
CHAPTER 1

General theory of stochastic processes

1.1. Definition of stochastic process

First let us recall the definition of a random variable. A random variable is a random number
appearing as a result of a random experiment. If the random experiment is modeled by a
probability space (Ω,F ,P), then a random variable is defined as a function ξ : Ω → R
which is measurable. Measurability means that for every Borel set B ⊂ R it holds that
ξ−1(B) ∈ F . Performing the random experiment means choosing the outcome ω ∈ Ω at
random according to the probability measure P. Then, ξ(ω) is the value of the random
variable which corresponds to the outcome ω.

A stochastic process is a random function appearing as a result of a random experiment.

Definition 1.1.1. Let (Ω,F ,P) be a probability space and let T be an arbitrary set (called
the index set). Any collection of random variables X = {Xt : t ∈ T} defined on (Ω,F ,P) is
called a stochastic process with index set T .

So, to every t ∈ T corresponds some random variable Xt : Ω → R, ω 7→ Xt(ω). Note that
in the above definition we require that all random variables Xt are defined on the same
probability space. Performing the random experiment means choosing an outcome ω ∈ Ω at
random according to the probability measure P.

Definition 1.1.2. The function (defined on the index set T and taking values in R)

t 7→ Xt(ω)

is called the sample path (or the realization, or the trajectory) of the stochastic process X
corresponding to the outcome ω.

So, to every outcome ω ∈ Ω corresponds a trajectory of the process which is a function
defined on the index set T and taking values in R.

Stochastic processes are also often called random processes, random functions or simply
processes.

Depending on the choice of the index set T we distinguish between the following types of
stochastic processes:

1. If T consists of just one element (called, say, 1), then a stochastic process reduces to
just one random variable X1 : Ω → R. So, the concept of a stochastic process includes the
concept of a random variable as a special case.

2. If T = {1, . . . , n} is a finite set with n elements, then a stochastic process reduces to a
collection of n random variables X1, . . . , Xn defined on a common probability space. Such
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a collection is called a random vector. So, the concept of a stochastic process includes the
concept of a random vector as a special case.

3. Stochastic processes with index sets T = N, T = Z, T = Nd, T = Zd (or any other
countable set) are called stochastic processes with discrete time.

4. Stochastic processes with index sets T = R, T = Rd, T = [a, b] (or other similar
uncountable sets) are called stochastic processes with continuous time.

5. Stochastic processes with index sets T = Rd, T = Nd or T = Zd, where d ≥ 2, are
sometimes called random fields.

The parameter t is sometimes interpreted as “time”. For example, Xt can be the price of a
financial asset at time t. Sometimes we interpret the parameter t as “space”. For example,
Xt can be the air temperature measured at location with coordinates t = (u, v) ∈ R2.
Sometimes we interpret t as “space-time”. For example, Xt can be the air temperature
measured at location with coordinates (u, v) ∈ R2 at time s ∈ R, so that t = (u, v, s) ∈ R3.

1.2. Examples of stochastic processes

1. I.i.d. Noise. Let {Xn : n ∈ Z} be independent and identically distributed (i.i.d.) random
variables. This stochastic process is sometimes called the i.i.d. noise. A realization of this
process is shown in Figure 1, left.
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Figure 1. Left: A sample path of the i.i.d. noise. Right: A sample path of
the random walk. In both cases, the variables Xn are standard normal

2. Random walk. Let {Xn : n ∈ N} be independent and identically distributed random
variables. Define

Sn := X1 + . . .+Xn, n ∈ N, S0 = 0.

The process {Sn : n ∈ N0} is called the random walk. A sample path of the random walk is
shown in Figure 1, right.

3. Geometric random walk. Let {Xn : n ∈ N} be independent and identically distributed
random variables such that Xn > 0 almost surely. Define

Gn := X1 · . . . ·Xn, n ∈ N, Gn = 1.
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The process {Gn : n ∈ N0} is called the geometric random walk. Note that {logSn : n ∈ N0}
is a (usual) random walk.

4. Random lines and polynomials. Let ξ0, ξ1 : Ω → R be two random variables defined on
the same probability space. Define

Xt = ξ0 + ξ1t, t ∈ R.

The process {Xt : t ∈ R} might be called “a random line” because the sample paths t 7→
Xt(ω) are linear functions.
More generally, one can consider random polynomials. Fix some d ∈ N (the degree of the
polynomial) and let ξ0, . . . , ξd be random variables defined on a common probability space.
Then, the stochastic process

Xt = ξ0 + ξ1t+ ξ2t
2 + . . .+ ξdt

d, t ∈ R,

might be called a “random polynomial” because its sample paths are polynomial functions.

5. Renewal process. Consider a device which starts to work at time 0 and works T1 units of
time. At time T1 this device is replaced by another device which works for T2 units of time.
At time T1 + T2 this device is replaced by a new one, and so on. Let us denote the working
time of the i-th device by Ti. Let us assume that T1, T2, . . . are independent and identically
distributed random variables with P[Ti > 0] = 1. The times

Sn = T1 + . . .+ Tn, n ∈ N,

are called renewal times because at time Sn some device is replaced by a new one. Note that
0 < S1 < S2 < . . .. The number of renewal times in the time interval [0, t] is

Nt =
∞∑
n=1

1Sn≤t = #{n ∈ N : Sn ≤ t}, t ≥ 0.

The process {Nt : t ≥ 0} is called a renewal process.

Many further examples of stochastic processes will be considered later (Markov chains, Brow-
nian Motion, Lévy processes, martingales, and so on).

1.3. Finite-dimensional distributions

A random variable is usually described by its distribution. Recall that the distribution of a
random variable ξ defined on a probability space (Ω,F ,P) is a probability measure P ξ on
the real line R defined by

P ξ(A) = P[ξ ∈ A] = P[{ω ∈ Ω : ξ(ω) ∈ A}], A ⊂ R Borel.

Similarly, the distribution of a random vector ξ = (ξ1, . . . , ξn) (with values in Rn) is a
probability measure P ξ on Rn defined by

P ξ(A) = P[ξ ∈ A] = P[{ω ∈ Ω : (ξ1(ω), . . . , ξn(ω)) ∈ A}], A ⊂ Rn Borel.

Now, let us define similar concepts for stochastic processes. Let {Xt : t ∈ T} be a stochastic
process with index set T . Take some t1, . . . , tn ∈ T . For Borel sets B1, . . . , Bn ⊂ R define

Pt1,...,tn(B1 × . . .×Bn) = P[Xt1 ∈ B1, . . . , Xtn ∈ Bn].
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More generally, define Pt1,...,tn (a probability measure on Rn) by

Pt1,...,tn(B) = P[(Xt1 , . . . , Xtn) ∈ B], B ⊂ Rn Borel.

Note that Pt1,...,tn is the distribution of the random vector (Xt1 , . . . , Xtn). It is called a finite-
dimensional distribution of X. We can also consider the collection of all finite dimensional
distributions of X:

P := {Pt1,...,tn : n ∈ N, t1, . . . , tn ∈ T} .
It is an exercise to check that the collection of all finite-dimensional distributions if a sto-
chastic process X has the following two properties.

1. Permutation invariance. Let π : {1, . . . , n} → {1, . . . , n} be a permutation. Then, for all
n ∈ N, for all t1, . . . , tn ∈ T , and for all B1, . . . , Bn ∈ B(R),

Pt1,...,tn(B1 × . . .×Bn) = Ptπ(1),...,tπ(n)(Bπ(1) × . . .×Bπ(n)).

2. Projection invariance. For all n ∈ N, all t1, . . . , tn, tn+1 ∈ T , and all B1, . . . , Bn ∈ B(R)
it holds that

Pt1,...,tn,tn+1(B1 × . . .×Bn × R) = Pt1,...,tn(B1 × . . .×Bn).

To a given stochastic process we can associate the collection of its finite-dimensional distribu-
tions. This collection has the properties of permutation invariance and projection invariance.
One may ask a converse question. Suppose that we are given an index set T and suppose
that for every n ∈ N and every t1, . . . , tn ∈ T some probability measure Pt1,...,tn on Rn is
given. [A priori, this probability measure need not be related to any stochastic process. No
stochastic process is given at this stage.] We can now ask whether we can construct a sto-
chastic process whose finite-dimensional distributions are given by the probability measures
Pt1,...,tn . Necessary conditions for the existence of such stochastic process are the permutation
invariance and the projection invariance. The following theorem of Kolmogorov says that
these conditions are also sufficient.

Theorem 1.3.1 (Kolmogorov’s existence theorem). Fix any non-empty set T . Let

P = {Pt1,...,tn : n ∈ N, t1, . . . , tn ∈ T}
be a collection of probability measures (so that Pt1,...,tn is a probability measure on Rn) which
has the properties of permutation invariance and projection invariance stated above. Then,
there exist a probability space (Ω,F ,P) and a stochastic process {Xt : t ∈ T} on (Ω,F ,P)
whose finite-dimensional distributions are given by the collection P. This means that for
every n ∈ N and every t1, . . . , tn ∈ N the distribution of the random vector (Xt1 , . . . , Xtn)
coincides with Pt1,...,tn.

Idea of proof. We have to construct a suitable probability space (Ω,F ,P) and an
appropriate stochastic process {Xt : t ∈ T} defined on this probability space.

Step 1. Let us construct Ω first. Usually, Ω is the set of all possible outcomes of some
random experiment. In our case, we would like the outcomes of our experiment to be
functions (the realizations of our stochastic process). Hence, let us define Ω to be the set of
all functions defined on T and taking values in R:

Ω = RT = {f : T → R}.
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Step 2. Let us construct the functions Xt : Ω → R. We want the sample path t 7→ Xt(f)
of our stochastic process corresponding to an outcome f ∈ Ω to coincide with the function
f . In order to fulfill this requirement, we need to define

Xt(f) = f(t), f ∈ RT .

The functions Xt are called the canonical coordinate mappings. For example, if T =
{1, . . . , n} is a finite set of n elements, then RT can be identified with Rn = {f = (f1, . . . , fn) :
fi ∈ R}. Then, the mappings defined above are just the maps X1, . . . , Xn : Rn → R which
map a vector to its coordinates:

X1(f) = f1, . . . , Xn(f) = fn, f = (f1, . . . , fn) ∈ Rn.

Step 3. Let us construct the σ-algebra F . We have to define what subsets of Ω = RT

should be considered as measurable. We want the coordinate mappings Xt : Ω → R to be
measurable. This means that for every t ∈ T and every Borel set B ∈ B(R) the preimage

X−1
t (B) = {f : T → R : f(t) ∈ B} ⊂ Ω

should be measurable. By taking finite intersections of these preimages we obtain the so-
called cylinder sets, that is sets of the form

AB1,...,Bn
t1,...,tn := {f ∈ Ω : f(t1) ∈ B1, . . . , f(tn) ∈ Bn} ,

where t1, . . . , tn ∈ T and B1, . . . , Bn ∈ B(R). If we want the coordinate mappings Xt to be
measurable, then we must declare the cylinder sets to be measurable. Cylinder sets do not
form a σ-algebra (just a semi-ring).
This is why we define F as the σ-algebra generated by the collection of cylinder sets:

F = σ
{
AB1,...,Bn
t1,...,tn : n ∈ N, t1, . . . , tn ∈ T,B1, . . . , Bn ∈ B(R)

}
.

We will call F the cylinder σ-algebra. Equivalently, one could define F as the smallest
σ-algebra on Ω which makes the coordinate mappings Xt : Ω→ R measurable.
Sometimes cylinder sets are defined as sets of the form

ABt1,...,tn := {f ∈ Ω : (f(t1), . . . , f(tn)) ∈ B},

where t1, . . . , tn ∈ T and B ∈ B(Rn). One can show that the σ-algebra generated by these
sets coincides with F .

Step 4. We define a probability measure P on (Ω,F). We want the distribution of the
random vector (Xt1 , . . . , Xtn) to coincide with the given probability measure Pt1,...,tn , for all
t1, . . . , tn ∈ T . Equivalently, we want the probability of the event {Xt1 ∈ B1, . . . , Xtn ∈ Bn}
to be equal to Pt1,...,tn(B1 × . . . × Bn), for every t1, . . . , tn ∈ T and B1, . . . , Bn ∈ B(R).
However, with our definition of Xt as coordinate mappings, we have

{Xt1 ∈ B1, . . . , Xtn ∈ Bn} = {f ∈ Ω : Xt1(f) ∈ B1, . . . , Xtn(f) ∈ Bn}
= {f ∈ Ω : f(t1) ∈ B1, . . . , f(tn) ∈ Bn}
= AB1,...,Bn

t1,...,tn .
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Hence, we must define the probability of a cylinder set AB1,...,Bn
t1,...,tn as follows:

P[AB1,...,Bn
t1,...,tn ] = Pt1,...,tn(B1 × . . .×Bn).

It can be shown that P can be extended to a well-defined probability measure on (Ω,F).
This part of the proof is non-trivial but similar to the extension of the Lebesgue measure
from the semi-ring of all rectangles to the Borel σ-algebra. We will omit this argument here.
The properties of permutation invariance and projection invariance are used to show that P
is well-defined. �

Example 1.3.1 (Independent random variables). Let T be an index set. For all t ∈ T let a
probability measure Pt on R be given. Can we construct a probability space (Ω,F ,P) and
a collection of independent random variables {Xt : t ∈ T} on this probability space such
that Xt has distribution Pt for all t ∈ T? We will show that the answer is yes. Consider the
family of probability distributions P = {Pt1,...,tn : n ∈ N, t1, . . . , tn ∈ T} defined by

(1.3.1) Pt1,...,tn(B1 × . . .×Bn) = Pt1(B1) · . . . · Ptn(Bn),

where B1, . . . , Bn ∈ B(R). It is an exercise to check that permutation invariance and projec-
tion invariance hold for this family. By Kolmogorov’s theorem, there is a probability space
(Ω,F ,P) and a collection of random variables {Xt : t ∈ T} on this probability space such
that the distribution of (Xt1 , . . . , Xtn) is Pt1,...,tn . In particular, the one-dimensional distri-
bution of Xt is Pt. Also, it follows from (1.3.1) that the random variables Xt1 , . . . , Xtn are
independent. Hence, the random variables {Xt : t ∈ T} are independent.

1.4. The law of stochastic process

Random variables, random vectors, stochastic processes (=random functions) are special
cases of the concept of random element.

Definition 1.4.1. Let (Ω,F) and (Ω′,F ′) be two measurable spaces. That is, Ω and Ω′ are
any sets and F ⊂ 2Ω and F ′ ⊂ 2Ω′

are σ-algebras of subsets of Ω, respectively Ω′. A function
ξ : Ω→ Ω′ is called F-F ′-measurable if for all A′ ∈ F ′ it holds that ξ−1(A′) ∈ F .

Definition 1.4.2. Let (Ω,F ,P) be a probability space and (Ω′,F ′) a measurable space. A
random element with values in Ω′ is a function ξ : Ω→ Ω′ which is F -F ′-measurable.

Definition 1.4.3. The probability distribution (or the probability law) of a random element
ξ : Ω→ Ω′ is the probability measure P ξ on (Ω′,F ′) given by

P ξ(A′) = P[ξ ∈ A′] = P[{ω ∈ Ω : ξ(ω) ∈ A′}], A′ ∈ F ′.

Special cases:

1. If Ω′ = R and F ′ = B(R), then we recover the notion of random variable.

2. If Ω′ = Rd and F ′ = B(Rd), we recover the notion of random vector.

3. If Ω′ = RT and F ′ = σcyl is the cylinder σ-algebra, then we recover the notion of stochastic
process. Indeed, a stochastic process {Xt : t ∈ T} defined on a probability space (Ω,F ,P)
leads to the mapping ξ : Ω → RT which maps an outcome ω ∈ Ω to the corresponding
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trajectory of the process {t 7→ Xt(ω)} ∈ RT . This mapping is F -σcyl-measurable because
the preimage of any cylinder set

AB1,...,Bn
t1,...,tn = {f ∈ RT : f(t1) ∈ B1, . . . , f(tn) ∈ Bn}

is given by

ξ−1(AB1,...,Bn
t1,...,tn ) = {ω ∈ Ω : Xt1(ω) ∈ B1, . . . , Xtn(ω) ∈ Bn} = X−1

t1
(B1) ∩ . . . ∩X−1

tn (Bn).

This set belongs to the σ-algebra F because X−1
ti (Bi) ∈ F by the measurability of the

function Xti : Ω→ R. Hence, the mapping ξ is F -σcyl-measurable.

To summarize, we can consider a stochastic process with index set T as a random element
defined on some probability space (Ω,F ,P) and taking values in RT .

In particular, the probability distribution (or the probability law) of a stochastic process
{Xt, t ∈ T} is a probability measure PX on (RT , σcyl) whose values on cylinder sets are given
by

PX(AB1,...,Bn
t1,...,tn ) = P[Xt1 ∈ B1, . . . , Xtn ∈ Bn].

1.5. Equality of stochastic processes

There are several (non-equivalent) notions of equality of stochastic processes.

Definition 1.5.1. Two stochastic processes X = {Xt : t ∈ T} and Y = {Yt : t ∈ T} with
the same index set T have the same finite-dimensional distributions if for all t1, . . . , tn ∈ T
and all B1, . . . , Bn ∈ B(R):

P[Xt1 ∈ B1, . . . , Xtn ∈ Bn] = P[Yt1 ∈ B1, . . . , Ytn ∈ Bn].

Definition 1.5.2. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined on
the same probability space (Ω,F ,P) and having the same index set T . We say that X is a
modification of Y if

∀t ∈ T : P[Xt = Yt] = 1.

With other words: For the random events At = {ω ∈ Ω : Xt(ω) = Yt(ω)} it holds that

∀t ∈ T : P[At] = 1.

Note that in this definition the random event At may depend on t.

The next definition looks very similar to Definition 1.5.2. First we formulate a preliminary
version of the definition and will argue later why this preliminary version has to be modified.

Definition 1.5.3. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined
on the same probability space (Ω,F ,P) and having the same index set T . We say that the
processes X and Y are indistinguishable if

P[∀t ∈ T : Xt = Yt] = 1.

With other words, it should hold that

P[{ω ∈ Ω : Xt(ω) = Yt(ω) for all t ∈ T}] = 1.
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Another reformulation: the set of outcomes ω ∈ Ω for which the sample paths t 7→ Xt(ω)
and t 7→ Yt(ω) are equal (as functions on T ), has probability 1. This can also be written as

P[∩t∈TAt] = 1.

Unfortunately, the set ∩t∈TAt may be non-measurable if T is not countable, for example if
T = R. That’s why we have to reformulate the definition as follows.

Definition 1.5.4. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined
on the same probability space (Ω,F ,P) and having the same index set T . The processes X
and Y are called indistinguishable if there exists a measurable set A ∈ F so that P[A] = 1
and for every ω ∈ A, t ∈ T it holds that Xt(ω) = Yt(ω).

If the processes X and Y are indistinguishable, then they are modifications of each other.
The next example shows that the converse is not true, in general.

Example 1.5.5. Let U be a random variable which is uniformly distributed on the interval
[0, 1]. The probability space on which U is defined is denoted by (Ω,F ,P). Define two
stochastic processes {Xt : t ∈ [0, 1]} and {Yt : t ∈ [0, 1]} by

1. Xt(ω) = 0 for all t ∈ [0, 1] and ω ∈ Ω.

2. For all t ∈ [0, 1] and ω ∈ Ω,

Yt(ω) =

{
1, if t = U(ω),

0, otherwise.

Then,

(a) X is a modification of Y because for all t ∈ [0, 1] it holds that

P[Xt = Yt] = P[Yt = 0] = P[U 6= t] = 1.

(b) X and Y are not indistinguishable because for every ω ∈ Ω the sample paths t 7→ Xt(ω)
and t 7→ Yt(ω) are not equal as functions on T . Namely, YU(ω)(ω) = 1 while XU(ω)(ω) = 0.

Proposition 1.5.6. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined on
the same probability space (Ω,F ,P) and having the same index set T . Consider the following
statements:

1. X and Y are indistinguishable.

2. X and Y are modifications of each other.

3. X and Y have the same finite-dimensional distributions.

Then, 1⇒ 2⇒ 3 and none of the implications can be inverted, in general.

Proof. Exercise. �

Exercise 1.5.7. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined on
the same probability space (Ω,F ,P) and having the same countable index set T . Show that
X and Y are indistinguishable if and only if they are modifications of each other.
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1.6. Measurability of subsets of RT

Let {Xt : t ∈ T} be a stochastic process defined on a probability space (Ω,F ,P). To every
outcome ω ∈ Ω we can associate a trajectory of the process which is the function t 7→ Xt(ω).
Suppose we would like to compute the probability that the trajectory is everywhere equal
to zero. That is, we would like to determine the probability of the set

Z := {ω ∈ Ω : Xt(ω) = 0 for all t ∈ T} = ∩t∈T{ω ∈ Ω : Xt(ω) = 0} = ∩t∈TX−1
t (0).

But first we need to figure out whether Z is a measurable set, that is whether Z ∈ F . If
T is countable, then Z is measurable since any of the sets X−1

t (0) is measurable (because
Xt is a measurable function) and a countable intersection of measurable sets is measurable.
However, if the index set T is not countable (for example T = R), then the set Z may be
non-measurable, as the next example shows.

Example 1.6.1. We will construct a stochastic process {Xt : t ∈ R} for which the set Z
is not measurable. As in the proof of Kolmogorov’s theorem, our stochastic process will be
defined on the “canonical” probability space Ω = RR = {f : R → R}, with F = σcyl being
the cylinder σ-algebra. Let Xt : RR → R be defined as the canonical coordinate mappings:
Xt(f) = f(t), f ∈ RR. Then, the set Z consists of just one element, the function which is
identically 0.
We show that Z does not belong to the cylinder σ-algebra. Let us call a set A ⊂ RR

countably generated if one can find t1, t2, . . . ∈ R and a set B ⊂ RN such that

(1.6.1) f ∈ A ⇔ {i 7→ f(ti)} ∈ RN.

With other words, a set A is countably generated if we can determine whether a given
function f : R → R belongs to this set just by looking at the values of f at a countable
number of points t1, t2, . . . and checking whether these values have some property represented
by the set B.
One can easily check that the countably generated sets form a σ-algebra (called σcg) and
that the cylinder sets belong to this σ-algebra. Since the cylinder σ-algebra is the minimal
σ-algebra containing all cylinder sets, we have σcyl ⊂ σcg.
Let us now take some (nonempty) set A ∈ σcyl. Then, A ∈ σcg. Let us show that A is
infinite. Indeed, since A is non-empty, it contains at least one element f ∈ A. We will show
that it is possible to construct infinitely many modifications of f (called fa, a ∈ R) which
are still contained in A. Since A is countably generated we can find t1, t2, . . . ∈ R and a set
B ⊂ RN such that (1.6.1) holds. Since the sequence t1, t2, . . . is countable while R is not, we
can find t0 ∈ R such that t0 is not a member of the sequence t1, t2, . . .. For every a ∈ R let
fa : R→ R be the function given by

fa(t) =

{
a, if t = t0,

f(t), if t 6= t0.

The function fa belongs to A because f belongs to A and the functions i 7→ f(ti), i ∈ N,
and i 7→ fa(ti), i ∈ N, coincide; see (1.6.1). Hence, the set A contains infinitely many
elements, namely fa, a ∈ R. In particular, the set A cannot contain exactly one element. It
follows that the set Z (which contains exactly one element) does not belong to the cylinder
σ-algebra.
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Exercise 1.6.2. Show that the following subsets of RR do not belong to the cylinder σ-
algebra:

(1) C = {f : R→ R : f is continuous}.
(2) B = {f : R→ R : f is bounded}.
(3) M = {f : R→ R : f is monotone increasing}.

1.7. Continuity of stochastic processes

There are several non-equivalent notions of continuity for stochastic processes. Let {Xt : t ∈
R} be a stochastic process defined on a probability space (Ω,F ,P). For concreteness we take
the index set to be T = R, but everything can be generalized to the case when T = Rd or T
is any metric space.

Definition 1.7.1. We say that the process X has continuous sample paths if for all ω ∈ Ω
the function t 7→ Xt(ω) is continuous in t.

So, the process X has continuous sample paths if every sample path of this process is a
continuous function.

Definition 1.7.2. We say that the process X has almost surely continuous sample paths if
there exists a set A ∈ F such that P[A] = 1 and for all ω ∈ A the function t 7→ Xt(ω) is
continuous in t.

Note that we do not state this definition in the form

P[ω ∈ Ω: the function t 7→ Xt(ω) is continuous in t] = 1

because the corresponding set need not be measurable; see Section 1.6.

Definition 1.7.3. We say that the process X is stochastically continuous or continuous in
probability if for all t ∈ R it holds that

Xs
P→ Xt as s→ t.

That is,

∀t ∈ R ∀ε > 0 : lim
s→t

P[|Xt −Xs| > ε] = 0.

Definition 1.7.4. We say that the process X is continuous in Lp, where p ≥ 1, if for all
t ∈ R it holds that

Xs
Lp→ Xt as s→ t.

That is,

∀t ∈ R : lim
s→t

E|Xt −Xs|p = 0.

Example 1.7.5. Let U be a random variable which has continuous distribution function
F . For concreteness, one can take the uniform distribution on [0, 1]. Let (Ω,F ,P) be the
probability space on which U is defined. Consider a stochastic process {Xt : t ∈ R} defined
as follows: For all t ∈ R and ω ∈ Ω let

Xt(ω) =

{
1, if t > U(ω),

0, if t ≤ U(ω).
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1. For every outcome ω ∈ Ω the trajectory t 7→ Xt(ω) is discontinuous because it has a
jump at t = U(ω). Thus, the process X does not have continuous sample paths.

2. However, we will show that the process X is continuous in probability. Take some
ε ∈ (0, 1). Then, for any t, s ∈ [0, 1],

P[|Xt −Xs| > ε] = P[|Xt −Xs| = 1] = P[U is between t and s] = |F (t)− F (s)|,
which converges to 0 as s → t because the distribution function F was supposed to be
continuous. Hence, the process X is continuous in probability.

3. We show that X is continuous in Lp, for every p ≥ 1. Since the random variable |Xt−Xs|
takes only values 0 and 1 and since the probability of the value 1 is |F (t)− F (s)|, we have

E|Xt −Xs|p = |F (t)− F (s)|,
which goes to 0 as s→ t.

Exercise 1.7.6. Show that if a process {X(t) : t ∈ R} has continuous sample paths, the it
is stochastically continuous. (The converse is not true by Example 1.7.5).

We have seen in Section 1.6 that for general stochastic processes some very natural events
(for example, the event that the trajectory is everywhere equal to 0) may be non-measurable.
This nasty problem disappears if we are dealing with processes having continuous sample
paths.

Example 1.7.7. Let {Xt, t ∈ R} be a process with continuous sample paths. We show that
the set

A := {ω ∈ Ω: Xt(ω) = 0 for all t ∈ R}
is measurable. A continuous function is equal to 0 for all t ∈ R if and only if it is equal to 0
for all t ∈ Q. Hence, we can write

A = {ω ∈ Ω: Xt(ω) = 0 for all t ∈ Q} = ∩t∈Q{ω ∈ Ω: Xt(ω) = 0} = ∩t∈QX−1
t (0)

which is a measurable set because X−1
t (0) ∈ F for every t (since Xt : Ω→ R is a measurable

function) and because the intersection over t ∈ Q is countable.

Exercise 1.7.8. Let {X : t ∈ R} be a stochastic process with continuous sample paths. The
probability space on which X is defined is denoted by (Ω,F ,P). Show that the following
subsets of Ω belong to the σ-algebra F :

(1) B = {ω ∈ Ω : the function t 7→ Xt(ω) is bounded}.
(2) M = {ω ∈ Ω : the function t 7→ Xt(ω) is monotone increasing}
(3) I = {ω ∈ Ω : limt→+∞Xt(ω) = +∞}.
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