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Preface

Many numerical problems in science, engineering, finance, and statistics are
solved nowadays through Monte Carlo methods; that is, through random
experiments on a computer. The purpose of this AMSI Summer School course
is to provide a comprehensive introduction to Monte Carlo methods, with a
mix of theory, algorithms (pseudo + actual), and applications.

These notes present a highly condensed version of:

D.P. Kroese, T. Taimre, Z.1. Botev. Handbook of Monte Carlo Methods.
Wiley Series in Probability and Statistics, John Wiley & Sons, New York, 2011.

See also the Handbook’s website: www.montecarlohandbook.org.

Since the Handbook is over 772 pages thick, with 21 chapters, I had to
heavily cut back the contents of the Handbook to a size that is manageable to
teach within one semester. I have tried to make these notes fairly self-contained,
while retaining the general flavour of the Handbook. However, it was not always
possible to keep the logical connections between chapters in the Handbook. For
an advanced understanding of some material, including bibliographic references,
it will be necessary to consult the corresponding passages in the Handbook.

Brisbane, 2011

Dirk Kroese
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Chapter 1

Uniform Random Number
Generation

Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin.

John von Neumann

This chapter gives an introduction of techniques and algorithms for generat-
ing uniform random numbers. Various empirical tests for randomness are also
provided.

1.1 Random Numbers

At the heart of any Monte Carlo method is a random number generator: a
procedure that produces an infinite stream

Ui,Us,Us, . .. Hfg Dist

of random variables that are independent and identically distributed (iid) ac-
cording to some probability distribution Dist. When this distribution is the
uniform distribution on the interval (0,1) (that is, Dist = U(0,1)), the gener-
ator is said to be a uniform random number generator. Most computer
languages already contain a built-in uniform random number generator. The
user is typically requested only to input an initial number, called the seed, and
upon invocation the random number generator produces a sequence of indepen-
dent uniform random variables on the interval (0,1). In MATLAB, for example,
this is provided by the rand function.

The concept of an infinite iid sequence of random variables is a mathemati-
cal abstraction that may be impossible to implement on a computer. The best
one can hope to achieve in practice is to produce a sequence of “random” num-
bers with statistical properties that are indistinguishable from those of a true
sequence of iid random variables. Although physical generation methods based
on universal background radiation or quantum mechanics seem to offer a stable
source of such true randomness, the vast majority of current random number
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generators are based on simple algorithms that can be easily implemented on a
computer. Such algorithms can usually be represented as a tuple (S, f, u, U, g),
where

e S is a finite set of states,
e fis a function from S to S,
e 11 is a probability distribution on S,

e U{ is the output space; for a uniform random number generator U is
the interval (0,1), and we will assume so from now on, unless otherwise
specified,

e g is a function from S to U.

A random number generator then has the following structure:
Algorithm 1.1 (Generic Random Number Generator)
1. Initialize: Draw the seed Sy from the distribution p on S. Set t = 1.

2. Transition: Set Sy = f(S¢—1).
3. Output: Set U; = g(St).
4. Repeat: Sett =t+ 1 and return to Step 2.

The algorithm produces a sequence Uy, Us, Us, . .. of pseudorandom num-
bers — we will refer to them simply as random numbers. Starting from a
certain seed, the sequence of states (and hence of random numbers) must re-
peat itself, because the state space is finite. The smallest number of steps taken
before entering a previously visited state is called the period length of the
random number generator.

1.1.1 Properties of a Good Random Number Generator

What constitutes a good random number generator depends on many factors. It
is always advisable to have a variety of random number generators available, as
different applications may require different properties of the random generator.
Below are some desirable, or indeed essential, properties of a good uniform
random number generator:

1. Pass statistical tests: The ultimate goal is that the generator should pro-
duce a stream of uniform random numbers that is indistinguishable from
a genuine uniform iid sequence. Although from a theoretical point of
view this criterion is too imprecise and even infeasible, from a practi-
cal point of view this means that the generator should pass a battery of
simple statistical tests designed to detect deviations from uniformity and
independence. We discuss such tests in Section 1.4.

2. Theoretical support: A good generator should be based on sound math-
ematical principles, allowing for a rigorous analysis of essential proper-
ties of the generator. Examples are linear congruential generators and
multiple-recursive generators discussed in Sections 1.2.1 and 1.2.2.

Copyright © 2011 D.P. Kroese
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3. Reproducible: An important property is that the stream of random num-
bers is reproducible without having to store the complete stream in mem-
ory. This is essential for testing and variance reduction techniques. Phys-
ical generation methods cannot be repeated unless the entire stream is
recorded.

4. Fuast and efficient: The generator should produce random numbers in a
fast and efficient manner, and require little storage in computer memory.
Many Monte Carlo techniques for optimization and estimation require
billions or more random numbers. Current physical generation methods
are no match for simple algorithmic generators in terms of speed.

5. Large period: The period of a random number generator should be ex-
tremely large — on the order of 10°® — in order to avoid problems with
duplication and dependence. Most early algorithmic random number gen-
erators were fundamentally inadequate in this respect.

6. Multiple streams: In many applications it is necessary to run multiple in-
dependent random streams in parallel. A good random number generator
should have easy provisions for multiple independent streams.

7. Cheap and easy: A good random number generator should be cheap and
not require expensive external equipment. In addition, it should be easy
to install, implement, and run. In general such a random number gen-
erator is also more easily portable over different computer platforms and
architectures.

8. Not produce 0 or 1: A desirable property of a random number generator
is that both 0 and 1 are excluded from the sequence of random numbers.
This is to avoid division by 0 or other numerical complications.

1.1.2 Choosing a Good Random Number Generator

Choosing a good random generator is like choosing a new car: for some people
or applications speed is preferred, while for others robustness and reliability
are more important. For Monte Carlo simulation the distributional proper-
ties of random generators are paramount, whereas in coding and cryptography
unpredictability is crucial.

Nevertheless, as with cars, there are many poorly designed and outdated
models available that should be avoided. Indeed several of the standard gener-
ators that come with popular programming languages and computing packages
can be appallingly poor.

Two classes of generators that have overall good performance are:

1. Combined multiple recursive generators, some of which have excellent sta-
tistical properties, are simple, have large period, support multiple streams,
and are relatively fast. A popular choice is L’Ecuyer’s MRG32k3a (see Sec-
tion 1.3), which has been implemented as one of the core generators in
MATLAB (from version 7), VSL, SAS, and the simulation packages SSJ,
Arena, and Automod.
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2. Twisted general feedback shift register generators, some of which have very
good equidistributional properties, are among the fastest generators avail-
able (due to their essentially binary implementation), and can have ex-
tremely long periods. A popular choice is Matsumoto and Nishimura’s
Mersenne twister MT19937ar (see Section 1.2.4), which is currently the
default generator in MATLAB.

In general, a good uniform number generator has overall good performance,
in terms of the criteria mentioned above, but is not usually the top performer
over all these criteria. In choosing an appropriate generator it pays to remember
the following.

e Faster generators are not necessarily better (indeed, often the contrary is
true).

e A small period is in general bad, but a larger period is not necessarily
better.

e Good equidistribution is a necessary requirement for a good generator but
not a sufficient requirement.

1.2 Generators Based on Linear Recurrences

The most common methods for generating pseudorandom sequences use simple
linear recurrence relations.

1.2.1 Linear Congruential Generators

A linear congruential generator (LCG) is a random number generator of
the form of Algorithm 1.1, with state S; = X; € {0,...,m—1} for some strictly
positive integer m called the modulus, and state transitions

Xy =(aX¢y_1+c)modm, t=1,2,..., (1.1)

where the multiplier a and the increment c are integers. Applying the
modulo-m operator in (1.1) means that aX;—1 + ¢ is divided by m, and the
remainder is taken as the value for X;. Note that the multiplier and incre-
ment may be chosen in the set {0,...,m — 1}. When ¢ = 0, the generator is
sometimes called a multiplicative congruential generator. Most existing
implementations of LCGs are of this form — in general the increment does not
have a large impact on the quality of an LCG. The output function for an LCG
is simply
v, =Xt

m

Example 1.1 (Minimal Standard LCG) An often-cited LCG is that of
Lewis, Goodman, and Miller, who proposed the choice a = 7° = 16807, ¢ = 0,
and m = 231 — 1 = 2147483647. This LCG passes many of the standard sta-

tistical tests and has been successfully used in many applications. For this
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reason it is sometimes viewed as the minimal standard LCG, against which
other generators should be judged.

Although the generator has good properties, its period (23! — 2) and sta-
tistical properties no longer meet the requirements of modern Monte Carlo
applications.

A comprehensive list of classical LCGs and their properties can be found
on Karl Entacher’s website:

http://random.mat.sbg.ac.at/results/karl/server/

1.2.2 Multiple-Recursive Generators

A multiple-recursive generator (MRG) of order £, is a random number gen-
erator of the form of Algorithm 1.1, with state S; = Xy = (Xy_ps1,..., X)) €
{0,...,m — 1}* for some modulus m and state transitions defined by

Xi=(@Xi1+--+apXp—p) modm, t=kk+1,..., (1.2)

where the multipliers {a;,i = 1,...,k} lie in the set {0,...,m — 1}. The
output function is often taken as

The maximum period length for this generator is m* — 1, which is obtained
if (a) m is a prime number and (b) the polynomial p(z) = 2* — Zf;ll a; 2"
primitive using modulo m arithmetic. To yield fast algorithms, all but a few of
the {a;} should be 0.

MRGs with very large periods can be implemented efficiently by combining

several smaller-period MRGs (see Section 1.3).

is

1.2.3 Matrix Congruential Generators

An MRG can be interpreted and implemented as a matrix multiplicative
congruential generator, which is a random number generator of the form of
Algorithm 1.1, with state S; = X; € {0,...,m — 1}* for some modulus m, and
state transitions

X;=(AX;—1) modm, t=1,2,..., (1.3)

where A is an invertible k x k matrix and X; is a k x 1 vector. The output
function is often taken as <
¢

Ut == E 5 (14)

yielding a vector of uniform numbers in (0,1). Hence, here the output space U

for the algorithm is (0,1)*. For fast random number generation, the matrix A

should be sparse.
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To see that the multiple-recursive generator is a special case, take

0 1 0 X
: : . Xit1
A= i amd xo=| 77 (1.5)
0 0 o1
ag ag—1 -+ a1 Xitk—1

Obviously, the matrix multiplicative congruential generator is the k-
dimensional generalization of the multiplicative congruential generator. A sim-
ilar generalization of the multiplicative recursive generator — replacing the
multipliers {a;} with matrices, and the scalars {X;} with vectors in (1.2) —
yields the class of matrix multiplicative recursive generators.

1.2.4 Modulo 2 Linear Generators

Good random generators must have very large state spaces. For an LCG this
means that the modulus m must be a large integer. However, for multiple
recursive and matrix generators it is not necessary to take a large modulus, as
the state space can be as large as m”*. Because binary operations are in general
faster than floating point operations (which are in turn faster than integer
operations), it makes sense to consider random number generators that are
based on linear recurrences modulo 2. A general framework for such random
number generators is to map k-bit state vector Xy = (X 1,... ,Xt7k)T via a
linear transformation to a w-bit output vector Y; = (Yi1,... ,Yuw)T, from
which the random number U; € (0, 1) is obtained by bitwise decimation. More
precisely, the procedure is as follows.

Algorithm 1.2 (Generic Linear Recurrence Modulo 2 Generator)

1. Initialize: Draw the seed Xq from the distribution p on the state space
S=1{0,1}*. Sett=1.

2. Transition: Set X; = AX;_1.

3. Output: Set Y, = BX; and return
w

U; = Z Yt,g 27t
/=1

4. Repeat: Sett =t+ 1 and return to Step 2.

Here, A and B are k x k and w x k binary matrices, respectively, and all
operations are performed modulo 2. In algebraic language, the operations are
performed over the finite field Fy, where addition corresponds to the bitwise
XOR operation (in particular, 1 + 1 = 0). The integer w can be thought of as
the word length of the computer (that is, w = 32 or 64). Usually k is taken
much larger than w.
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Example 1.2 (Linear Feedback Shift Register Generator) The Taus-
worthe or linear feedback shift register (LFSR) generator is an MRG of
the form (1.2) with m = 2, but with output function

w
U= Xispe12",
=1

for some w < k and s > 1 (often one takes s = w). Thus, a binary sequence
Xo, X1, ... is generated according to the recurrence (1.2), and the ¢-th “word”
(Xts, oy Xtstw_1) ', t =0,1,... is interpreted as the binary representation of
the t-th random number.

This generator can be put in the framework of Algorithm 1.2. Namely, the
state at iteration ¢ is given by the vector X; = (Xys,..., Xtsqr_1) , and the
state is updated by advancing the recursion (1.2) over s time steps. As a result,
the transition matrix A in Algorithm 1.2 is equal to the s-th power of the “1-
step” transition matrix given in (1.5). The output vector Y; is obtained by
simply taking the first w bits of Xy; hence B = [y Oy (k—w)]; Where I, is the
identity matrix of dimension w and O,y (4w the w X (k — w) matrix of zeros.

For fast generation most of the multipliers {a;} are 0; in many cases there
is often only one other non-zero multiplier a, apart from ag, in which case

Xi=X4 @ Xy y, (1.6)

where @ signifies addition modulo 2. The same recurrence holds for the states
(vectors of bits); that is,
X=X & Xy_g

where addition is defined componentwise.

The LFSR algorithm derives it name from the fact that it can be imple-
mented very efficiently on a computer via feedback shift registers — binary
arrays that allow fast shifting of bits.

Generalizations of the LFSR generator that all fit the framework of Algo-
rithm 1.2 include the generalized feedback shift register generators and
the twisted versions thereof, the most popular of which are the Mersenne
twisters. A particular instance of the Mersenne twister, MT19937, has become
widespread, and has been implemented in software packages such as SPSS and
MATLAB. It has a huge period length of 219937 — 1, is very fast, has good equidis-
tributional properties, and passes most statistical tests. The latest version of
the code may be found at

http://www.math.sci.hiroshima-u.ac.jp/ “m-mat/MT/emt.html

Two drawbacks are that the initialization procedure and indeed the imple-
mentation itself is not straightforward. Another potential problem is that the
algorithm recovers too slowly from the states near zero. More precisely, after a
state with very few 1s is hit, it may take a long time (several hundred thousand
steps) before getting back to some state with a more equal division between 0s
and 1s.
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1.3 Combined Generators

A significant leap forward in the development of random number generators
was made with the introduction of combined generators. Here the output
of several generators, which individually may be of poor quality, is combined,
for example by shuffling, adding, and/or selecting, to make a superior quality
generator.

Example 1.3 (Wichman—Hill) One of the earliest combined generators is
the Wichman-Hill generator, which combines three LCGs:

X = (171 X;—1) mod my (m1 = 30269) ,
Y: = (172 Y;—1 ) mod my (mg = 30307) ,
Zy = (170 Zy—1 ) mod mg (ms = 30323) .

These random integers are then combined into a single random number

Ut:&—i—ﬁ—i—é mod 1.
my M2 M3
The period of the sequence of triples (X, Y;, Z;) is shown to be (m; —1)(ma —
1)(ms — 1)/4 =~ 6.95 x 10'2) which is much larger than the individual periods.
Zeisel shows that the generator is in fact equivalent (produces the same output)
as a multiplicative congruential generator with modulus m = 27817185604309
and multiplier a = 16555425264690.

The Wichman—Hill algorithm performs quite well in simple statistical tests,
but since its period is not sufficiently large, it fails various of the more so-
phisticated tests, and is no longer suitable for high-performance Monte Carlo
applications.

One class of combined generators that has been extensively studied is that
of the combined multiple-recursive generators, where a small number
of MRGs are combined. This class of generators can be analyzed theoretically
in the same way as single MRG: under appropriate initialization the output
stream of random numbers of a combined MRG is exactly the same as that of
some larger-period MRG. Hence, to assess the quality of the generator one can
employ the same well-understood theoretical analysis of MRGs. As a result,
the multipliers and moduli in the combined MRG can be searched and chosen
in a systematic and principled manner, leading to random number generators
with excellent statistical properties. An important added bonus is that such
algorithms lead to easy multi-stream generators.

L’Ecuyer has conducted an extensive numerical search and detailed theoret-
ical analysis to find good combined MRGs. One of the combined MRGs that
stood out was MRG32k3a, which employs two MRGs of order 3,

X; = (1403580 X;_o — 810728 X;_3) mod m;  (my = 2%2 — 209 = 4294967087) ,

Y; = (527612Y;_1 — 1370589 Y;_3) mod my  (mg = 23% — 22853 = 4294944443) ,
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and whose output is

X; Y,
At — Yy if X, <Y,
mq + 1

U=1x v,
t— Yt .
_— Xy >Y;.
my+ 1 1 t t

The period length is approximately 3 x 10°7. The generator MRG32k3a passes
all statistical tests in today’s most comprehensive test suit TestU0I (see also
Section 1.4) and has been implemented in many software packages, including
MATLAB, Mathematica, Intel’s MKL Library, SAS, VSL, Arena, and Automod.
It is also the core generator in L’Ecuyer’s SSJ simulation package, and is eas-
ily extendable to generate multiple random streams. An implementation in
MATLAB is given below.

%MRG32k3a.m

m1=2"32-209; m2=2"32-22853;
ax2p=1403580; ax3n=810728;
aylp=527612; ay3n=1370589;

X=[12345 12345 12345]; % Initial X
Y=[12345 12345 12345]; % Initial Y

N=100; % Compute the sequence for N steps
U=zeros(1,N);
for t=1:N

Xt=mod (ax2p*X(2)-ax3n*X(3) ,m1);

Yt=mod (aylp*Y(1)-ay3n*Y(3) ,m2);

if Xt <= Yt
Ut)=((Xt - Yt + ml1)/(m1+1);
else
Ut)=((Xt - Yt)/(ml1+1);
end
X(2:3)=X(1:2); X(1)=Xt; Y(2:3)=Y(1:2); Y(1)=Yt;
end

Different types of generators can also be combined. For example, Marsaglia’s
KISS99 (keep it simple stupid) generator combines two shift register generators
with an LCG.

1.4 Tests for Random Number Generators

The quality of random number generators can be assessed in two ways. The
first is to investigate the theoretical properties of the random number generator.
Such properties include the period length of the generator and various measures
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of uniformity and independence. This type of random number generator testing
is called theoretical, as it does not require the actual output of the generator
but only its algorithmic structure and parameters. Powerful theoretical tests
are only feasible if the generators have a sufficiently simple structure, such
as those of linear congruential and multiple-recursive methods and combined
versions thereof.

A second type of test involves the application of a battery of statistical tests
to the output of the generator, with the objective to detect deviations from uni-
formity and independence. Such type of tests are said to be empirical. In this
course we consider only empirical tests. The ultimate goal remains to find uni-
form random number generators whose output is statistically indistinguishable
(within reasonable computational time) from a sequence of iid uniform random
variables. Hence, any candidate generator should pass a wide range of statisti-
cal tests that examine uniformity and independence. The general structure of
such tests is often of the following form.

Algorithm 1.3 (Two-Stage Empirical Test for Randomness) Suppose
that U = {U;} represents the output stream of the uniform random generator.
Let Hy be the hypothesis that the {U;} are iid from a U(0,1) distribution. Let
Z be some deterministic function of U.

1. Generate N independent copies Z1, ..., Zn of Z and evaluate a test statis-
ticT = T(Zy,...,ZnN) for testing Hy versus the alternative that Hy is
not true. Suppose that under Hy the test statistic T has distribution or
asymptotic (for large N ) distribution Disty.

2. Generate K independent copies Ty, ..., Tk of T and perform a goodness
of fit test to test the hypothesis that the {T;} are iid from Disty.

Such a test procedure is called a two-stage or second-order statistical
test. The first stage corresponds to an ordinary statistical test, such as a x?2
goodness of fit test, and the second stage combines K such tests by means of
another goodness of fit test, such as the Kolmogorov—Smirnov or Anderson—
Darling test. The following example demonstrates the procedure.

Example 1.4 (Binary Rank Test for the drand48 Generator) The de-
fault random number generator in the C library is drand48, which implements
an LCG with a = 25214903917, m = 2%, and ¢ = 11. We wish to examine
if the output stream of this generator passes the binary rank test described in
Section 1.4.10. For this test, the sequence Uy, Us, ... is first transformed to a
binary sequence By, Ba, .. ., for example, by taking B; = If7,<1/2), and then the
{B;} are arranged in a binary array, say with 32 rows and 32 columns. The first
row of the matrix is By, ..., B3o, the second row is Bss, ... Bgy, etc. Under H
the distribution of the rank (in modulo 2 arithmetic) R of this random matrix
is given in (1.9). We generate N = 200 copies of R, and divide these into three
classes: R < 30, R = 31, and R = 32. The expected number of ranks in these
classes is by (1.9) equal to E; = 200 x 0.1336357, E2 = 200 x 0.5775762, and
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FE3 = 200 x 0.2887881. This is compared with the observed number of ranks
01,05, and Os, via the x? goodness of fit statistic

T:Zw. (1.7)

Under Hy, the random variable T' approximately has a x3 distribution (the
number of degrees of freedom is the number of classes, 3, minus 1). This
completes the first stage of the empirical test.

In the second stage, K = 20 replications of T" are generated. The test statis-
tics for the x? test were 2.5556, 11.3314, 146.2747, 24.9729, 1.6850, 50.7449,
2.6507, 12.9015, 40.9470, 8.3449, 11.8191, 9.4470, 91.1219, 37.7246, 18.6256,
1.2965, 1.2267, 0.8346, 23.3909, 14.7596.

Notice that the null hypothesis would not be rejected if it were based only
on the first outcome, 2.5556, as the p-value, Py, (T > 2.5556) ~ 0.279 is quite
large (and therefore the observed outcome is not uncommon under the null
hypothesis). However, other values, such as 50.7449 are very large and lead to
very small p-values (and a rejection of Hy). The second stage combines these
findings into a single number, using a Kolmogorov—Smirnov test, to test whether
the distribution of T does indeed follow a 3 distribution. The empirical cdf
(of the 20 values for T) and the cdf of the y3 distribution are depicted in
Figure 1.1. The figure shows a clear disagreement between the two cdfs. The
maximal gap between the cdfs is 0.6846 in this case, leading to a Kolmogorov—
Smirnov test statistic value of v/20 x 0.6846 ~ 3.06, which gives a p-value of
around 3.7272 x 107?, giving overwhelming evidence that the output sequence
of the drand48 generator does not behave like an iid U(0, 1) sequence.

Lp st
0.8 —— Empirical
: 2
__06F X2
G
= 0.4¢
0.2
O 1 1 1 J
0 50 100 150 200
x

Figure 1.1: Kolmogorov—Smirnov test for the binary rank test using the
drand48 generator.

By comparison, we repeated the same procedure using the default MATLAB
generator. The result of the Kolmogorov—Smirnov test is given in Figure 1.2. In
this case the empirical and theoretical cdfs have a close match, and the p-value
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is large, indicating that the default MATLAB generator passes the binary rank
test.

o
N
T

Figure 1.2: Kolmogorov—Smirnov test for the binary rank test using the default
MATLAB random number generator (in this case the Mersenne twister).

Today’s most complete library for the empirical testing of random number
generators is the TestU01 software library by L’Ecuyer and Simard.

We conclude with a selection of empirical tests. Below, Uy, Uy, ... is the
original test sequence. The null hypothesis Hy is that {U;} ~q U(0,1). Other
random variables and processes derived from the {U;} are:

e Yu,Yy,..., with Y; = [mU;|, i = 0,1,..., for some integer (size) m >
1. Under Hy the {Y;} are iid with a discrete uniform distribution on
(0,1,...,m— 1}.

e Uy, Uy,..., with U; = (Uyg,...,Uigrda-1), @ = 0,1,... for some dimen-
sion d > 1. Under Hj the {U;} are independent random vectors, each
uniformly distributed on the d-dimensional hypercube (0,1)%.

e Yo, Yy,...,withY; = (Yig,...,Yiara—1), i =0,1,... for some dimension
d > 1. Under Hy the {Y;} are independent random vectors, each from the
discrete uniform distribution on the d-dimensional set {0,1,...,m — 1}4.

1.4.1 Equidistribution (or Frequency) Tests

This is to test whether the {U;} have a U(0,1) distribution. Two possible
approaches are:

1. Apply a Kolmogorov—Smirnov test to ascertain whether the empirical cdf
of Uy,...,Up—1 matches the theoretical cdf of the U(0,1) distribution;
that is, F(z) =z, 0 <z < L.

2. Apply a x? test on Yp,...,Y,_1, comparing for each k = 0,...,m —
1 the observed number of occurrences in class k, O = Z?:_ol Liyi=)
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with the expected number Ey = n/m. Under Hy the x? statistic (1.7)
asymptotically has (as n — 00) a x2,_; distribution.

1.4.2 Serial Tests

This is to test whether successive values of the random number generator are
uniformly distributed. More precisely, generate vectors Yo, ..., Y, for a given
dimension d and size m. Count the number of times that the vector Y satisfies
Y =y, fory € {0,...,m — 1}%, and compare with the expected count n/m?
via a x? goodness of fit test. It is usually recommended that each class should
have enough samples, say at least 5 in expectation, so that n > 5m¢. Typically,
d is small, say 2 or 3.

1.4.3 Gap Tests

Let 131,75, ... denote the times when the output process Uy, Uy, ..., visits a
specified interval («, 3) C (0,1), and let Z;,Zs,... denote the gap lengths
between subsequent visits; that is, Z; =1T; —T;_1—1,i=1,2,..., with Ty = 0.
Under Hy, the {Z;} are iid with a Geomq(p) distribution, with p = 3 — «; that
is,
PZ=2z)=p(1-p)? 2=0,1,2,....

The gap test assesses this hypothesis by tallying the number of gaps that fall
in certain classes. In particular, a y? test is performed with classes Z = 0,7 =
1,...,Z=r—1, and Z > r, with probabilities p(1 — p)*, 2 =0,...,r — 1 for
the first r classes and (1 — p)” for the last class. The integers n and r should
be chosen so that the expected number per class is > 5.

When a = 0 and 3 = 1/2, this is sometimes called runs above the mean,
and when o = 1/2 and (3 = 1 this is sometimes called runs below the mean.

1.4.4 Poker or Partition Tests

Consider the sequence of d-dimensional vectors Y1i,...,Y,, each taking values
in {0,...,m — 1}¢. For such a vector Y, let Z be the number of distinct
components; for example if Y = (4,2,6,4,2,5,1,4), then Z = 5. Under Hy, Z
has probability distribution

m(m—l)---(m—z+l){d}

P(Z =z) = — 2 s=1,...min{d,m}. (L8)

Here, {g} represents the Stirling number of the second kind, which gives
the number of ways a set of size d can be partitioned into z non-empty subsets.
For example, {;1} = 7. Such Stirling numbers can be expressed in terms of

binomial coefficients as
d 1< -
HEEIIC WIS
k=0

Using the above probabilities, the validity of Hy can now be tested via a x?
test.
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1.4.5 Coupon Collector’s Tests

Consider the sequence Y1, Y5, ..., each Y; taking values in {0,...,m — 1}. Let
T be the first time that a “complete” set {0,...,m — 1} is obtained among
Yi1,...,Yp. The probability that (Y1,...,Y?) is incomplete is, by (1.8), equal to
P(T >t)=1-m!{'}/mt, so that

Mft—1
IP’(T:t):%{m_l}7 t=m,m-+1,....

The coupon collector’s test proceeds by generating successive times
Ti,...,T, and applying a x? goodness of fit test using classes T = t, t =
m,...,r—1and T > r — 1, with probabilities given above.

1.4.6 Permutation Tests

Consider the d-dimensional random vector U = (Uy,...,Uy) . Order the com-
ponents from smallest to largest and let IT be the corresponding ordering of
indices. Under Hy),

1
PII =) = 7l for all permutations 7 .
The permutation test assesses this uniformity of the permutations via a y?
goodness of fit test with d! permutation classes, each with class probability
1/d.

1.4.7 Run Tests

Consider the sequence Uy, Us,.... Let Z be the run-up length; that is, Z =
min{k : Ug1q1 < Ux}. Under Hy, P(Z > z) = 1/z!, so that
1 1
Z=2=0"Gror *Th%

In the run test, n of such run lengths Zi, ..., Z, are obtained, and a x? test
is performed on the counts, using the above probabilities. It is important to
start from fresh after each run. In practice this is done by throwing away the
number immediately after a run. For example the second run is started with
Uz, +o rather than Uy, 11, since the latter is not U(0, 1) distributed, as it is by
definition smaller than Uy, .

1.4.8 Maximum-of-d Tests

Generate Uy, ..., U, for some dimension d. For each U = (Uy,...,Uy)" let
Z = max{Uy,...,Uz} be the maximum. Under Hy, Z has cdf

F(z)=P(Z<z2z)=2% 0<z<1.

Apply the Kolmogorov—Smirnov test to 7y, ..., Z, with distribution function
F(z). Another option is to define Wy, = Z,‘f and apply the equidistribution test
to Wl,...,Wn.

Copyright © 2011 D.P. Kroese



1.4 Tests for Random Number Generators

23

1.4.9 Collision Tests

Consider a sequence of d-dimensional vectors Y7, ..., Yy, each taking values in
{0,...,m— 1}d. There are r = m? possible values for each Y. Typically, 7 > b.
Think of throwing b balls into r urns. As there are many more urns than balls,
most balls will land in an empty urn, but sometimes a “collision” occurs. Let C
be the number of such collisions. Under Hj the probability of ¢ collisions (that
is, the probability that exactly b — ¢ urns are occupied) is given, as in (1.8), by

b
P(C:c):r(r_l)m(r_r(f_cHl){bC}, c=0,....b—1.

A x? goodness of fit test can be applied to compare the empirical distribution of
n such collision values, C1, ..., C,, with the above distribution under Hy. One
may need to group various of the classes C' = ¢ in order to obtain a sufficient
number of observations in each class.

1.4.10 Rank of Binary Matrix Tests

Transform the sequence Uy, Us, ... to a binary sequence By, Ba, ... and arrange
these in a binary array of dimension r x ¢ (assume r < ¢). Under Hj the
distribution of the rank (in modulo 2 arithmetic) Z of this matrix is given by

z—1 i i
1—2i-¢)(1 — 2t
P(Z = z) =220 ] ( - _);i_z >, z=0,1,...,r. (1.9)
i=0

This can be seen, for example, by defining a Markov chain {Z;,t =0,1,2,...},

starting at 0 and with transition probabilities p; ; = 27¢*? and p; ;11 = 1—-27¢F,

i =0,...,r. The interpretation is that Z; is the rank of a ¢ x ¢ matrix which

is constructed from a (t — 1) x ¢ matrix by adding a 1 X ¢ random binary row;

this row is either dependent on the ¢t — 1 previous rows (rank stays the same)

or not (rank is increased by 1). The distribution of Z, corresponds to (1.9).
For ¢ = r = 32 we have

P(Z < 30) ~ 0.1336357
P(Z = 31) ~ 0.5775762
P(Z = 32) ~ 0.2887881 .

These probabilities can be compared with the observed frequencies, via a 2
goodness of fit test.

1.4.11 Birthday Spacings Tests

Consider the sequence Yi,...,Y,, taking values in {0,...,m — 1}. Sort the
sequence as Y(1) < ... < Y{;) and define spacings S1 = Y(9) — Y(1),..., 501 =
Yin) — Yn—1), and S, = ¥(1) + m — Y(;,). Sort the spacings and denote them as
S(l) <... < S(n).
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Let R be the number of times that we have S(;) = S(;_1) for j =1,...,n.
The distribution of R depends on m and n, but for example when m = 22 and
n = 512, we have:

P(R = 0) ~ 0.368801577
P(R = 1) ~ 0.369035243
P(R = 2) ~ 0.183471182
P(R > 3) ~ 0.078691997 .

The idea is to repeat the test many times, say N = 1000, and perform
a x? test on the collected data. Asymptotically, for large n, R has a Poi()\)
distribution, with A = n3/(4m), where A should not be large. An alternative
is to use N = 1 and base the decision whether to reject Hy or not on the
approximate p-value P(R > r) ~ 1—22;(1) e ¥ /k! (reject Hy for small values).
As a rule of thumb the Poisson approximation is accurate when m > (4N\)%;
that is, Nn® < m?/4.

1.5 Exercises

1. Implement the C random number generator drand48 (see Example 1.4).
Structure your MATLAB program as follows:

function u = drand48(seed)
persistent x %the state variable x is kept in memory
a =
m =
c =
if (nargin ==0)
x =
else

2. Using the above implementation, generate N = 100 “random” numbers
ui,u2,...,uyny and plot the points (ui,u2),...,(un—1,uy) in the unit square.
Do the points look randomly distributed? Do the same for N = 1000.

3. Go to Karl Entacher’s “classical LCGs” page: random.mat.sbg.ac.at/
results/karl/server/noded.html. Choose a random number generator from
this page and carry out a two-stage empirical test that shows that the output
sequence does not behave like an iid U(0, 1) sequence.
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Generating a random vector X from an arbitrary distribution in some Euclidean
space R invariably involves the following two steps:

1. Draw uniform random numbers Uy, ..., U, for some kK =1,2,....
2. Return X = g(Uy,...,Uy), where g is some function from (0,1)* to R

The generation of uniform random numbers in the first step is discussed in
Chapter 1. The present chapter considers how the second step is imple-
mented. In Section 2.1 we consider various general methods for generating
one-dimensional random variables and in Section 2.2 we consider methods for
generation of multivariate random variables. Section 2.3 is about generating
uniformly in and on a hypersphere. Section 2.4 discusses the uniform genera-
tion of permutations. Specific generation algorithms for common discrete and
continuous distributions are given in Chapter 3.

All generation methods in this chapter are exact, in the sense that each
generated random variable has exactly the required distribution (assuming the
uniform number generation and computer arithmetic are exact). For an in-
creasing number of Monte Carlo applications exact random variable generation
is difficult or impossible to achieve, and approzimate generation methods are
called for, the most prominent being Markov chain Monte Carlo methods; see
Chapter 5.

2.1 Generic Algorithms Based on Common Trans-
formations

Many common distributions and families of distributions are related to each
other via simple transformations. Such relations lead to general rules for gen-
erating random variables. For example, generating random variables from any
location—scale family of distributions can be carried out by generating ran-
dom variables from the base distribution of the family, followed by an affine
transformation. A selection of common transformations is discussed in Sec-
tion 2.1.2. Universal procedures for generating random variables include the
inverse-transform method (Section 2.1.1), the alias method (Section 2.1.4), the
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composition method (Section 2.1.2.5), and the acceptance-rejection method
(Section 2.1.5).

2.1.1 Inverse-Transform Method

Let X be a random variable with cdf F'. Since F' is a nondecreasing function,
the inverse function F'~! may be defined as

Fly)=inf{z: F(z) >y}, 0<y<1. (2.1)
Let U ~ U(0,1). The cdf of the inverse transform F~1(U) is given by
P(FY(U)<xz)=PU < F(z)) = F(x) . (2.2)

Thus, to generate a random variable X with cdf F, draw U ~ U(0,1) and
set X = F~!Y(U). This leads to the following general method, illustrated in
Figure 2.1, for generating from an arbitrary cdf F.

F(x)A
1

]Y

X

Figure 2.1: Inverse-transform method.

Algorithm 2.1 (Inverse-Transform Method)
1. Generate U ~ U(0, 1).

2. Return X = F~Y(U).

Example 2.1 (Illustration of the Inverse-Transform Method)
Generate a random variable from the pdf

2z, 0<x <1
flx) = { (2.3)

0, otherwise.

The cdf F' is defined by F(z) = fg 2ydy = 22, 0 < < 1, the inverse function
of which is given by F~!'(u) = y/u for 0 < u < 1. Therefore, to generate a
random variable X from the pdf (2.3), first generate a random variable U from
U(0,1), and then take its square root.
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In general, the inverse-transform method requires that the underlying cdf,
F, exists in a form for which the corresponding inverse function F~! can be
found analytically or algorithmically. Applicable distributions are, for example,
the exponential, uniform, and Cauchy distributions. Unfortunately, for many
other probability distributions, it is either impossible or difficult to find the
inverse transform, that is, to solve

F(sc):/_x F(t)dt =,

with respect to z. Even in the case where F'~! exists in an explicit form, the
inverse-transform method may not necessarily be the most efficient random
variable generation method.

The inverse-transform method applies to both absolutely continuous and
discrete distributions. For a discrete random variable X taking values z; <
x9 < ...with probabilities pi, pa, ..., where ) . p; = 1, the cdf is a step function,
as illustrated in Figure 2.2.

Fx) A
1

-_
At

T Ty T3 X x5

i J

Figure 2.2: Inverse-transform method for a discrete random variable.

For the discrete case the inverse-transform method can be written as follows.
Algorithm 2.2 (Discrete Inverse-Transform Method)
1. Generate U ~ U(0, 1).

2. Find the smallest positive integer k such that F(xp) > U, and return
X =xy.

Example 2.2 (Discrete Inverse-Transform Implementation) Suppose
we wish to draw N = 10° independent copies of a discrete random variable
taking values 1,...,5 with probabilities 0.2,0.3,0.1,0.05,0.35, respectively.
The following MATLAB program implements the inverse transform method to
achieve this, and records the frequencies of occurrences of 1,...,5.

Copyright © 2011 D.P. Kroese



28

Random Variable Generation

%discIT.m
p = [0.2,0.3,0.1,0.05,0.35];

N = 1075;
x = zeros(N,1);
for i=1:N

x(1) = min(find(rand<cumsum(p))); %draws from p
end
freq = hist(x,1:5)/N

Note that cumsum(p) corresponds to the vector of cdf values
(F(1),...,F(5)). By applying the function find first and then min, one finds
the smallest index k such that F'(k) > rand, where rand presents a uniform ran-
dom number. A faster generation program, which uses the function histc(x,e)
to efficiently count the number of values in a vector x that fall between the el-
ements of a vector e, is given next.

%discinvtrans.m

p = [0.2,0.3,0.1,0.05,0.35];

N = 1075;

[dummy ,x]=histc(rand(1,N), [0,cumsum(p)]);
freq = hist(x,1:5)/N

2.1.2 Other Transformation Methods

Many distributions used in Monte Carlo simulation are the result of simple
operations on random variables. We list some of the main examples.

2.1.2.1 Affine Transformation

Let X = (X1,...,X,)" be a random vector, A an m x n matrix, and b an
m X 1 vector. The m x 1 random vector

Z=AX+b

is said to be an affine transformation of X. If X has an expectation vector
px, then the expectation vector of Z is puyz = Apux + b. If X has a covariance
matrix Yx, then the covariance matrix of Z is ¥z = A ¥x A'. Finally, if A is
an invertible n X n matrix and X has a pdf fx, then the pdf of Z is given by

_ fx(A"Hz—Db))
fa(z) = = [det(A)]

, zeR",

where | det(A)| denotes the absolute value of the determinant of A.
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Figure 2.3: A location—scale family of pdfs.

2.1.2.2 Location—Scale Family

A family of continuous distributions with pdfs { f(z;u,0), u € R,o > 0} of the

form
f(w;uya)—1f<$_u), r€R (2.4)

g g

is called a location—scale family with base (or standard) pdf f(z). Parameter
i is called the location and o is called the scale. Families for which (2.4) holds
with = 0 are called scale families. Families for which (2.4) holds with o =1
are called location families.

In a location—scale family the graph of the pdf f(-; i, o) has the same shape
as that of f(-) but is shifted over a distance p and scaled by a factor o, as
illustrated in Figure 2.3.

Location—scale families of distributions arise from the affine transformation

Z=pu+oX,
where X is distributed according to the base or “standard” pdf of the family.
In particular, if X ~ f = f(-;0,1), then

ptoX ~f(ipo).

Thus, to generate a random variable from a location—scale family of pdfs, first
generate a random variable from the base pdf and then apply an affine trans-
formation to that random variable.

Example 2.3 (Normal Distribution and Location—Scale) A typical ex-
ample of a location-scale family is the normal family of distributions {N(u,c?)}
with location parameter p and scale parameter . Here
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1 x—u) 1 _1@=p?
1‘; 70’ = — = e 2 02 5
f(@;p,0) Gf( - =

and f(z) = (2r)"/2e7""/2 is the base pdf. Hence, to draw Z ~ N(u, o2), first
draw X ~ N(0,1) and then return Z = p + 0X. In MATLAB, drawing from
the standard normal distribution is implemented via the function randn. For
example, the following MATLAB program draws 10° samples from N(4,9) and
plots the corresponding histogram.

X = randn(1,1075); Z = 4 + 3%X; hist(Z,100)

2.1.2.3 Reciprocation

Another common transformation is inversion or reciprocation. Specifically, if
X is a univariate random variable, then the inverse or reciprocal of X is

Z=—.
X

If X has pdf fx, then Z has pdf

f2(2) = %’Zl) ZER. (2.5)

Distributions obtained in this way are called inverted or inverse distribu-

tions.

Example 2.4 (Inverse-Gamma Distribution via Reciprocation) The
inverse-gamma distribution, denoted by InvGamma(a, A), has pdf

)\azfaflef)\zfl
I'(a)

fz(za,0) = , 2>0,

which is of the form (2.5), with fx the pdf of the Gamma(a, ) distribution. To
generate a random variable Z ~ InvGamma(a, \), draw X ~ Gamma(a, \) and
return Z =1/X.

2.1.2.4 Truncation

Let Dist,, and Disty be two distributions on sets &/ and A C &, respectively.
Let X ~ Dist,y and Z ~ Distyg. If the conditional distribution of X given
X € % coincides with the distribution of Z (that is, Distg), then the latter
distribution is said to be the truncation of Dist,, to 4. In particular, if fx is
the pdf of X, then the pdf of Z is (in the continuous case)

Ix(z)

— F;fx(x) = zER.

fz(z)
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In the continuous univariate case, the truncation of a pdf f(x) to an interval
[a, b] gives the pdf
_ [
= — ,
fa f(x)dx

and in the discrete case we replace the integral with a sum. In terms of cdfs we
have:

a<z<b,

fz(2)

F(z) — F(a—)
F(b) = Fa—)’
where F(a—) = limg, F(z). To generate random variables from a truncated
distribution on [a, b] one can simply use the acceptance-rejection method (see
Section 2.1.5) by generating X ~ F until X € [a,b]. When the generation of
X can be readily performed via the inverse-transform method, a more direct
approach can be taken. In particular, the inverse of (2.6) yields the following
inverse-transform method.

Fz(z) = a<z<b, (2.6)

Algorithm 2.3 (Truncation via the Inverse-Transform Method)
1. Generate U ~ U(0,1).
2. Return Z = F7Y(F(a—) + U(F(b) — F(a—))).

Note that the only difference with the inverse-transform method is that
in Step 2 the argument of F~! is uniformly distributed on the interval
(F(a—), F (b)) rather than on (0, 1).

Example 2.5 (Truncated Exponential Generator) Consider the pdf of
the Exp(1) distribution truncated to the interval [0, 2]:

e*Z

T 1_e2

fz(2) 0<z<2. (2.7)
The inverse of the cdf of the Exp(1) distribution is F~!(u) = —In(1 — u), so
that

Z=—-In(1+U(2-1)~ fz7.

The following MATLAB program provides an implementation for generating 10°
samples from this truncated distribution and plotting the corresponding his-
togram.

%truncexp.m
U= rand(1,10°5); Z = -log(l + U *(exp(-2) - 1)); hist(Z,100)

Example 2.6 (Truncated Normal Generator) Consider the N(u,o?) pdf
truncated to the interval [a, b]:

1 zZ— U
= — <z <
fZ(Z) O'CQO< o >7 a\Z\b,
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where C' = @(I)?T“) —®(*>L), and ¢ and ® are the pdf and cdf of the N(0, 1) dis-

g
tribution, respectively. The following MATLAB function implements the inverse-

transform method.

function out=normt(mu,sig,a,b)

pb=normcdf ((b-mu) ./sig) ;

pa=normcdf ((a-mu) ./sig) ;

C=pb-pa;
out=mu+sig.*norminv(C.*rand(size (mu))+pa) ;

Example 2.7 (Sampling from the Tail of a Normal Distribution)
Consider the problem of sampling from the truncated normal pdf

(p(Z) I{z}a}

fz(z) = B(—a)

where the truncation point a > 0 is large, say a > 10. A straightforward
implementation of the inverse-transform method gives:

Z =0 Y®(a)+ U (1 —-®(a)), U~U0,1].

However, this approach is numerically unstable, and in most computer imple-
mentations one obtains infinity for the value of Z or an error message when
a > 6.4. A theoretically equivalent but more numerically stable generator is:

Z=-d"YU ®(-a)), U~U[,1].

This generator works well for values of a up to a = 37. However, it still breaks
down in MATLAB for values of a > 37. The improved reliability is due to the
fact that it is easier to approximate ®~! in the left tail than in the right tail.
This example shows that Algorithm 2.3 should be used with caution and is not
prescriptive for all problems.

2.1.2.5 Composition Method

Of great practical importance are distributions that are probabilistic mixtures
of other distributions. Let .7 be an index set and {Hy,t € .7} be a collection
of cdfs (possibly multidimensional). Suppose that G is the cdf of a distribution
on .7. Then

F(x) = /y Hy(x) dG(1),

is again a cdf and the corresponding distribution is called a mixture distribu-
tion or simply mixture, with mixing components {H;,t € 7 }. It is useful
to think of GG as the cdf of a random variable T" and H; as the conditional cdf
of a random variable X; given T" = ¢t. Then, F' is cdf of the random variable
X7. In other words, if T' ~ G and X; ~ Hy, then X = Xp has cdf F. This
yields the following generator.
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Algorithm 2.4 (Composition Method Generator)
1. Generate the random variable T according to the cdf G.

2. Given T =t, generate X from the cdf H;.

In many applications G is a distribution on {1, ..., n} for some strictly posi-
tive integer n, in which case the mixture cdf is of the form F(z) = Y ;" | pt Fi(x)
for some collection of cdfs {F}} and probabilities {p;} summing to 1. Denoting
the corresponding pdfs by {f;}, the pdf f of the finite mixture is given by

fl@)=> pi fi(x) . (2.8)
t=1

Example 2.8 (Mixture of Normals) We wish to draw samples from a mix-
ture of normal pdfs. Specifically, suppose that the pdf from which to draw has
the form (2.8) with n = 3 and (p1, p2,p3) = (0.2,0.4,0.4), and suppose that the
means and standard deviations of the normal pdfs are given by p = (—0.5,1,2)
and o = (0.5,0.4,2). A useful shorthand notation for this distribution is

0.2N(—0.5,0.5%) + 0.4 N(1,0.4%) + 0.4 N(2,2%) . (2.9)

A graph of the corresponding pdf is given as the base pdf in Figure 2.3. The fol-
lowing MATLAB code implements the composition method and plots a histogram
of the generated data.

fmixturefin.m

p = [0.2, 0.4, 0.4];
mu = [-0.5, 1, 2];
sigma = [0.5, 0.4, 2];

N = 1075;

[dummy,t]=histc(rand(1,N), [0,cumsum(p)]); % draw from p

x = randn(1,N) .*sigma(t) + mu(t); % draw a normal r.v.
hist(x,200) % make a histogram of the data

Example 2.9 (Composition Method in Bayesian Inference) Composi-
tion methods appear often in Bayesian analysis. As an example, consider the
following Bayesian model for a coin toss experiment. Let 6 (random) denote
the probability of success (heads) and let X be the number of successes in n
tosses. Define the joint distribution of X and 6 via the hierarchical model

0 ~ Beta(a, 3) prior distribution,
(X ]6) ~ Bin(n,0) likelihood distribution

for some given o > 0 and 8 > 0. Using Bayesian notation, we can write for the
pdf of X:

f(:v):/f(x|9)f(c9)d9, r=0,...,n,
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where f(0) is the pdf of the Beta(«, 3) distribution and f(x|#) is the pdf of
the Bin(n,0) distribution. Note that the distribution of X is a continuous
mixture. The mechanism for simulating samples from this distribution using
the composition method is given precisely in the Bayesian hierarchical model:
first draw 6 from Beta(a, 3), and then, given 6, draw X from Bin(n, ).

2.1.2.6 Polar Transformation

The polar method is based on the polar coordinate transformation X =
Rcos©O,Y = Rsin©, where © ~ U(0,27) and R ~ fr are independent. Using
standard transformation rules it follows that the joint pdf of X and Y satisfies

fX,Y('rvy) = f;ﬂ(_:) 5

with r = /22 + 32, so that

[T,
0o w2+ y?

For example, if fr(r) = re /2, then fx(z) = e */2/\/2x. Note that in this
case the pdf of R is the same as that of v2E with E ~ Exp(1). Equivalently,
R has the same distribution as v—2InU with U ~ U(0,1). These observa-
tions lead to the Boz—Muller method for generating standard normal random
variables.

Interesting relationships between distributions can be obtained from a
slight modification of the polar method. Specifically, suppose R € [0, 0)
and Z1, Zs ~jig N(0,1) are independent random variables. Then, (X1, X2) =
R(Zy,Z3) = (RZ1,RZ>) has a radially symmetric pdf with radius distributed
according to the distribution of Ry/Z? + Z3, or, equivalently, according to the
distribution of Rv2E, where E ~ Exp(1) is independent of R. For some choices
of R the pdf of RV2E is easy, leading to simple generation algorithms for X;.

fx(x)

2.1.3 Table Lookup Method

One of the easiest and fastest general methods for generating discrete random
variables is Marsaglia’s table lookup method.

Algorithm 2.5 (Table Lookup Method)
1. Draw U ~ U(0,1).
2. Set I = [Un].

3. Return X = ay.

Here (ay,...,ay) is a predetermined table of numbers or, more generally, objects
such as vectors, trees, etc. Duplication among the {a;} is allowed. If the set of
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distinct objects is {b1,...,bx}, then the algorithm generates random variables
X that satisfy

2?21 I{aj:bi} _ #{j:a; = b}

n n

P(X = b;) = i=1,... k.

Example 2.10 (Random Variable Generation via Table Lookup)
Suppose we wish to generate from the discrete pdf f with

This can be done via table lookup using a table of size n = 55 with elements
1,2,2,3,3,3,...,10,...,10. The following MATLAB program creates the lookup
table, generates 10° random variables from f via the lookup method, and plots
the histogram of the generated data.

%tablook.m
r = 10;
a = zeros(1, (x+1)*r/2);
n=0;
for i=1:r
for j=1:i
n = n+l;
a(n) = i;
end
end
I = ceil(rand(1,1075)*n);
X = a(D;
hist(X,1:r)

The table lookup method is a resampling technique: given data {a;} the
algorithm resamples the data by selecting one of the a; uniformly and indepen-
dently each time. In other words, Algorithm 2.5 generates samples from the
empirical distribution of the data {a;}.

2.1.4 Alias Method

The alias method is an alternative to the inverse-transform method for gener-
ating discrete random variables, which does not require time-consuming search
techniques as per Step 2 of Algorithm 2.2. It is based on the fact that an ar-
bitrary n-point distribution can be represented as an equally weighted mixture
of n two-point distributions. The idea is to redistribute the probability mass
into n bins of equal weight 1/n, as illustrated in Figure 2.4.
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Figure 2.4: Redistribution of probability mass.

Here, a probability distribution on {1,2,3,4} is depicted on the left side,
with probability masses 8/28,3/28,6/28, and 11/28. These masses are redis-
tributed over four bins such that (1) the total capacity of each bin is 1/4, (2)
each bin has masses corresponding to at most two variables, (3) bin i contains
mass corresponding to variable i, i = 1,2, 3, 4.

To see that such a redistribution can be done generally, consider a prob-
ability distribution on {1,...,n} with probability mass p; > 0 assigned to i,
i=1,...,n. If pp = ... = py, then, trivially, the original distribution is an
equal mixture of 1-point (and hence 2-point) distributions. If not all {p;} are
equal, then there must exist indices ¢ and j such that p; < 1/n and p; > 1/n.
Now fill bin ¢ by first adding p; and then transferring an amount 1/n — p; from
pj. This leaves n — 1 bins to be filled with n — 1 probabilities that sum up to
(n — 1)/n, which can be done in exactly the same way by choosing ¢’ and j’
from the remaining indices such that py < 1/n and pj > 1/n, and redistribut-
ing their weights, and so on. At the end, each bin k = 1,...,n corresponds
to a 2-point distribution at the points k and another point aj, with proba-
bilities ¢ and 1 — g, respectively. For example, in Figure 2.4, as = 4 and
g2 = 3/28 x 4 = 3/7. The {a;} are called the alias values and the {qi} the
cut-off values. These can be determined by the following algorithm, which
formalizes the bin-filling procedure described above.

Algorithm 2.6 (Set-up for the Alias Method) Let {py,k=1,...,n} be
a distribution on {1,...,n}.

1. Let qg =npp,k=1,...,n. Let & ={k :qx < 1} and 4 ={k : q1 > 1}.
2. While . and 4 are not empty,

(a) Choose somei €. and j €Y.

(b) Set a; =j and q¢; = qj — (1 — ¢;).

(c¢) If ¢; < 1, remove j from & and add to ..
(d) Remove i from .

The set-up algorithm can be implemented to run in O(n) time. Once the
alias and cut-off values have been established, generation of a random variable
X from the distribution {py} is simple and can be written as follows.

Copyright © 2011 D.P. Kroese



2.1 Generic Algorithms Based on Common Transformations

37

Algorithm 2.7 (Alias Method)
1. Generate U ~ U(0,1) and set K = [nU].

2. DrawV ~U(0,1). If V < qg, return X = K ; otherwise, return X = a.

Example 2.11 (Alias Method) The following MATLAB program shows how
the alias method works in practice. The objective is to generate 10° samples
from a fixed 400-point pdf that is itself randomly generated. In the first part of
the program the alias and cut-off values are calculated. The second part checks
that the original probabilities are faithfully reconstructed. In the last part the
data are generated.

%aliasfin.m
=rand(1,400) ;p = p/sum(p); %the sampling distribution
size(p,2);
1:n; %alias values
zeros(1,n); % cut-off values
n*p;
greater = find(q >= 1);
smaller = find(q < 1);
while ("isempty(smaller) && ~isempty(greater))
i = smaller(1);
j = greater(1);
a(i) = j;
q(i) = q(§) -(1- q(i));
if (q(§) < D
greater = setdiff (greater,j);
smaller = union(smaller,j);

P
n
a
q
q

end
smaller = setdiff(smaller,i);
end
pp = q/n;
for i = 1:n
ind = find(a == 1i);
pp(i) = pp(i) + sum((1 - q(ind)))/n;
end

max (abs(pp - p))
N = 1076; 7 generate sample of size N
X = zeros(1,N);
for i = 1:N
K = ceil(rand*n);
if (rand > q(K));
X(i) = a®);
else
X(1)

K;
end
end
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2.1.5 Acceptance—Rejection Method

The acceptance—rejection method is one of the most useful general methods for
sampling from general distributions. It can be applied to both discrete and con-
tinuous distributions, and even to multidimensional distributions — although
its efficiency rapidly decreases in the number of dimensions (see Section 2.3).
The method is based on the following observation.

Theorem 2.1.1 (Acceptance—Rejection) Let f(x) and g(x) be two pdfs
such that for some C > 1, Cg(x) > f(x) for all x. Let X ~ g(x) and
U ~ U(0,1) be independent. Then, the conditional pdf of X given U <
f(X)/(Cyg(X)) is f(x).

Proof: Consider the joint pdf of X and U, which is

g(x) I{ugc{(?))} g(x) I{ugg(f)>}
Ixu(x,u) = i I 5 dud = 7 () :
JJo 9GLg, ooy dudx 9(x) ( J77* 1 du)dx

= C'!J(X)I{u< o -

S Cg(x)

The (marginal) pdf of X is therefore

fx(x) = /0 Ixu(x,u)du = C g(x)

as required.

We call g(x) the proposal pdf and assume that it is easy to generate ran-
dom variables from it. The acceptance-rejection method can be formulated as
follows.

Algorithm 2.8 (Acceptance—Rejection)
1. Generate X from g(x).
2. Generate U from U(0,1), independently of X.
3. If U < f(X)/(C g(X)) output X; otherwise, return to Step 1.

In other words, generate X ~ ¢ and accept it with probability
F(X)/(C ¢g(X)); otherwise, reject X and try again.

The efficiency of the acceptance-rejection method is defined as the prob-
ability of acceptance, which is,

(05 G) = o [ M= [ o

Since the trials are independent, the number of trials required to obtain a suc-
cessful pair (X, U) has a Geom(1/C') distribution, so that the expected number
of trials is equal to C.
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Example 2.12 (Generating from the Positive Normal Distribution)
Suppose we wish to generate random variables from the positive normal pdf

f(z) = \/g 2 x>0, (2.10)

using acceptance-rejection. We can bound f(x) by C g(x), where g(z) = e " is

the pdf of the Exp(1) distribution. The smallest constant C' such that f(z) <
Cg(zx)is \/2e/m. The pdf f(x) and the dominating function Cg(z) are depicted
in Figure 2.5. The efficiency of this method is \/7/2e ~ 0.76.

14r

120

Figure 2.5: Bounding the positive normal density (solid curve).

Since f(x) is the pdf of the absolute value of a standard normal random
variable, we can generate Z ~ N(0,1) by first generating X ~ f as above
and then returning Z = XS, where S is a random sign; for example, S =
1 — 2l /2y with U ~ U(0,1). This procedure for generating N(0, 1) random
variables is summarized in Algorithm 3.13.

2.2 Generation Methods for Multivariate Random
Variables

In this section we consider some general procedures for generating a random
vector X = (X1,...,X,,)" from a given n-dimensional distribution with pdf
f(x). Algorithms for generating from specific multivariate distributions are
given in Section 3.3.

When the components Xi,..., X, are independent the situation is easy.
Suppose that the component pdfs are f;, i = 1,...,n, so that f(x) =
fi(z1) - fu(zn). To generate X, simply generate each component X; ~ f;
individually — for example, via the inverse-transform method or acceptance—
rejection.
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Algorithm 2.9 (Independent Components Generation)
1. Independently generate X; ~ f;, 1 =1,...,n.
2. Return X = (X1,...,X,)".
For dependent components X1, ..., X,, we can represent the joint pdf f(x)
as
Jx) = f(z1,...,20) = fi(z1) fa(w2|21) - fu(n |21, 2001) ,  (2.11)
where f1(x1) is the marginal pdf of X and fi(zk|z1,...,25—1) is the condi-
tional pdf of X given X1 = x1, Xo = x9,..., X1 = xp_1. This observation
leads to the following procedure.
Algorithm 2.10 (Dependent Components Generation)
1. Generate X1 ~ f1. Sett = 1.
2. While t < n, given X1 = x1,...,Xs = x¢, generate Xep1 ~ fre1(2ey1 |
X1,...,x¢) and sett =t + 1.
3. Return X = (X1,...,X,)".
The applicability of this approach depends, of course, on knowledge of the
conditional distributions. In certain models, for example Markov models, this
L 63 knowledge is easily obtainable.

Another, usually simpler, approach is to generate the random vector X by
multidimensional acceptance-rejection; for instance, when generating a random
vector uniformly over an n-dimensional region.

For high-dimensional distributions, efficient exact random variable genera-
tion is often difficult to achieve, and approrimate generation methods are used
instead. Such methods are discussed in Chapter 5.

2.3 Generating Random Vectors Uniformly Dis-
tributed in a Unit Hyperball and Hypersphere

Consider the n-dimensional unit hyperball, %, = {x € R" : ||x|| < 1}. Gen-
erating uniform random vectors in 4, is straightforward via the acceptance—
rejection method.

Algorithm 2.11 (Generating Uniformly in %, (1))
1. Generate Uy,...,Uy, s u(o,1).
2. Set X1=1-2U1,...,X,=1-2U,, and R=31, X2.

3. If R < 1, accept X = (X7, ... 7Xn)T as the desired vector; otherwise, go
to Step 1.
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The efficiency of this n-dimensional acceptance-rejection method is equal
to the ratio

n/2
1 volume of the hyperball W;SW 1 /2

C  volume of the hypercube 2n - n2v1T(n/2)’

which rapidly decreases to 0 as n — oo; for example, for n = 8 the efficiency is
approximately 0.016. The next algorithm is more efficient for higher dimensions,
and utilizes the following facts.

o If Xv,..., X, s N(0, 1), then the normalized vector

X3 X,
Y:< > (2.12)
[1X]] [1X]]

where | X]| = (>0, XZ?)%, is distributed uniformly on the n-dimensional
hypersphere .7, = {y : ||yl = 1}.

e The radius R of a uniformly chosen point in %, has cdf Fr(r) = r",

0<r<l.

Algorithm 2.12 (Generating Uniformly in %, (II))

1. Generate a random vector X = (X1,...,X,)" with iid N(0,1) compo-
nents.

2. Generate U ~ U(0,1) and set R = U'/™.
3. Return Z = RX/||X]|.

To generate a random vector that is uniformly distributed over the surface of
an n-dimensional unit ball — in other words, uniformly on the unit hypersphere
“n, we simplify the previous algorithm and arrive at the following one.

Algorithm 2.13 (Generating Uniform Random Vectors on .%},)

1. Generate a random vector X = (X1,...,X,)" with iid N(0,1) compo-
nents.

2. Return' Y = X/|X]|.

2.4 Generating Random Permutations

Suppose we have a collection of n objects, labeled 1,2,...,n, and we wish to
generate a random permutation of these labels such that each of the n! possible
orderings occurs with equal probability. A simple algorithm for generating such
uniform permutations is based on the ordering of uniform random numbers.
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Algorithm 2.14 (Generating Random Permutations by Sorting)

1. Generate Uy,...,Uy, i u(,1).

2. Sort these in increasing order: Ux, < Ux, < --- < Uy,,.

3. Return X = (X1,...,Xy).

Example 2.13 (Drawing Without Replacement) Suppose we wish to se-
lect 30 numbers out of 100 uniformly without replacement. This can be accom-
plished by generating a uniform random permutation of 1,...,100 and selecting
the first 30 components thereof. The following MATLAB program achieves this
via an implementation of Algorithm 2.14. This procedure is most efficient when
the number of draws k is close to n.

Junifperm.m

n = 100;

k = 30;

[s,ix] = sort(rand(1i,n));
x = ix(1:k)

The next algorithm for drawing uniform random permutation is faster than
Algorithm 2.14 and builds the permutation component by component, requiring
only n uniform random numbers and no sorting.

Algorithm 2.15 (Generating Uniform Random Permutations)
1. Seta=(1,...,n) and i =1.

2. Generate an index I uniformly from {1,...,n —i+ 1}.

o

Set X; = ay followed by setting ar = ap—it1.

w'K

Seti =14+ 1. If i <n go to Step 2.

R

Return X = (X1,...,X,).

2.5 Exercises
1. Let the random variable X have pdf

T, O<e<l

: 1<z<3.
Generate a random variable from f(z), using the inverse-transform method and
the acceptance-rejection method. For the latter use the proposal density

8 5

2—5x, 0<r<—.

g(x) = 5
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2. Implement an acceptance-rejection and an inverse-transform algorithm for
generating random variables from the pdf f(z) = sin(x)/2,0 < z < 7.

3. We wish to sample from a pdf of the form f(z) = ch(z), where h(z) is
known, but ¢ > 0 could be unknown. Show that the following algorithm returns
a random variable Z with pdf f.

e Generate (X,Y) uniformly over the set
R=A{(z,y): 0 <z < Vh(y/z)} .
e Return Z = Y/X.

[Hint: consider the coordinate transformation z = w, y = wz; so R is trans-
formed to the set {(w, 2) : 0 < w < \/h(z). ]

4. Write a program that generates and displays 100 random vectors that are
uniformly distributed within the ellipse

5224+ 2lzy+259°=9.

Copyright © 2011 D.P. Kroese



44

Random Variable Generation

Copyright © 2011 D.P. Kroese



Chapter 3

Probability Distributions

This chapter lists some of the major discrete and continuous probability dis-
tributions used in Monte Carlo simulation, along with specific algorithms for
random variable generation.

3.1 Discrete Distributions

We list various discrete distributions in alphabetical order. Recall that a dis-
crete distribution is completely specified by its discrete pdf.

3.1.1 Bernoulli Distribution

The pdf of the Bernoulli distribution is given by

f(l';p) =p° (1 _p)l_Ia LS {Oa 1} )

where p € [0, 1] is the success parameter. We write the distribution as Ber(p).

The Bernoulli distribution is used to describe experiments with only two
outcomes: 1 (success) or 0 (failure). Such an experiment is called a Bernoulli
trial. A sequence of iid Bernoulli random variables, X, Xa,... ~jq Ber(p),
is called a Bernoulli process. Such a process is a model for the random
experiment where a biased coin is tossed repeatedly. The inverse-transform
method leads to the following generation algorithm.

Algorithm 3.1 (Ber(p) Generator)
1. Generate U ~ U(0,1).

2. If U < p, return X = 1; otherwise, return X = 0.

Example 3.1 (Bernoulli Generation) The following MATLAB code gener-
ates one hundred Ber(0.25) random variables, and plots a bar graph of the
binary data.

X = (rand(1,100) <= 0.25); bar (X)
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3.1.2 Binomial Distribution

The pdf of the binomial distribution is given by

flzyn,p) =P(X =2) = <Z>p‘”(1 )", x=0,1,...,n,

where 0 < p < 1. We write the distribution as Bin(n,p). The binomial dis-
tribution is used to describe the total number of successes in a sequence of n
independent Bernoulli trials. That is, a Bin(n, p)-distributed random variable
X can be written as the sum X = B;j +- -+ B,, of independent Ber(p) random
variables {B;}. Examples of the graph of the pdf are given in Figure 3.1.

0.3r

0.251

Bin(20,0.1)
0.2t . — Bin(20, 0.5)

2015+ ° °
g

L o o

0.1F .
o o
0.05-
[ o o
[+
0¢
0 2 4 6 8 10 12 14 16 18 20
T

Figure 3.1: The pdfs of the Bin(20,0.1) (solid dot) and Bin(20,0.5) (circle)
distributions.

The fact that binomial random variables can be viewed as sums of Bernoulli
random variables leads to the following generation algorithm.

Algorithm 3.2 (Bin(n,p) Generator)
1. Generate Xq,...,X, i Ber(p).
2. Return X =Y " | X;.

Alternative methods should be used for large n.

3.1.3 Geometric Distribution

The pdf of the geometric distribution is given by

flx;p) = (1 —p)x_lp, r=12,3,... (3.1)

where 0 < p < 1. We write the distribution as Geom(p). The geometric
distribution is used to describe the time of first success in an infinite sequence
of independent Bernoulli trials with success probability p. Examples of the
graph of the pdf are given in Figure 3.2.
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Figure 3.2: The pdfs of the Geom(0.3) (solid dot) and Geom(0.6) (circle) distri-
butions.

Let Y ~ Exp()), with A = —1In(1 — p). Then, [Y]| ~ Geom(p). This gives
the following generator.
Algorithm 3.3 (Geom(p) Generator (I))

1. Generate Y ~ Exp(—1In(1 —p)).

2. Output X = [Y].

3.1.4 Poisson Distribution

The pdf of the Poisson distribution is given by
x

. _ A _
f(:c,)\)—x!e , ©r=0,1,2,...,

where X\ > 0 is the rate parameter. We write the distribution as Poi()). Ex-
amples of the graph of the pdf are given in Figure 3.3.

0 2 4 6 8 10 12 14 16 18 20

Figure 3.3: The pdfs of the Poi(0.7) (solid dot), Poi(4) (circle), and Poi(11)
(plus) distributions.

The Poisson distribution is often used to model the number of arrivals of
some sort during a fixed period of time. The Poisson distribution is closely re-

lated to the exponential distribution via the Poisson process; see Section 4.4. Ll 69
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From this point of view the following is easy to prove: Let {Y;} i Exp(A).

Then,

X = max {n: zn;Yj < 1} ~ Poi(}) . (3.2)

That is, the Poisson random variable X can be interpreted as the maximal
number of iid exponential variables whose sum does not exceed 1.

Let {U;} % U(0,1). Rewriting (3.2), we see that

X = max{n: Z—anjg/\}

j=1
= max{n: ln(HUj> > —)\}
j=1
— max{n: HUj>e—A} (3.3)
j=1

has a Poi()) distribution. This leads to the following algorithm.
Algorithm 3.4 (Poi(A) Generator)

1. Setn=1anda=1.

2. Generate U, ~ U(0,1) and set a = aU,.

3. Ifa>e?, setn=mn+1 and go to Step 2.

4. Otherwise, return X =n — 1 as a random variable from Poi(\).

For large A\ alternative generation methods should be used.

3.1.5 Uniform Distribution (Discrete Case)

The discrete uniform distribution has pdf

1
; 7b:75 € 7"'7b )
flaiab) = ;s we {a.b)
where a,b € Z, b > a are parameters. The discrete uniform distribution is
used as a model for choosing a random element from {a,...,b} such that each
element is equally likely to be drawn. We denote this distribution by DU(a, b).
Drawing from a discrete uniform distribution on {a,...,b}, where a and b

are integers, is carried out via a simple table lookup method.

Algorithm 3.5 (DU(a,b) Generator)

Draw U ~ U(0,1) and output X = |a+ (b+1—a)U]|.
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3.2 Continuous Distributions

We list various continuous distributions in alphabetical order. Recall that an
absolutely continuous distribution is completely specified by its pdf.

3.2.1 Beta Distribution
The beta distribution has pdf

xafl(l _ x)5*1

[z, 8) = Bad)

x € [0,1],

where a > 0 and 3 > 0 are called shape parameters and B is the beta function:

[(a) T(5)

PO = Targ)

We write the distribution as Beta(a, 3). The dependence of the beta distribu-
tion on its shape parameters is illustrated in Figure 3.4.
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Figure 3.4: Various pdfs of the beta distribution.

A fundamental relation between the gamma and beta distribution is the
following: Let X ~ Gamma(«,#) be independent of Y ~ Gamma((3,6). Then,

X
X+Y

~ Beta(a, ) .

Copyright © 2011 D.P. Kroese



50 Probability Distributions

More generally, suppose X, ~ Gamma(ag,1), k& = 1,...,n, independently.

Then, the random variables
Xy 4+ X
Y, = , k=1,....n—1,
P X+ X

and S, = X7 + -+ X,, are independent. Moreover,

Yy ~ Beta(ag + -+ + ag,a541) and S, ~ Gamma(a; + -+ + ag, 1) .
This yields the following generation algorithm.
Algorithm 3.6 (Beta(a, 3) Generator)
1. Generate independently Y1 ~ Gamma(a, 1) and Yo ~ Gamma(f,1).

2. Return X =Y1/(Y1 +Y32) as a random variable from Beta(a, 3).

3.2.2 Cauchy Distribution
The Cauchy distribution has pdf

fla) =2

71+ a2

The graph of the pdf of the Cauchy(0, 1) distribution is given in Figure 3.5.

rzeR.

0.4

(x
o
A

Figure 3.5: The pdf of the Cauchy distribution.

The following algorithm is a direct consequence of the inverse-transform
method and the fact that cot(rz) = tan (7z — %).

Algorithm 3.7 (Cauchy Generator)
Draw U ~ U(0,1) and output X = cot(wU) (or X = tan(nU — 7/2)).
Another simple algorithm is:

Algorithm 3.8 (Cauchy Generator via Ratio of Normals)
1. Generate Y1,Ys < N(0,1).

2. Return X =Y1/Ys.
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3.2.3 Exponential Distribution
The exponential distribution has pdf
flzN)=Xxe™ ™ >0,

where A > 0 is the rate parameter. We write the distribution as Exp(X\). The
exponential distribution can be viewed as a continuous version of the geometric
distribution. It plays a central role in the theory and application of Markov
jump processes, and in stochastic modeling in general, due to its memoryless
property: If X ~ Exp()), then

PX>s+t|X>s)=P(X >t), st=0.

Graphs of the pdf for various values of A are given in Figure 3.6.

Figure 3.6: Pdfs of the Exp(\) distribution for various values of \.

Noting that U ~ U(0,1) implies 1 — U ~ U(0,1), we obtain the following
inverse-transform algorithm.

Algorithm 3.9 (Exp(\) Generator)

Draw U ~ U(0,1) and output X = —3InU.

3.2.4 Gamma Distribution

The gamma distribution has pdf

)\axa—le—)\m

f(.%';Oé,A) - F(a) )

x>0, (3.4)
where o > 0 is called the shape parameter and A\ > 0 the scale parameter. In
the formula for the pdf, I' is the gamma function. We write the distribution as
Gamma(a, A).

An important special case is the Gamma(n/2,1/2) distribution with n €
{1,2, ...}, which is called a chi-square distribution; the parameter n is then
referred to as the number of degrees of freedom. The distribution is written
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as x2. A graph of the pdf of the x? distribution, for various n, is given in
Figure 3.7.

Figure 3.7: Pdfs of the x2 distribution for various degrees of freedom n.

Since Gamma(a, \) is a scale family, it suffices to only give algorithms for
generating random variables X ~ Gamma(a, 1), because X/\ ~ Gamma(a, A).
Since the cdf of the gamma distribution does not generally exist in explicit
form, the inverse-transform method cannot always be applied to generate ran-
dom variables from this distribution. Thus, alternative methods are called for.
The following algorithm, by Marsaglia and Tsang provides a highly efficient
acceptance-rejection method for generating Gamma(a, 1) random variables with
a>1.

Algorithm 3.10 (Gamma(a, 1) Generator for a > 1)
1. Setd=a—1/3 and c=1/v9d.
2. Generate Z ~ N(0,1) and U ~ U(0,1) independently.

8. If Z>—1/cand mU < £Z? +d—dV +dInV, where V = (1 + cZ)3,
return X = dV; otherwise, go back to Step 2.

For the case o < 1 one can use the fact that if X ~ Gamma(1l + «,1), and
U ~ U(0,1) are independent, then XU ~ Gamma(a, 1). Alternatively, one
can use the following algorithm by Best:

Algorithm 3.11 (Gamma(a, 1) Generator for a < 1)

1. Setd=0.07+0.75y/T —a and b =1+ e %a/d.

2. Generate Uy, Us Y U(0,1) and set V. =>0U;.

3. IfV < 1, then set X = dV'/®. Check whether Uy < (2 — X)/(2 + X).
If true, return X ; otherwise, check whether Uy < e~ X. If true, return X;
otherwise, go back to Step 2.

Copyright © 2011 D.P. Kroese



3.2 Continuous Distributions

53

If V> 1, then set X = —In(d(b—V)/a) and Y = X/d. Check whether
Us(a+y(1 — a)) < 1. If true, return X ; otherwise, check if Uy < Y7L,
If true, return X ; otherwise, go back to Step 2.

3.2.5 Normal Distribution

The standard normal or standard Gaussian distribution has pdf

The corresponding location—scale family of pdfs is therefore

1 22
f(z;p, 0%) = 3 (554) ,xeR. (3.5)
o2
We write the distribution as N(u, 0?). We denote the pdf and cdf of the N(0, 1)
R . } . _rx 1 1

distribution as ¢ and ®, respectively. Here, ®(z) = [* () dt = 5+ §erf(%),

where erf(z) is the error function.
The normal distribution plays a central role in statistics and arises naturally
as the limit of the sum of iid random variables via the central limit theorem. Its
crucial property is that any affine combination of independent normal random

variables is again normal. In Figure 3.8 the probability densities for three
different normal distributions are depicted.
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Figure 3.8: Pdfs of the normal distribution for various values of the parameters.

Since N(u,o0) forms a location—scale family, we only consider generation
from N(0,1). The most prominent application of the polar method (see Sec-
tion 2.1.2.6) lies in the generation of standard normal random variables, leading
to the celebrated Box—Muller method.
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U 39

Algorithm 3.12 (N(0,1) Generator, Box—Muller Approach)

1. Generate Uy, Us by u(o,1).

2. Return two independent standard normal variables, X andY , via
X =+/—2InU; cos(2nls) ,

Y =+/—2InU; sin(27U3) .

Finally, the following algorithm uses acceptance-rejection with an exponen-
tial proposal distribution. This gives a probability of acceptance of \/7/(2e) ~
0.76 . The theory behind it is given in Example 2.12.

(3.6)

Algorithm 3.13 (N(0,1) Generator, Acceptance—Rejection from Exp(1))

1. Generate X ~ Exp(1) and U" ~ U(0,1), independently.

2. If U < e X-D*2 generate U ~ U(0,1) and output Z = (1 —
2liy<i/2y) X; otherwise, repeat from Step 1.

3.2.6 Uniform Distribution (Continuous Case)

The uniform distribution on the interval [a, b] has pdf

1
fl@ab)=3—, a<z<b.
We write the distribution as U[a, b]. A graph of the pdf is given in Figure 3.9.
1
b—a |
| |
| 1
| |
| |
| |
a b x —

Figure 3.9: The pdf of the uniform distribution on [a, b].

The uniform distribution is used as a model for choosing a point randomly
from the interval [a,b], such that each point is equally likely to be drawn.
The uniform distribution on an arbitrary Borel set B in R"™ with non-zero
Lebesgue measure (for example, area, volume) |B| is defined similarly: its pdf
is constant, taking value 1/|B| on B and 0 otherwise. We write U(B) or simply
UB. The Ula, b] distribution is a location—scale family, as Z ~ U[a, b] has the
same distribution as a + (b — a) X, with X ~ UJ0, 1].

The generation of U(0,1) random variables, crucial for any Monte Carlo
method, is discussed in detail in Chapter 1. U(a,b) random variable generation
follows immediately from the inverse-transform method.

Algorithm 3.14 (U(a,b) Generation)
Generate U ~ U(0,1) and return X = a+ (b —a)U.
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3.3 Multivariate Distributions

3.3.1 Dirichlet Distribution
The standard Dirichlet (or type I Dirichlet) distribution has pdf

F( an—&-ll Oéz‘) s 1 - ant1-1 . =
fxa) = ﬁnxf" <1—zxi> , x;=20,9= 1,...,n,2xi <1,
[L2 Tlew) o) i=1 i=1
where a; > 0,7 =1,...,n+ 1 are shape parameters. We write this distribu-
tion as Dirichlet(as, ..., an11) or Dirichlet(a), with a = (a1, ..., an41)". The
Dirichlet distribution can be regarded as a multivariate generalization of the
beta distribution (see Section 3.2.1), in the sense that each marginal X}, has a
beta distribution. A graph of the pdf for the two-dimensional case is given in
Figure 3.10.
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Figure 3.10: The Dirichlet pdf in two dimensions, with parameter vector o« =
(1.5,1.5,3)".

The fundamental relation between the Dirichlet and the gamma distribution
given is the following:

Let Y1, ..., Y11 be independent random variables with Y ~ Gamma(ay, 1),
kE=1,...,n+1, and define

Y
Xo= <Y k1.
21 Yi

Then, X = (X1,...,X,) ~ Dirichlet().

This provides the following generation method.

Algorithm 3.15 (Dirichlet(ar) Generator)
1. Generate Yy, ~ Gamma(ag, 1), k=1,...,n+ 1 independently.
2. Output X = (X1,...,Xp), where
Yy

Xp=—" " k=1,...n.
> Y
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3.3.2 Multivariate Normal Distribution

The standard multivariate normal or standard multivariate Gaussian
distribution in n dimensions has pdf

1 1T
X) = e 2 , X€ER™. 3.7
)= o .7
All marginals of X = (X1,...,X,,)" are iid standard normal random variables.

Suppose that Z has an m-dimensional standard normal distribution. If A
is an n X m matrix and p is an n X 1 vector, then the affine transformation

X =pn+ AZ

is said to have a multivariate normal or multivariate Gaussian distribu-
tion with mean vector p and covariance matrix ¥ = AAT. We write the
distribution as N(u, X).

The covariance matrix ¥ is always symmetric and positive semidefinite.
When A is of full rank (that is, rank(A) = min{m,n}) the covariance matrix
>} is positive definite. In this case ¥ has an inverse and the distribution of X
has pdf

. _ 1 —1 (k=) TS (x—p) n
f(x;p,%) ) e , xeR". (3.8)

The multivariate normal distribution is a natural extension of the normal
distribution (see Section 3.2.5) and plays a correspondingly important role in
multivariate statistics. This multidimensional counterpart also has the prop-
erty that any affine combination of independent multivariate normal random
variables is again multivariate normal. A graph of the standard normal pdf for
the two-dimensional case is given in Figure 3.11.

Figure 3.11: The standard multivariate normal pdf in two dimensions.
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Some important properties are:

1. Affine combinations: Let X1, X, ..., X, be independent m;-dimensional
normal variables, with X; ~ N(u,;,%;), ¢ = 1,...,7. Let a be an n x 1
vector and let each A; be an n X m; matrix for : = 1,...,r. Then,

T T T
i=1 i=1 i=1

In other words, any affine combination of independent multivariate normal
random variables is again multivariate normal.

2. Standardization (whitening): A particular case of the affine combinations
property is the following. Suppose X ~ N(u,X) is an n-dimensional
normal random variable with det(X) > 0. Let A be the Cholesky factor
of the matrix . That is, A is an n X n lower triangular matrix of the

form
aj; 0 - 0
a1 ax --- 0
A= , (3.9)
anl Ap2 - Apnp

and such that ¥, = AAT. It follows that

AN (X = ) ~N(0,1).

3. Marginal distributions: Let X be an n-dimensional normal variable, with
X ~ N(p,2). Separate the vector X into a part of size p and one of size
q = n—p and, similarly, partition the mean vector and covariance matrix:

X P 5, ¥
X: P ) = P ) 2: d T)? 310
) wmla) == s) o

where X, is the upper left pxp corner of 3, ¥, is the lower right ¢ x ¢ corner
of 3, and X, is the p x ¢ upper right block of 3. Then, the distributions
of the marginal vectors X, and X, are also multivariate normal, with
Xp ~ N(py,, Xp) and Xy ~ N(pg, Xg).

Note that an arbitrary selection of p and ¢ elements can be achieved by
first performing a linear transformation Z = AX, where A is the n x n
permutation matriz that appropriately rearranges the elements in X.

4. Conditional distributions: Suppose we again have an n-dimensional vector
X ~ N(u, X), partitioned as for the marginal distribution property above,
bu