Stochastics II - Supplementation

Blatt 6, Aufgabe 1, (b)

$$
\begin{aligned}
& \mathbb{P}\left[N_{1}<2, N_{2}=3, N_{3}>5\right] \\
& =\mathbb{P}\left[N_{1}=0, N_{2}=3, N_{3}>5\right]+\mathbb{P}\left[N_{1}=1, N_{2}=3, N_{3}>5\right] \\
& =\mathbb{P}\left[N_{1}-N_{0}=0, N_{2}-N_{1}=3, N_{3}-N_{2}>2\right]+\mathbb{P}\left[N_{1}-N_{0}=1, N_{2}-N_{1}=2, N_{3}-N_{2}>2\right] \\
& =\mathbb{P}\left[N_{1}-N_{0}=0\right] \mathbb{P}\left[N_{2}-N_{1}=3\right] \mathbb{P}\left[N_{3}-N_{2}>2\right]+\mathbb{P}\left[N_{1}-N_{0}=1\right] \mathbb{P}\left[N_{2}-N_{1}=2\right] \mathbb{P}\left[N_{3}-N_{2}>2\right] \\
& =\exp (-\lambda) \frac{\lambda^{3}}{6} \exp (-\lambda)\left(1-\exp (-\lambda)-\lambda \exp (-\lambda)-\frac{\lambda^{2}}{2} \exp (-\lambda)\right) \\
& +\lambda \exp (-\lambda) \frac{\lambda^{2}}{2} \exp (-\lambda)\left(1-\exp (-\lambda)-\lambda \exp (-\lambda)-\frac{\lambda^{2}}{2} \exp (-\lambda)\right) \\
& =\left(1-\exp (-\lambda)-\lambda \exp (-\lambda)-\frac{\lambda^{2}}{2} \exp (-\lambda)\right)\left(\exp (-\lambda) \frac{\lambda^{3}}{6} \exp (-\lambda)+\lambda \exp (-\lambda) \frac{\lambda^{2}}{2} \exp (-\lambda)\right) \\
& =\exp (-2 \lambda) \frac{2 \lambda^{3}}{3}\left(1-\exp (-\lambda)-\lambda \exp (-\lambda)-\frac{\lambda^{2}}{2} \exp (-\lambda)\right)
\end{aligned}
$$

Blatt 6, Aufgabe 4, (d)
$N_{t}+1$ is a random variable, dependent of ξ. Thus, one cannot conclude that $\mathbb{E} \xi_{N_{t}+1}=\frac{1}{\lambda}$
$C(t)$ can take values between 0 and t. Therefore, $C(t) \stackrel{d}{=} \min \{t, E\}$, where $E \sim \operatorname{Exp}(\lambda)$. As a consequence, for the expected value of $C(t)$ it holds that $\mathbb{E} C(t)>0$ and $\mathbb{E} C(t)<\frac{1}{\lambda}$.

Blatt 4, Aufgabe 2, (b)
1st Possibility
State 0 is recurrent, because the probability to have a 6 infinitely often is 1 . The MC is irreducible, therefore, all states are recurrent.

2nd Possibility

$$
\sum_{n=1}^{\infty} p_{00}^{(n)}=\sum_{n=1}^{\infty} \frac{1}{6}=\infty
$$

$p_{00}^{(n)}=\frac{1}{6}$, because the probability to be in an arbitrary state after $n-1$ steps is 1 and to come back to 0 from that state is $\frac{1}{6}$. The MC is irreducible, therefore, all states are recurrent.

