1 N = 10;

2 a = 6; m = 11; c = 0;

3 S_0 = 1;

4 X = zeros(N,1); U = zeros(N,1);

5 X(1) = S_0;

6 for i = 2:N

7 X(i) = mod(a*X(i-1)+c,m);

8 U(i) = X(i)/m;

9 end

What happens if we take m = 11, a = 3, c = 0, S0 = 1?

X1 = 1
X2 = (3 · 1) mod 11 = 3
X3 = (3 · 3) mod 11 = 9
X4 = (3 · 9) mod 11 = 5
X5 = (3 · 5) mod 11 = 4
X6 = (3 · 4) mod 11 = 1

Sequence: 1, 3, 9, 5, 4︸ ︷︷ ︸
period =5

, 1, . . .

When using an LCG, it is important to have as long a period as possible. The following theorems
give conditions for the maximum possible periods to be obtained.

Theorem 2.2.1 An LCG with c = 0 has full period (m− 1) if

1. S0 6= 0.

2. am−1 − 1 is a multiple of m.
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3. aj−1 is not a multiple of m for j = 1, . . . ,m− 2.

Theorem 2.2.2 An LCG with c 6= 0 has full period (m) if and only if

1. c and m are relatively prime (Their only common divisor is 1).

2. Every prime number that divides m divides a− 1.

3. a− 1 is divisible by 4 if m is.

The conditions are broken for the examples above (with c 6= 0) because 11 divides m = 11 but not
a = 3 or a = 6. However, we know that the Theorem 2.2.2 is satis�ed if c is odd, m is a power of 2
and a = 4n+ 1.

Many LCGs have periods of 231 − 1 ≈ 2.1× 109

Example Minimal Standard LCG: a = 75 = 16807, c = 0, m = 231

In many modern Monte Carlo applications, samples sizes of N = 1010 or bigger are necessary. A
rough rule of thumb is that the period should be around N2 or N3. Thus, for N ≈ 1010 a period
bigger than 1020 or even 1030 is required.

2.2.3 Extensions of LCGs

Multiple Recursive Generators

Algorithm 2.2.3 (Multiple Recursive Generator (MRG) of order k)

1. Initialize: Set X1 = S1
0 , . . . , Xk = Sk0 . Set t = k + 1.

2. Transition: Xt = (a1Xt−1 + · · ·+ akXt−k) mod m.

3. Output: Ut = Xt

m

4. Set t = t+ 1. Repeat from step 2.

Usually, most of the {ai}ki=1 are 0. Clearly, an LCG (with c = 0) is a special case of an MRG. Note
that the state space is now {0, . . . ,m− 1}k and the maximum period is now mk− 1. It is obtained,
e.g., if:

a) m is prime

b) The polynomial p(z) = zk −
∑k−1
i=1 aiz

k−i is prime using modulo m arithmetic.

Obviously, mk − 1 can be much bigger than m or m− 1.
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Combined Generators

An example of a combined random number generator is the Wichmann-Hill pseudo random number
generator.

Algorithm 2.2.4 (Wichmann-Hill)

1. Set X0 = SX0 , Y0 = SY0 , Z0 = SZ0 . Set t = 1.

2. Set Xt = a1Xt−1 mod m1

3. Yt = a2Yt−1 mod m2

4. Zt = a3Yt−1 mod m3

5. Ut =
(
Xt

m1
+ Yt

m2
+ Zt

m3

)
mod 1

6. Set t = t+ 1 and repeat from step 2.

Pierre L'Ecuyer combines multiple recursive generators.

2.2.4 The Lattice Structure of Linear Congruential Generators

LCGs have what is known as a lattice structure.

Figure 2.1: Points generated by LCG with a = 6, c = 0 and m = 11.
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In higher dimensions, d-tuples � e.g., (X1, X2), (X2, X3), (X3, X4) . . . � lie on hyperplanes. It can
be shown that points created by linear congruential generation with modulus m lie on at most
(d!m)

1
d hyperplanes in the d-dimensional unit cube. For m = 231−1 and d = 2, they lie on at most

≈ 65536 hyperplanes. For d = 10 they lie on at most only ≈ 39 hyperplanes.

One way to asses the quality of a random number generator is to look at the "spectral gap" which
is the maximal distance between two hyperplanes.

2.2.5 Linear Feedback Shift Register-type algorithms

Each Xi can take values in {0, 1}. We update the Xi using

Xi = (a1Xi−1 + · · ·+ akXi−k) mod 2.

and output

Ui =

L∑
j=1

Xiν+j−12−j ,

where ν is the step size and L is the word length (usually 32 or 64). Using this approach, we
get a period of 2k − 1. If we write the above in the form Xi = a1Xi−1 + · · · akXi−k, where
Xi = (Xi,1, . . . , Xi,k), we have a vector version of this generator. Then, the output is

Ui =

L∑
j=1

Xi,j2
−j .

The Mersenne Twister does a few additional things but is roughly of this form.

2.3 Testing Pseudo Random Number Generators

It is not enough for a random number generator to have a large period. It is even more important
that the resulting numbers appear to be independent and identically distributed. Of course, we
know that the numbers are not really random. However, a good random number generator should
be able to fool as many statistical (and other) tests as possible into thinking that the numbers it
produces are iid uniforms.

2.3.1 Testing the Sizes of the Gaps between Hyperplanes

This is the only non-statistical test we will discuss. Remember, that many random number gener-
ators have a lattice structure.
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1 Ui

1

Ui+1

Figure 2.2: Lattice Structure of a Random Number Generator

In general, a lattice structure is bad, because it means numbers are not su�ciently independent
of one another. We cannot avoid having a lattice structure, but we would like to have as many
hyperplanes as possible (this means that patterns of association between random variables are less
strong). `SpectralÂ� tests measure the gaps between hyperplanes. The mathematics involved in
these tests is quite complicated.

2.3.2 The Kolmogorov-Smirnov Test

This test checks if the output of a RNG is close enough to the uniform distribution. The idea of
the Kolmogorov-Smirnov test is to compare the estimated cumulative density function (cdf) of the
output of a random number generator against the cdf of the uniform (0,1) distribution. If the two
cdfs are too di�erent from one another, we say that the RNG does not produce uniform random
variables. The test statistic is

Dn := sup
u∈(0,1)

|Fn(u)− F (u)| ,

where Fn is an estimate of the cdf given the data (often called the empirical cdf). This statistic
shouldn't be too big.

Example (The Kolmogov-Smirnov statistic)
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1 u

1

F (u)

max gap

2.3.3 Chi-Squared Test

The Chi-Squared test is another test to check that the output of a random number generator has
a uniform (0, 1) distribution. We can test if a given sample {Un}Nn=1 is uniform by dividing it into
equally spaced intervals.

Example (An example subdivision)

Q1 = number of points in {Un}Nn=1 between 0 and 0.1

Q2 = number of points in {Un}Nn=1 between 0.1 and 0.2

...

Q10 = number of points in {Un}Nn=1 between 0.9 and 1

If the given sample is uniformly distributed, the expected number of points in the ith interval (Ei)
is the length times the number of points in the sample (|Qi|N). In the example, E1 = E2 = · · · =
E10 = N

10 .
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The Chi-Squared Test statistic is

χ2
stat =

L∑
i=1

(Qi − Ei)2

Ei
,

where L is the number of segments (in the example, L = 10). If χ2
stat is too big, the random number

generator does not appear to be producing uniform random variables.

2.3.4 Permutation Test

For iid random variables, all orderings should be equally likely.

For example, if X1, X2, X3 are iid R.V.s, then

P (X1 ≤ X2 ≤ X3) = P (X2 ≤ X1 ≤ X3) = P (X3 ≤ X2 ≤ X1) = . . .

Let Πd be the indices of an ordering of d iid uniformly distributed random variables. For example,
if X1 ≤ X2 ≤ X3, Π3 = {1, 2, 3}.
It's not hard to see that

P (Π = π) =
1

d!
. (2.1)

This suggests we can test a random number generator by generating N runs of d random variables
and then doing a Chi-Squared test on them to check whether their ordering indices are distributed
according to (2.1).

2.4 Quasi Monte Carlo

So far we have considered too much structure in a random number generator as a negative thing
(that is, we have wanted things to be as random as possible). However, another approach to Monte
Carlo � called Quasi-Monte Carlo (QMC) � tries to use structure / non-independence to improve
the performance of Monte Carlo methods.

2.4.1 Numerical Integration and Problems in High Dimensions

Monte Carlo integration is not very e�cient in low dimensions. Instead of Monte Carlo integration,
one can use Newton Cotes methods. These methods evaluate the function at equally spaced points.
There are also fancier numerical methods like Gaussian quadrature.

Using Newton Cotes methods like the rectangle method or the trapezoidal method, one needs

in 2 D n× n points

in 3 D n3 points
...

in d D nd points.
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An exponential growth of points is required. This is an example of the �curse of dimensionality�.

For most numerical integration methods, the error of the approximated integral is roughly propor-
tional to n−c/d for some constant c. As d gets larger, the error decays more slowly. In comparison,
the error of Monte Carlo integration (measured by standard deviation) is proportional to n−1/2. In
high enough dimensions, this will be smaller than the error of numerical integration.

2.4.2 The Basic Idea of QMC

Quasi Monte Carlo methods generate deterministic sequences that get rates of error decay close to
n−1 (as compared to n−1/2 for standard Monte Carlo methods). They perform best in reasonably
low dimensions (say about 5 to 50). One disadvantage is that they need a �xed dimension (some
Monte Carlo methods do not work in a �xed dimension). This means it is not always possible to
use them.

A grid is a bad way to evaluate high dimensional integrals. The idea of QMC is that the points
should be spread out more e�ciently. A good spread means here a low `discrepancy'.

De�nition 2.4.1

Given a collection A of (Lebesgue measurable) subsets of [0, 1)d, the discrepancy relative to A is

D(x1, . . . , xn;A) = sup
A∈A

∣∣∣∣#{xi ∈ A}n
− vol(A)

∣∣∣∣ .
Basically, discrepancy measures the di�erence between the number of points that should be in each
of the sets if the points are evenly spaced, and the number of points that are actually in these sets.

Example `Ordinary discrepancyÂ�, is based on sets of the form

d∏
j=1

[uj , cj) 0 ≤ uj < vj ≤ 1.

2.4.3 Van der Corput Sequences

A number of QMC methods are based on the Van der Corput sequences (which have low discrep-
ancy). The idea is to write numbers 1, 2, . . . in base b and then `�ip them' and re�ect them over
decimal points.
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Example The van der Corput sequence with b = 2

1 = 001.0 ⇒ 0.100

(
=

1

2

)
2 = 010.0 ⇒ 0.010

(
=

1

4

)
3 = 011.0 ⇒ 0.110

(
=

3

4

)
4 = 100.0 ⇒ 0.001

(
=

1

8

)
...

Example The van der Corput sequence with b = 3

1 = 001.0 ⇒ 0.100

(
=

1

3

)
2 = 002.0 ⇒ 0.020

(
=

2

3

)
3 = 010.0 ⇒ 0.010

(
=

1

9

)
4 = 011.0 ⇒ 0.110

(
=

4

9

)

2.4.4 Halton Sequences

Probably the simplest QMC method is called the Halton sequence. It �lls a d dimension cube with
points whose coordinates follow Van Der Corput sequences. For example, we can sample points
(x1, y1), (x2, y2), . . ., where the x coordinates follow a Van der Corput sequence with base b1 and
the y coordinates follow a Van der Corput sequence with base b2. The bi are chosen to be relatively
prime, which means that they have no common divisors.

2.5 Furter Reading

Important books on random number generation and QMC include [3, 7, 8]
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