
CHAPTER 2

Markov chains

2.1. Examples

Example 2.1.1 (Markov chain with two states). Consider a phone which can be in two
states: “free”= 0 and “busy”= 1. The set of the states of the phone is

E = {0, 1}.
We assume that the phone can randomly change its state in time (which is assumed to be
discrete) according to the following rules.

1. If at some time n the phone is free, then at time n+ 1 it becomes busy with probability
p or it stays free with probability 1− p.
2. If at some time n the phone is busy, then at time n+ 1 it becomes free with probability
q or it stays busy with probability 1− q.
Denote by Xn the state of the phone at time n = 0, 1, . . .. Thus, Xn : Ω→ {0, 1} is a random
variable and our assumptions can be written as follows:

p00 := P[Xn+1 = 0|Xn = 0] = 1− p, p01 := P[Xn+1 = 1|Xn = 0] = p,

p10 := P[Xn+1 = 0|Xn = 1] = q, p11 := P[Xn+1 = 1|Xn = 1] = 1− q.
We can write these probabilities in form of a transition matrix

P =

(
1− p p
q 1− q

)
.

Additionally, we will make the following assumption which is called the Markov property :
Given that at some time n the phone is in state i ∈ {0, 1}, the behavior of the phone after
time n does not depend on the way the phone reached state i in the past.

Problem 2.1.2. Suppose that at time 0 the phone was free. What is the probability that
the phone will be free at times 1, 2 and then becomes busy at time 3?

Solution. This probability can be computed as follows:

P[X1 = X2 = 0, X3 = 1] = p00 · p00 · p01 = (1− p)2p.

Problem 2.1.3. Suppose that the phone was free at time 0. What is the probability that
it will be busy at time 3?

Solution. We have to compute P[X3 = 1]. We know the values X0 = 0 and X3 = 1, but
the values of X1 and X2 may be arbitrary. We have the following possibilities:

(1) X0 = 0, X1 = 0, X2 = 0, X3 = 1. Probability: (1− p) · (1− p) · p.
(2) X0 = 0, X1 = 0, X2 = 1, X3 = 1. Probability: (1− p) · p · (1− q).
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(3) X0 = 0, X1 = 1, X2 = 0, X3 = 1. Probability: p · q · p.
(4) X0 = 0, X1 = 1, X2 = 1, X3 = 1. Probability: p · (1− q) · (1− q).

The probability we look for is the sum of these 4 probabilities:

P[X3 = 1] = (1− p)2p+ (1− p)(1− q)p+ p2q + p(1− q)2.

Example 2.1.4 (Gambler’s ruin). At each unit of time a gambler plays a game in which he
can either win 1e (which happens with probability p) or he can loose 1e (which happens
with probability 1 − p). Let Xn be the capital of the gambler at time n. Let us agree that
if at some time n the gambler has no money (meaning that Xn = 0), then he stops to play
(meaning that Xn = Xn+1 = . . . = 0). We can view this process as a Markov chain on the
state space E = {0, 1, 2, . . .} with transition matrix

P =


1 0 0 0 0 . . .

1− p 0 p 0 0 . . .
0 1− p 0 p 0 . . .
0 0 1− p 0 p . . .
. . . . . . . . . . . . . . . . . .

 .

2.2. Definition of Markov chains

Let us consider some system. Assume that the system can be in some states and that the
system can change its state in time. The set of all states of the system will be denoted by E
and called the state space of the Markov chain. We always assume that the state space E is
a finite or countable set. Usually, we will denote the states so that E = {1, . . . , N}, E = N,
or E = Z.

Assume that if at some time the system is in state i ∈ E, then in the next moment of time
it can switch to state j ∈ E with probability pij. We will call pij the transition probability
from state i to state j. Clearly, the transition probabilities should be such that

(1) pij ≥ 0 for all i, j ∈ E.
(2)

∑
j∈E pij = 1 for all i ∈ E.

We will write the transition probabilities in form of a transition matrix

P = (pij)i,j∈E.

The rows and the columns of this matrix are indexed by the set E. The element in the i-th
row and j-th column is the transition probability pij. The elements of the matrix P are
non-negative and the sum of elements in any row is equal to 1. Such matrices are called
stochastic.

Definition 2.2.1. A Markov chain with state space E and transition matrix P is a stochastic
process {Xn : n ∈ N0} taking values in E such that for every n ∈ N0 and every states
i0, i1, . . . , in−1, i, j we have

P[Xn+1 = j|Xn = i] = P[Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i](2.2.1)

= pij,

provided that P[X0 = i0, . . . , Xn−1 = in−1, Xn = i] 6= 0 (which ensures that the conditional
probabilities are well-defined).
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Condition (2.2.1) is called the Markov property.

In the above definition it is not specified at which state the Markov chain starts at time 0.
In fact, the initial state can be in general arbitrary and we call the probabilities

(2.2.2) αi := P[X0 = i], i ∈ E,

the initial probabilities. We will write the initial probabilities in form of a row vector α =
(αi)i∈E. This vector should be such that αi ≥ 0 for all i ∈ E and

∑
i∈E αi = 1.

Theorem 2.2.2. For all n ∈ N0 and for all i0, . . . , in ∈ E it holds that

(2.2.3) P[X0 = i0, X1 = i1, . . . , Xn = in] = α0pi0i1pi1i2 . . . pin−1in .

Proof. We use the induction over n. The induction basis is the case n = 0. We have
P[X0 = i0] = αi0 by the definition of initial probabilities, see (2.2.2). Hence, Equation (2.2.3)
holds for n = 0.

Induction assumption: Assume that (2.2.3) holds for some n. We prove that (2.2.3) holds
with n replaced by n + 1. Consider the event A = {X0 = i0, X1 = i1, . . . , Xn = in}. By the
induction assumption,

P[A] = αi0pi0i1pi1i2 . . . pin−1in .

By the Markov property,

P[Xn+1 = in+1|A] = pinin+1 .

It follows that

P[X0 = i0, X1 = i1, . . . , Xn = in, Xn+1 = in+1] = P[Xn+1 = in+1|A] · P[A]

= pinin+1 · αi0pi0i1pi1i2 . . . pin−1in

= αi0pi0i1pi1i2 . . . pin−1inpinin+1 .

This completes the induction. �

Remark 2.2.3. If P[A] = 0, then in the above proof we cannot use the Markov property.
However, in the case P[A] = 0 both sides of (2.2.3) are equal to 0 and (2.2.3) is trivially
satisfied.

Theorem 2.2.4. For every n ∈ N and every state in ∈ E we have

P[Xn = in] =
∑

i0,...,in−1∈E

αi0pi0i1 . . . pin−1in .

Proof. We have

P[Xn = in] =
∑

i0,...,in−1∈E

P[X0 = i0, X1 = i1, . . . , Xn = in]

=
∑

i0,...,in−1∈E

αi0pi0i1 . . . pin−1in ,

where the last step is by Theorem 2.2.2. �
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2.3. n-step transition probabilities

Notation 2.3.1. If we want to indicate that the Markov chain starts at state i ∈ E at time
0, we will write Pi instead of P.

Definition 2.3.2. The n-step transition probabilities of a Markov chain are defined as

p
(n)
ij := Pi[Xn = j].

We will write these probabilities in form of the n-step transition matrix P (n) = (p
(n)
ij )i,j∈E.

By Theorem 2.2.4 we have the formula

p
(n)
ij =

∑
i1,...,in−1∈E

pii1pi1i2 . . . pin−1j.

The next theorem is crucial. It states that the n-step transition matrix P (n) can be computed
as the n-th power of the transition matrix P .

Theorem 2.3.3. We have P (n) = P n = P · . . . · P .

Proof. We use induction over n. For n = 1 we have p
(1)
ij = pij and hence, P (1) = P . Thus,

the statement of the theorem is true for n = 1.

Let us now assume that we already proved that P (n) = P n for some n ∈ N. We compute
P (n+1). By the formula of total probability, we have

p
(n+1)
ij = Pi[Xn+1 = j] =

∑
k∈E

Pi[Xn = k]P[Xn+1 = j|Xn = k] =
∑
k∈E

p
(n)
ik pkj.

On the right hand-side we have the scalar product of the i-th row of the matrix P (n) and the
j-th column of the matrix P . By definition of the matrix multiplication, this scalar product
is exactly the entry of the matrix product P (n)P which is located in the i-th row and j-th
column. We thus have the equality of matrices

P (n+1) = P (n)P.

But now we can apply the induction assumption P (n) = P n to obtain

P (n+1) = P (n)P = P n · P = P n+1.

This completes the induction. �

In the next theorem we consider a Markov chain with initial distribution α = (αi)i∈E and

transition matrix P . Let α(n) = (α
(n)
j )j∈E be the distribution of the position of this chain at

time n, that is

α
(n)
j = P[Xn = j].

We write both α(n) and α as row vectors. The next theorem states that we can compute α(n)

by taking α and multiplying it by the n-step transition matrix P (n) = P n from the right.

Theorem 2.3.4. We have

α(n) = αP n.

4



Proof. By the formula of the total probability

α
(n)
j = P[Xn = j] =

∑
i∈E

αiPi[Xn = j] =
∑
i∈E

αip
(n)
ij .

On the right-hand side we have the scalar product of the row α with the j-th column of
P (n) = P n. By definition of matrix multiplication, this means that α(n) = αP n. �

2.4. Invariant measures

Consider a Markov chain on state space E with transition matrix P . Let λ : E → R be a
function. To every state i ∈ E the function assigns some value which will be denoted by
λi := λ(i). Also, it will be convenient to write the function λ as a row vector λ = (λi)i∈E.

Definition 2.4.1. A function λ : E → R is called a measure on E if λi ≥ 0 for all i ∈ E.

Definition 2.4.2. A function λ : E → R is called a probability measure on E if λi ≥ 0 for
all i ∈ E and ∑

i∈E

λi = 1.

Definition 2.4.3. A measure λ is called invariant if λP = λ. That is, for every state j ∈ E
it should hold that

λj =
∑
i∈E

λipij.

Remark 2.4.4. If the initial distribution α of a Markov chain is invariant, that is αP = α,
then for every n ∈ N we have αP n = α which means that at every time n the position of the
Markov chain has the same distribution as at time 0:

X0
d
= X1

d
= X2

d
= . . . .

Example 2.4.5. Let us compute the invariant distribution for the Markov chain from Ex-
ample 2.1.1. The transition matrix is

P =

(
1− p p
q 1− q

)
.

The equation λP = λ for the invariant probability measure takes the following form:

(λ0, λ1)

(
1− p p
q 1− q

)
= (λ0, λ1).

Multiplying the matrices we obtain the following two equations:

λ0(1− p) + λ1q = λ0,

λ0p+ λ1(1− q) = λ1.

From the first equation we obtain that λ1q = λ0p. Solving the second equation we obtain
the same relation which means that the second equation does not contain any information
not contained in the first equation. However, since we are looking for invariant probability
measures, we have an additional equation

λ0 + λ1 = 1.
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Solving this equation together with λ1q = λ0p we obtain the following result:

λ0 =
q

p+ q
, λ1 =

p

p+ q
.

Problem 2.4.6. Consider the phone from Example 2.1.1. Let the phone be free at time 0.
What is (approximately) the probability that it is free at time n = 1000?

Solution. The number n = 1000 is large. For this reason it seems plausible that the
probability that the phone is free (busy) at time n = 1000 should be approximately the
same as the probability that it is free (busy) at time n + 1 = 1001. Denoting the initial
distribution by α = (1, 0) and the distribution of the position of the chain at time n by
α(n) = αP n we thus must have

α(n) ≈ α(n+1) = αP n+1 = αP n · P = α(n)P.

Recall that the equation for the invariant probability measure has the same form λ = λP .
It follows that α(n) must be approximately the invariant probability measure:

α(n) ≈ λ.

For the probability that the phone is free (busy) at time n = 1000 we therefore obtain the
approximations

p
(n)
00 ≈ λ0 =

q

p+ q
, p

(n)
01 ≈ λ1 =

p

p+ q
.

Similar considerations apply to the case when the phone is busy at time 0 leading to the
approximations

p
(n)
10 ≈ λ0 =

q

p+ q
, p

(n)
11 ≈ λ1 =

p

p+ q
.

Note that p
(n)
00 ≈ p

(n)
10 and p

(n)
01 ≈ p

(n)
11 which can be interpreted by saying that the Markov

chain almost forgets its initial state after many steps. For the n-step transition matrix we
therefore may conjecture that

lim
n→∞

P n = lim
n→∞

(
p
(n)
00 p

(n)
01

p
(n)
10 p

(n)
11

)
=

(
λ0 λ1
λ0 λ1

)
.

The above considerations are not rigorous. We will show below that if a general Markov
chain satisfies appropriate conditions, then

(1) The invariant probability measure λ exists and is unique.

(2) For every states i, j ∈ E we have limn→∞ p
(n)
ij = λj.

Example 2.4.7 (Ehrenfest model). We consider a box which is divided into 2 parts. Consider
N balls (molecules) which are located in this box and can move from one part to the other
according to the following rules. Assume that at any moment of time one of the N balls is
chosen at random (all balls having the same probability 1/N to be chosen). This ball moves
to the other part. Then, the procedure is repeated. Let Xn be the number of balls at time
n in Part 1. Then, Xn takes values in E = {0, 1, . . . , N} which is our state space. The
transition probabilities are given by

p0,1 = 1, pN,N−1 = 1, pi,i+1 =
N − i
N

, pi,i−1 =
i

N
, i = 1, . . . , N − 1.
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For the invariant probability measure we obtain the following system of equations

λ0 =
λ1
N
, λN =

λN−1
N

, λj =
N − j + 1

N
λj−1 +

j + 1

N
λj+1, j = 1, . . . , N − 1.

Additionally, we have the equation λ0+ . . .+λN = 1. This system of equations can be solved
directly, but one can also guess the solution without doing computations. Namely, it seems
plausible that after a large number of steps every ball will be with probability 1/2 in Part 1
and with probability 1/2 in Part 2. Hence, one can guess that the invariant probability
measure is the binomial distribution with parameter 1/2:

λj =
1

2N

(
N

j

)
.

One can check that this is indeed the unique invariant probability measure for this Markov
chain.

Example 2.4.8. Let X0, X1, . . . be independent and identically distributed random variables
with values 1, . . . , N and corresponding probabilities

P[Xn = i] = pi, p1, . . . , pN ≥ 0,
N∑
i=1

pi = 1.

Then, X0, X1, . . . is a Markov chain and the transition matrix is

P =

p1 . . . pN
. . . . . . . . .
p1 . . . pN

 .

The invariant probability measure is given by λ1 = p1, . . . , λN = pN .

2.5. Class structure and irreducibility

Consider a Markov chain on a state space E with transition matrix P .

Definition 2.5.1. We say that state i ∈ E leads to state j ∈ E if there exists n ∈ N0 such

that p
(n)
ij 6= 0. We use the notation i j.

Remark 2.5.2. By convention, p
(0)
ii = 1 and hence, every state leads to itself: i i.

Theorem 2.5.3. For two states i, j ∈ E with i 6= j, the following statements are equivalent:

(1) i j.
(2) Pi[∃n ∈ N : Xn = j] 6= 0.
(3) There exist n ∈ N and states i1, . . . , in−1 ∈ E such that pii1 . . . pin−1j > 0.

Proof. We prove that Statements 1 and 2 are equivalent. We have the inequality

(2.5.1) p
(n)
ij ≤ Pi[∃n ∈ N : Xn = j] ≤

∞∑
n=1

Pi[Xn = j] =
∞∑
n=1

p
(n)
ij .

If Statement 1 holds, then for some n ∈ N we have p
(n)
ij > 0. Hence, by (2.5.1), we have

Pi[∃n ∈ N : Xn = j] > 0 and Statement 2 holds. If, conversely, Statement 2 holds, then
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Pi[∃n ∈ N : Xn = j] > 0. Hence, by (2.5.1),
∑∞

n=1 p
(n)
ij > 0, which implies that at least one

summand p
(n)
ij must be strictly positive. This proves Statement 1.

We prove the equivalence of Statements 1 and 3. We have the formula

(2.5.2) p
(n)
ij =

∑
i1,...,in−1∈E

pii1 . . . pin−1j.

If Statement 1 holds, then for some n ∈ N we have p
(n)
ij > 0 which implies that at least one

summand on the right-hand side of (2.5.2) must be strictly positive. This implies Statement
3. If, conversely, Statement 3 holds, then the sum on the right-hand side of (2.5.2) is positive

which implies that p
(n)
ij > 0. Hence, Statement 1 holds. �

Definition 2.5.4. States i, j ∈ E communicate if i j and j  i. Notation: i! j.

Theorem 2.5.5. i! j is an equivalence relation, namely

(1) i! i.
(2) i! j ⇐⇒ j! i.
(3) i! j, j! k ⇒ i! k.

Proof. Statements 1 and 2 follow from the definition. We prove Statement 3. If i! j
and j ! k, then, in particular, i  j and j  k. By Theorem 2.5.3, Statement 3,
we can find r ∈ N, s ∈ N and states u1, . . . , ur−1 ∈ E and v1, . . . , vs−1 ∈ E such that
piu1pu1u2 . . . pur−1j > 0 and pjv1pv1v2 . . . pvs−1k > 0. Multiplying both inequalities, we get

piu1pu1u2 . . . pur−1jpjv1pv1v2 . . . pvs−1k > 0.

By Theorem 2.5.3, Statement 3, we have i k. In a similar way one shows that k  i. �

Definition 2.5.6. The communication class of state i ∈ E is the set {j ∈ E : i! j}. This
set consists of all states j which communicate to i.

Since communication of states is an equivalence relation, the state space E can be decom-
posed into a disjoint union of communication classes. Any two communication classes either
coincide completely or are disjoint sets.

Definition 2.5.7. A Markov chain is irreducible if every two states communicate. Hence,
an irreducible Markov chain consists of just one communication class.

Definition 2.5.8. A communication class C is open if there exist a state i ∈ C and a state
k /∈ C such that i k. Otherwise, a communication class is called closed.

If a Markov chain once arrived in a closed communication class, it will stay in this class
forever.

Exercise 2.5.9. Show that a communication class C is open if and only if there exist a
state i ∈ C and a state k /∈ C such that pik > 0.

Theorem 2.5.10. If the state space E is a finite set, then there exists at least one closed
communication class.
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Proof. We use a proof by contradiction. Assume that there is no closed communication
class. Hence, all communication classes are open. Take some state and let C1 be the
communication class of this state. Since C1 is open, there is a path from C1 to some
other communication class C2 6= C1. Since C2 is open, we can go from C2 to some other
communication class C3 6= C3, and so on. Note that in the sequence C1, C2, C3, . . . all classes
are different. Indeed, if for some l < m we would have Cl = Cm (a “cycle”), this would
mean that there is a path starting from Cl, going to Cl+1 and then to Cm = Cl. But this
is a contradiction since then Cl and Cl+1 should be a single communication class, and not
two different classes, as in the construction. So, the classes C1, C2, . . . are different (in fact,
disjoint) and each class contains at least one element. But this is a contradiction since E is
a finite set. �

2.6. Aperiodicity

Definition 2.6.1. The period of a state i ∈ E is defined as

gcd{n ∈ N : p
(n)
ii > 0}.

Here, gcd states for the greatest common divisor. A state i ∈ E is called aperiodic if its
period is equal to 1. Otherwise, the state i is called periodic.

Example 2.6.2. Consider a knight on a chessboard moving according to the usual chess
rules in a random way. For concreteness, assume that at each moment of time all moves of
the knight allowed by the chess rules are counted and then one of these moves is chosen, all
moves being equiprobable.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0ZnZ0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

This is a Markov chain on a state space consisting of 64 squares. Assume that at time 0 the
knight is in square i. Since the knight changes the color of its square after every move, it
cannot return to the original square in an odd number of steps. On the other hand, it can
return to i in an even number of steps with non-zero probability (for example by going to
some other square and then back, many times). So,

p
(2n+1)
ii = 0, p

(2n)
ii > 0.

Hence, the period of any state in this Markov chain is 2.

Example 2.6.3. Consider a Markov chain on a state space of two elements with transition
matrix

P =

(
0 1
1 0

)
,
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We have
p
(2n+1)
ii = 0, p

(2n)
ii = 1.

Hence, the period of any state in this Markov chain is 2.

Exercise 2.6.4. Show that in the Ehrenfest Markov chain (Example 2.4.7) every state is
periodic with period 2.

Lemma 2.6.5. Let i ∈ E be any state. The following conditions are equivalent:

(1) State i is aperiodic.

(2) There is N ∈ N such that for every natural number n > N we have p
(n)
ii > 0.

Proof. If Statement 2 holds, then for some sufficiently large n we have p
(n)
ii > 0 and

p
(n+1)
ii > 0. Since gcd(n, n+ 1) = 1, the state i has period 1. Hence, Statement 1 holds.

Suppose, conversely, that Statement 1 holds. Then, we can find n1, . . . , nr ∈ N such that

gcd{n1, . . . , nr} = 1 and p
(n1)
ii > 0, . . . , p

(nr)
ii > 0. By a result from number theory, the

condition gcd{n1, . . . , nr} = 1 implies that there is N ∈ N such that we can represent any
natural number n > N in the form n = l1n1 + . . .+ lrnr for suitable l1, . . . , lr ∈ N. We obtain
that

p
(l1n1+...+lrnr)
ii ≥ (p

(n1)
ii )l1 · . . . · (p(nr)

ii )lr > 0.

This proves Statement 2.

Lemma 2.6.6. If state i ∈ E is aperiodic and i! j, then j is also aperiodic.

Remark 2.6.7. We can express this by saying that aperiodicity is a class property : If some
state in a communication class is aperiodic, then all states in this communication class are
aperiodic. Similarly, if some state in a communication class is periodic, then all states in this
communication class must be periodic. We can thus divide all communication classes into
two categories: the aperiodic communication classes (consisting of only aperiodic states) and
the periodic communication classes (consisting only of periodic states).

Definition 2.6.8. An irreducible Markov chain is called aperiodic if some (and hence, all)
states in this chain are aperiodic.

Proof of Lemma 2.6.6. From i! j it follows that i  j and j  i. Hence, we can

find r, s ∈ N0 such that p
(r)
ji > 0 and p

(s)
ij > 0. Since the state i is aperiodic, by Lemma 2.6.5

we can find N ∈ N such that for all n > N , we have p
(n)
ii > 0 and hence,

p
(n+r+s)
jj ≥ p

(r)
ji · p

(n)
ii · p

(s)
ij > 0.

It follows that p
(k)
jj > 0 for all k := n+ r+ s > N + r+ s. By Lemma 2.6.5, this implies that

j is aperiodic. �

2.7. Recurrence and transience

Consider a Markov chain {Xn : n ∈ N0} on state space E with transition matrix P .

Definition 2.7.1. A state i ∈ E is called recurrent if

Pi[Xn = i for infinitely many n] = 1.
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Definition 2.7.2. A state i ∈ E is called transient if

Pi[Xn = i for infinitely many n] = 0.

A recurrent state has the property that a Markov chain starting at this state returns to this
state infinitely often, with probability 1. A transient state has the property that a Markov
chain starting at this state returns to this state only finitely often, with probability 1.

The next theorem is a characterization of recurrent/transient states.

Theorem 2.7.3. Let i ∈ E be a state. Denote by fi the probability that a Markov chain
which starts at i returns to i at least once, that is

fi = Pi[∃n ∈ N : Xn = i].

Then,

(1) The state i is recurrent if and only if fi = 1.
(2) The state i is transient if and only if fi < 1.

Corollary 2.7.4. Every state is either recurrent or transient.

Proof. For k ∈ N consider the random event

Bk = {Xn = i for at least k different values of n ∈ N}.

Then, Pi[Bk] = fki . Also, B1 ⊃ B2 ⊃ . . .. It follows that

Pi[Xn = i for infinitely many n] = Pi[∩∞k=1Bk] = lim
k→∞

Pi[Bk] = lim
k→∞

fki =

{
1, if fi = 1,

0, if fi < 1.

It follows that state i is recurrent if fi = 1 and transient if fi < 1. �

Here is one more characterization of recurrence and transience.

Theorem 2.7.5. Let i ∈ E be a state. Recall that p
(n)
ii = Pi[Xn = i] denotes the probability

that a Markov chain which started at state i visits state i at time n. Then,

(1) The state i is recurrent if and only if
∑∞

n=1 p
(n)
ii =∞.

(2) The state i is transient if and only if
∑∞

n=1 p
(n)
ii <∞.

Proof. Let the Markov chain start at state i. Consider the random variable

Vi :=
∞∑
n=1

1{Xn=i}

which counts the number of returns of the Markov chain to state i. Note that the random
variable Vi can take the value +∞. Then,

Pi[Vi ≥ k] = P[Bk] = fki , k ∈ N.

Thus, the expectation of Vi can be computed as follows:

(2.7.1) Ei[Vi] =
∞∑
k=1

Pi[Vi ≥ k] =
∞∑
k=1

fki .

11



On the other hand,

(2.7.2) Ei[Vi] = Ei
∞∑
n=1

1{Xn=i} =
∞∑
n=1

Ei1{Xn=i} =
∞∑
n=1

p
(n)
ii .

Case 1. Assume that state i is recurrent. Then, fi = 1 by Theorem 2.7.3. It follows that
Ei[Vi] = ∞ by (2.7.1). (In fact, Pi[Vi = +∞] = 1 since P[Vi ≥ k] = 1 for every k ∈ N).

Hence,
∑∞

n=1 p
(n)
ii =∞ by (2.7.2)

Case 2. Assume that state i is transient. Then, fi < 1 by Theorem 2.7.3. Thus, EiVi <∞
by (2.7.1) and hence,

∑∞
n=1 p

(n)
ii <∞ by (2.7.2). �

The next theorem shows that recurrence and transience are class properties: If some state in
a communicating class is recurrent (resp. transient), then all states in this class are recurrent
(resp. transient).

Theorem 2.7.6.

1. If i ∈ E be a recurrent state and j! i, then j is also recurrent.

2. If i ∈ E be a transient state and j! i, then j is also transient.

Proof. It suffices to prove Part 2. Let i be a transient state and let j! i. It follows that

there exist s, r ∈ N0 with p
(s)
ij > 0 and p

(r)
ji > 0. For all n ∈ N it holds that

p
(n+r+s)
ii ≥ p

(s)
ij p

(n)
jj p

(r)
ji .

Therefore,
∞∑
n=1

p
(n)
jj ≤

1

p
(s)
ij p

(r)
ji

∞∑
n=1

p
(n+r+s)
ii ≤ 1

p
(s)
ij p

(r)
ji

∞∑
n=1

p
(n)
ii <∞,

where the last step holds because i is transient. It follows that state j is also transient. �

Theorem 2.7.6 allows us to introduce the following definitions.

Definition 2.7.7. A communicating class is called recurrent if at least one (equivalently,
every) state in this class is recurrent. A communicating class is transient if at least one
(equivalently, every) state in this class is transient.

Definition 2.7.8. An irreducible Markov chain is called recurrent if at least one (equiva-
lently, every) state in this chain is recurrent. An irreducible Markov chain is called transient
if at least one (equivalently, every) state in this chain is transient.

The next theorem states that it is impossible to leave a recurrent class.

Theorem 2.7.9. Every recurrent communicating class is closed.

Proof. Let C be a non-closed class. We need to show that it is not recurrent. Since C is
not closed, there exist states i, j so that i ∈ C, j /∈ C and i  j. This means that there

exists m ∈ N so that p
(m)
ij = Pi[Xm = j] > 0. If the event {Xm = j} occurs, then after

12



time m the chain cannot return to state i because otherwise i and j would be in the same
communicating class. It follows that

Pi[{Xm = j} ∩ {Xn = i for infinitely many n}] = 0.

This implies that

Pi[Xn = i for infinitely many n] < 1.

Therefore, state i is not recurrent. �

If some communicating class contains only finitely states and the chain cannot leave this
class, then it looks very plausible that the chain which started in some state of this class will
return to this state infinitely often (and, in fact, will visit any state of this class infinitely
often), with probability 1. This is stated in the next theorem.

Theorem 2.7.10. Every finite closed communicating class is recurrent.

Proof. Let C be a closed communicating class with finitely many elements. Take some
state i ∈ C. A chain starting in i stays in C forever and since C is finite, there must be at
least one state j ∈ C which is visited infinitely often with positive probability:

Pi[Xn = j for infinitely many n ∈ N] > 0.

At the moment it is not clear whether we can take i = j. But since i and j are in the same

communicating class, there exists m ∈ N0 so that p
(m)
ji > 0. From the inequality

Pj[Xn = j for infinitely many n] > p
(m)
ji · Pi[Xn = j for infinitely many n] > 0

it follows that state j is recurrent. The class C is then recurrent because it contains at leats
one recurrent state, namely j. �

So, in a Markov chain with finitely many states we have the following equivalencies

(1) A communicating class is recurrent if and only if it is closed.
(2) A communicating class is transient if and only if it is not closed.

Lemma 2.7.11. Consider an irreducible, recurrent Markov chain with an arbitrary initial
distribution α. Then, for every state j ∈ E the number of visits of the chain to j is infinite
with probability 1.

Proof. Exercise. �

2.8. Recurrence and transience of random walks

Example 2.8.1. A simple random walk on Z is a Markov chain with state space E = Z and
transition probabilities

pi,i+1 = p, pi,i−1 = 1− p, i ∈ Z.
So, from every state the random walk goes one step to the right with probability p, or one
step to the left with probability 1− p; see Figure 1. Here, p ∈ [0, 1] is a parameter.

Theorem 2.8.2. If p = 1
2
, then any state of the simple random walk is recurrent. If p 6= 1

2
,

then any state is transient.

13
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Figure 1. Sample path of a simple random walk on Z with p = 1
2
. The figure

shows 200 steps of the walk.

Proof. By translation invariance, we can restrict our attention to state 0. We can represent
our Markov chain as Xn = ξ1 + . . . + ξn, where ξ1, ξ2, . . . are independent and identically
distributed random variables with Bernoulli distribution:

P[ξk = 1] = p, P[ξk = −1] = 1− p.

Case 1. Let p 6= 1
2
. Then, Eξk = p − (1 − p) = 2p − 1 6= 0. By the strong law of large

numbers,

lim
n→∞

1

n
Xn = lim

n→∞

ξ1 + . . .+ ξn
n

= Eξ1 6= 0 a.s.

In the case p > 1
2

we have Eξ1 > 0 and hence, limn→∞Xn = +∞ a.s. In the case p < 1
2

we
have Eξ1 < 0 and hence, limn→∞Xn = −∞ a.s. In both cases it follows that

P[Xn = 0 for infinitely many n] = 0.

Hence, state 0 is transient.

Case 2. Let p = 1
2
. In this case, Eξk = 0 and the argument of Case 1 does not work. We

will use Theorem 2.7.5. The n-step transition probability from 0 to 0 is given by

p
(n)
00 =

{
0, if n = 2k + 1 odd,
1

22k

(
2k
k

)
, if n = 2k even.

The Stirling formula n! ∼
√

2πn(n
e
)n, as n→∞, yields that

p
(2k)
00 ∼

1√
πk
, as k →∞.

Since the series
∑∞

k=1
1√
k

diverges, it follows that
∑∞

n=1 p
(n)
00 =

∑∞
k=1 p

(2k)
00 = ∞. By Theo-

rem 2.7.5, this implies that 0 is a recurrent state. �

Example 2.8.3. The simple, symmetric random walk on Zd is a Markov chain defined as
follows. The state space is the d-dimensional lattice

Zd = {(n1, . . . , nd) : n1, . . . , nd ∈ Z}.
Let e1, . . . , ed be the standard basis of Rd, that is

e1 = (1, 0, 0 . . . , 0), e2 = (0, 1, 0, . . . , 0), e3 = (0, 0, 1, . . . , 0), . . . , ed = (0, 0, 0, . . . , 1).
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Let ξ1, ξ2, . . . be independent and identically distributed d-dimensional random vectors such
that

P[ξi = ek] = P[ξi = −ek] =
1

2d
, k = 1, . . . , d, i ∈ N.

Define Sn = ξ1 + . . .+ ξn, n ∈ N, and S0 = 0. The sequence S0, S1, S2, . . . is called the simple
symmetric random walk on Zd. It is a Markov chain with transition probabilities

pi,i+e1 = pi,i−e1 = . . . = pi,i+ed = pi,i−ed =
1

2d
, i ∈ Zd.
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Figure 2. Left: Sample path of a simple symmetric random walk on Z2.
Right: Sample path of a simple symmetric random walk on Z3. In both cases
the random walk makes 50000 steps.

Theorem 2.8.4 (Pólya, 1921). The simple symmetric random walk on Zd is recurrent if and
only if d = 1, 2 and transient if and only if d ≥ 3.

Proof. For d = 1 we already proved the statement in Theorem 2.8.2.

Consider the case d = 2. We compute the n-step transition probability p
(n)
00 . For an odd n

this probability is 0. For an even n = 2k we have

p
(2k)
00 =

1

42k

k∑
i=0

(
2k

i, i, k − i, k − i

)
=

1

42k

(
2k

k

) k∑
i=0

(
k

i

)(
k

k − i

)
=

(
1

22k

(
2k

k

))2

∼ 1

πk
,
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as k → ∞, where the last step is by the Stirling formula. The harmonic series
∑∞

k=1
1
k

diverges. Therefore,
∑∞

n=1 p
(n)
00 =∞ and the random walk is recurrent in d = 2 dimensions.

Generalizing the cases d = 1, 2 one can show that for an arbitrary dimension d ∈ N we have,
as k →∞,

p
(2k)
00 ∼

1

(πk)d/2
.

Since the series
∑∞

k=1 k
−d/2 is convergent for d ≥ 3 it holds that

∑∞
n=1 p

(n)
00 < ∞ and the

random walk is transient in d = 3 dimensions. �

2.9. Existence and uniqueness of the invariant measure

The next two theorems state that any irreducible and recurrent Markov chain has a unique
invariant measure λ, up to a multiplication by a constant. This measure may be finite (that
is,
∑

i∈E λi < +∞) or infinite (that is,
∑

i∈E λi = +∞).

First we provide an explicit construction of an invariant measure for an irreducible and
recurrent Markov chain. Consider a Markov chain starting at state k ∈ E. Denote the time
of the first return to k by

Tk = min{n ∈ N : Xn = k} ∈ N ∪ {+∞}.

The minimum of an empty set is by convention +∞. For a state i ∈ E denote the expected
number of visits to i before the first return to k by

γi = γ
(k)
i = Ek

Tk−1∑
n=0

1{Xn=i} ∈ [0,+∞].

Theorem 2.9.1. For an irreducible and recurrent Markov chain starting at state k ∈ E we
have

(1) γk = 1.
(2) For all i ∈ E it holds that 0 < γi <∞.
(3) γ = (γi)i∈E is an invariant measure.

Proof.

Step 1. We show that γk = 1. By definition of Tk, we have
∑Tk−1

n=0 1{Xn=k} = 1, if the chain
starts at k. It follows that γk = Ek1 = 1.

Step 2. We show that for every state j ∈ E,

(2.9.1) γj =
∑
i∈E

pijγi.

(At this moment, both sides of (2.9.1) are allowed to be infinite, but in Step 3 we will show
that both sides are actually finite). The Markov chain is recurrent, thus Tk < ∞ almost
surely. By definition, XTk = k = X0. We have

γj = Ek
Tk∑
n=1

1{Xn=j} = Ek
∞∑
n=1

1{Xn=j,n≤Tk} =
∞∑
n=1

Pk[Xn = j, Tk ≥ n].
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Before visiting state j at time n the chain must have been in some state i at time n − 1,
where i ∈ E can be, in general, arbitrary. We obtain that

γj =
∑
i∈E

∞∑
n=1

Pk[Xn = j,Xn−1 = i, Tk ≥ n] =
∑
i∈E

∞∑
n=1

pijPk[Xn−1 = i, Tk ≥ n].

Introducing the new summation variable m = n− 1, we obtain that

γj =
∑
i∈E

pij

∞∑
m=0

Ek1{Xm=i,Tk≥m+1} =
∑
i∈E

pij Ek
Tk−1∑
m=0

1{Xm=i} =
∑
i∈E

pijγi.

This proves that (2.9.1) holds.

Step 3. Let i ∈ E be an arbitrary state. We show that 0 < γi < ∞. Since the chain is

irreducible, there exist n,m ∈ N0 such that p
(m)
ik > 0 and p

(n)
ki > 0. From (2.9.1) it follows

that

γi =
∑
l∈E

p
(n)
li γl ≥ p

(n)
ki γk = p

(n)
ki > 0.

On the other hand, again using (2.9.1), we obtain that

1 = γk =
∑
l∈E

p
(m)
lk γl ≥ p

(m)
ik γi.

This implies that γi ≤ 1/p
(m)
ik <∞. �

The next theorem states the uniqueness of the invariant measure, up to multiplication by a
constant.

Theorem 2.9.2. Consider an irreducible and recurrent Markov chain and fix some state
k ∈ E. Then, every invariant measure λ can be represented in the form

λj = cγ
(k)
j for all j ∈ E,

where c is a constant (not depending on j). In fact, c = λk.

Remark 2.9.3. Hence, the invariant measure is unique up to a multiplication by a constant.

In particular, the invariant measures (γ
(k1)
i )i∈E and (γ

(k2)
i )i∈E, for different states k1, k2 ∈ E,

differ by a multiplicative constant.

Proof. Let λ be an invariant measure.

Step 1. We show that λj ≥ λkγ
(k)
j for all j ∈ E. We will not use the irreducibility and the

recurrence of the chain in this step. The invariance of the measure λ implies that

λj =
∑
i0∈E

λi0pi0j =
∑
i0 6=k

λi0pi0j + λkpkj.
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Applying the same procedure to λi0 , we obtain

λj =
∑
i0 6=k

(∑
i1 6=k

λi1pi1i0 + λkpki0

)
pi0j + λkpkj

=
∑
i0 6=k

∑
i1 6=k

λi1pi1i0pi0j +

(
λkpkj + λk

∑
i0 6=k

pki0pi0j

)
.

Applying the procedure to λi1 and repeating it over and over again we obtain that for every
n ∈ N,

λj =
∑

i0,i1,...,in 6=k

λinpinin−1 . . . pi1i0pi0j+λk

pkj +
∑
i0 6=k

pki0pi0j + . . .+
∑

i0,...,in−1 6=k

pki0pi0i1 . . . pin−1j

 .

Noting that the first term is non-negative, we obtain that

λj ≥ 0 + λkPk[X1 = j, Tk ≥ 1] + λkPk[X2 = j, Tk ≥ 2] + . . .+ λkPk[Xn = j, Tk ≥ n].

Since this holds for every n ∈ N, we can pass to the limit as n→∞:

λj ≥ λk

∞∑
n=1

Pk[Xn = j, Tk ≥ n] = λkγ
(k)
j .

It follows that λj ≥ λkγ
(k)
j .

Step 2. We prove the converse inequality. Consider µj := λj−λkγ(k)j , j ∈ E. By the above,
µj ≥ 0 for all j ≥ 0 so that µ = (µj)j∈E is a measure. Moreover, this measure is invariant
because it is a linear combination of two invariant measures. Finally, note that by definition,
µk = 0. We will prove that this implies that µj = 0 for all j ∈ E. By the irreducibility of

our Markov chain, for every j ∈ E we can find n ∈ N0 such that p
(n)
jk > 0. By the invariance

property of µ,

0 = µk =
∑
i∈E

µip
(n)
ik ≥ µjp

(n)
jk .

It follows that µjp
(n)
jk = 0 but since p

(n)
jk > 0, we must have µj = 0. By the definition of µj

this implies that λj = λkγ
(k)
j . �

We can now summarize Theorems 2.9.1 and 2.9.2 as follows:

Theorem 2.9.4. A recurrent, irreducible Markov chain has unique (up to a constant multi-
ple) invariant measure.

This invariant measure may be finite or infinite. However, if the Markov chain has only
finitely many states, then the measure must be finite and we can even normalize it to be a
probability measure.

Corollary 2.9.5. A finite and irreducible Markov chain has a unique invariant probability
measure.
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Proof. A finite and irreducible Markov chain is recurrent by Theorem 2.7.10. By Theo-
rem 2.9.1, there exists an invariant measure λ = (λi)i∈E. Since the number of states in E is
finite by assumption and λi <∞ by Theorem 2.9.1, we have M :=

∑
i∈E λi <∞ and hence,

the measure λ is finite. To obtain an invariant probability measure, consider the measure
λ′i = λi/M .

To show that the invariant probability measure is unique, assume that we have two invariant
probability measures ν ′ = (ν ′i)i∈E and ν ′′ = (ν ′′i )i∈E. Take an arbitrary state k ∈ E. By

Theorem 2.9.2, there are constants c′ and c′′ such that ν ′i = c′γ
(k)
i and ν ′′i = c′′γ

(k)
i , for all

i ∈ E. But since both ν ′ and ν ′′ are probability measures, we have

1 =
∑
i∈E

ν ′i = c′
∑
i∈E

γ
(k)
i , 1 =

∑
i∈E

ν ′′i = c′′
∑
i∈E

γ
(k)
i .

This implies that c′ = c′′ and hence, the measures ν ′ and ν ′′ are equal. �

Above, we considered only irreducible, recurrent chains. What happens if the chain is irre-
ducible and transient? It turns out that in this case everything is possible:

(1) It is possible that there is no invariant measure at all (except the zero measure).
(2) It is possible that there is a unique (up to multiplication by a constant) invariant

measure.
(3) It is possible that there are at least two invariant measures which are not constant

multiples of each other.

Exercise 2.9.6. Consider a Markov chain on N with transition probabilities pi,i+1 = 1, for
all i ∈ N. Show that the only invariant measure is λi = 0, i ∈ N.

Exercise 2.9.7. Consider a Markov chain on Z with transition probabilities pi,i+1 = 1, for
all i ∈ Z. Show that the invariant measures have the form λi = c, i ∈ Z, where c ≥ 0 is
constant.

Exercise 2.9.8. Consider a simple random walk on Z with p 6= 1
2
. Show that any invariant

measure has the form

λi = c1 + c2

(
p

1− p

)i
, i ∈ Z,

for some constants c1 ≥ 0, c2 ≥ 0.

2.10. Positive recurrence and null recurrence

The set of recurrent states of a Markov chain can be further subdivided into the set of
positive recurrent states and the set of negative recurrent states. Let us define the notions
of positive recurrence and null recurrence.

Consider a Markov chain on state space E. Take some state i ∈ E, assume that the Markov
chain starts at state i and denote by Ti the time of the first return of the chain to state i:

Ti = min{n ∈ N : Xn = i} ∈ N ∪ {+∞}.

Denote by mi the expected return time of the chain to state i, that is

mi = EiTi ∈ (0,∞]
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Note that for a transient state i we always have mi = +∞ because the random variable Ti
takes the value +∞ with strictly positive probability 1−fi > 0, see Theorem 2.7.3. However,
for a recurrent state i the value of mi may be both finite and infinite, as we shall see later.

Definition 2.10.1. A state i ∈ E as called positive recurrent if mi <∞.

Definition 2.10.2. A state i ∈ E is called null recurrent if it is recurrent and mi = +∞.

Remark 2.10.3. Both null recurrent states and positive recurrent states are recurrent. For
null recurrent states this is required by definition. For a positive recurrent state we have
mi <∞ which means that Ti cannot attain the value +∞ with strictly positive probability
and hence, state i is recurrent.

Theorem 2.10.4. Consider an irreducible Markov chain. Then the following statements are
equivalent:

(1) Some state is positive recurrent.
(2) All states are positive recurrent.
(3) The chain has invariant probability measure λ = (λi)i∈E.

Also, if these statements hold, then mi = 1
λi

for all i ∈ E.

Proof. The implication 2⇒ 1 is evident.

Proof of 1 ⇒ 3. Let k ∈ E be a positive recurrent state. Then, k is recurrent and all

states of the chain are recurrent by irreducibility. By Theorem 2.9.1, (γ
(k)
i )i∈E is an invariant

measure. However, we need an invariant probability measure. To construct it, note that∑
j∈E

γ
(k)
j = mk <∞

(since k is positive recurrent). We can therefore define λi = γ
(k)
i /mk, i ∈ E. Then,

∑
i∈E λi =

1, and (λi)i∈E is an invariant probability measure.

Proof of 3 ⇒ 2. Let (λi)i∈E be an invariant probability measure. First we show that
λk > 0 for every state k ∈ E. Since λ is a probability measure, we have λl > 0 for at least

one l ∈ E. By irreducibility, we have p
(n)
lk > 0 for some n ∈ N0 and by invariance of λ, we

have

λk =
∑
i∈E

p
(n)
ik λi ≥ p

(n)
lk λl > 0.

This proves that λk > 0 for every k ∈ E.

By Step 1 from the proof of Theorem 2.9.2 (note that this step does not use recurrence), we
have for all j ∈ E,

λi ≥ λkγ
(k)
i .

Hence,

mk =
∑
i∈E

γ
(k)
i ≤

∑
i∈E

λi
λk

=
1

λk
<∞.
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It follows that k is positive recurrent, thus establishing statement 2.

Proof that mk = 1
λk
. Assume that statements 1,2,3 hold. In particular, the chain is

recurrent and by Theorem 2.9.2, we must have λi = λkγ
(k)
i for all i ∈ E. It follows that

mk =
∑
i∈E

γ
(k)
i =

∑
i∈E

λi
λk

=
1

λk
,

thus proving the required formula. �

Example 2.10.5. Any state in a finite irreducible Markov chain is positive recurrent. Indeed,
such a chain has an invariant probability measure by Corollary 2.9.5.

Example 2.10.6. Consider a simple symmetric random walk on Z or on Z2. This chain is
irreducible. Any state is recurrent by Pólya’s Theorem 2.8.4. We show that in fact, any
state is null recurrent. To see this, note that the measure assigning the value 1 to every
state i ∈ E is invariant by the definition of the chain. By Theorem 2.9.2, any other invariant
measure must be of the form λi = c, i ∈ E, for some constant c ≥ 0. However, no measure
of this form is a probability measure. So, there is no invariant probability measure and by
Theorem 2.10.4, all states must be null recurrent.

2.11. Convergence to the invariant probability measure

We are going to state and prove a “strong law of large numbers” for Markov chains. First
recall that the usual strong law of large numbers states that if ξ1, ξ2, . . . are i.i.d. random
variables with E|ξ1| <∞, then

(2.11.1)
ξ1 + . . .+ ξn

n

a.s.−→
n→∞

Eξ1.

The statement is not applicable if E|ξ1| = ∞. However, it is an exercise to show that if
ξ1, ξ2, . . . are i.i.d. random variables which are a.s. nonnegative with Eξ1 = +∞, then

(2.11.2)
ξ1 + . . .+ ξn

n

a.s.−→
n→∞

+∞.

Consider a Markov chain {Xn : n ∈ N0} with initial distribution α = (αi)i∈E. Given a state
i ∈ E, denote the number of visits to state i in the first n steps by

Vi(n) =
n−1∑
k=0

1{Xk=i}.

Theorem 2.11.1. Consider an irreducible Markov chain {Xn : n ∈ N0} with an arbitrary
initial distribution α = (αi)i∈E.

1. If the Markov chain is transient or null recurrent, then for all i ∈ E it holds that

(2.11.3)
Vi(n)

n
−→
n→∞

0 a.s.

2. If the Markov chain is positive recurrent with invariant probability measure λ, then for
all i ∈ E it holds that

(2.11.4)
Vi(n)

n
−→
n→∞

λi a.s.
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Proof. If the chain is transient, then Vi(n) stays bounded as a function of n, with proba-
bility 1. This implies (2.11.3). In the sequel, let the chain be recurrent.

For simplicity, we will assume in this proof that the chain starts in state i. Denote the time
of the k-th visit of the chain to i by Sk, that is

S1 = min {n ∈ N : Xn = i} ,
S2 = min {n > S1 : Xn = i} ,
S3 = min {n > S2 : Xn = i} ,

and so on. Note that S1, S2, S3, . . . are a.s. finite by the recurrence of the chain. Let also
ξ1, ξ2, ξ3, . . . be the excursion times between the returns to i, that is

ξ1 = S1, ξ2 = S2 − S1, ξ3 = S3 − S2, . . . .

Then, ξ1, ξ2, ξ3, . . . are i.i.d. random variables by the Markov property.

By definition of Vi(n) we have

ξ1 + ξ2 + . . .+ ξVi(n)−1 ≤ n ≤ ξ1 + ξ2 + . . .+ ξVi(n).

Dividing this by Vi(n) we get

(2.11.5)
ξ1 + ξ2 + . . .+ ξVi(n)−1

Vi(n)
≤ n

Vi(n)
≤
ξ1 + ξ2 + . . .+ ξVi(n)

Vi(n)
.

Note that by recurrence, Vi(n) −→
n→∞

∞ a.s.

Case 1. Let the chain be null recurrent. It follows that Eξ1 = ∞. By using (2.11.2)
and (2.11.5), we obtain that

n

Vi(n)

a.s.−→
n→∞

∞.

This proves (2.11.3).

Case 2. Let the chain be positive recurrent. Then, by Theorem 2.10.4, Eξ1 = mi = 1
λi
<∞.

Using (2.11.1) and (2.11.5) we obtain that

n

Vi(n)

a.s.−→
n→∞

1

λi
.

This proves (2.11.4). �

In the next theorem we prove that the n-step transition probabilities converge, as n → ∞,
to the invariant probability measure.

Theorem 2.11.2. Consider an irreducible, aperiodic, positive recurrent Markov chain {Xn :
n ∈ N0} with transition matrix P and invariant probability measure λ = (λi)i∈E. The initial
distribution α = (αi)i∈E may be arbitrary. Then, for all j ∈ E it holds that

lim
n→∞

P[Xn = j] = λj.

In particular, limn→∞ p
(n)
ij = λj for all i, j ∈ E.

Remark 2.11.3. In particular, the theorem applies to any irreducible and aperiodic Markov
chain with finite state space.
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For the proof we need the following lemma.

Lemma 2.11.4. Consider an irreducible and aperiodic Markov chain. Then, for every states

i, j ∈ E we can find N = N(i, j) ∈ N such that for all n > N we have p
(n)
ij > 0.

Proof. The chain is irreducible, hence we can find r ∈ N0 such that p
(r)
ij > 0. Also, the

chain is aperiodic, hence we can find N0 ∈ N such that for all k > N0 we have p
(k)
ii > 0. It

follows that for all k > N0,

p
(k+r)
ij > p

(k)
ii p

(r)
ij > 0.

It follows that for every n := k + r such that n > N0 + r, we have p
(n)
ij > 0. �

Proof of Theorem 2.11.2. We use the “coupling method”.

Step 1. Consider two Markov chains called {Xn : n ∈ N0} and {Yn : n ∈ N0} such that

(1) Xn is a Markov chain with initial distribution α and transition matrix P .
(2) Yn is a Markov chain with initial distribution λ (the invariant probability measure)

and the same transition matrix P .
(3) The process {Xn : n ∈ N0} is independent of the process {Yn : n ∈ N0}.

Note that both Markov chains have the same transition matrix but different initial distribu-
tions. Fix an arbitrary state b ∈ E. Denote by T be the time at which the chains meet at
state b:

T = min{n ∈ N : Xn = Yn = b} ∈ N ∪ {+∞}.
If the chains do not meet at b, we set T = +∞.

Step 2. We show that P[T < ∞] = 1. Consider the stochastic process Wn = (Xn, Yn)
taking values in E×E. It is a Markov chain on E×E with transition probabilities given by

p̃(i,k),(j,l) = pijpkl, (i, k) ∈ E × E, (j, l) ∈ E × E.
The initial distribution of W0 is given by

µ(i,k) = αiλk, (i, k) ∈ E × E.
Since the chains Xn and Yn are aperiodic and irreducible by assumption of the theorem, we
can apply Lemma 2.11.4 to obtain for every i, j, k, l ∈ E a number N = N(i, j, k, l) ∈ N such
that for all n > N we have

p̃
(n)
(i,k),(j,e) = p

(n)
ij p

(n)
ke > 0.

Thus, the chain Wn is irreducible. Also, it is an exercise to check that the probability measure
λ̃(i,k) := λiλk is invariant for Wn. Thus, by Theorem 2.10.4, the Markov chain Wn is positive
recurrent and thereby recurrent. Therefore, T <∞ a.s. by Lemma 2.7.11.

Step 3. Define the stochastic process {Zn : n ∈ N0} by

Zn =

{
Xn, if n ≤ T,

Yn, if n ≥ T.

Then, Zn is a Markov chain with initial distribution α and the same transition matrix P
as Xn and Yn. (The Markov chain Zn is called the coupling of Xn and Yn). The chain Yn
starts with the invariant probability measure λ and hence, at every time n, Yn is distributed
according to λ. Also, the chain Zn has the same initial distribution α and the same transition
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matrix P as the chain Xn, so that in particular, the random elements Xn and Zn have the
same distribution at every time n. Using these facts, we obtain that

|P[Xn = j]− λj| = |P[Xn = j]− P[Yn = j]| = |P[Zn = j]− P[Yn = j]|.
By definition of Zn, we can rewrite this as

|P[Xn = j]− λj| = |P[Xn = j, n < T ] + P[Yn = j, n ≥ T ]− P[Yn = j]|
= |P[Xn = j, n < T ]− P[Yn = j, n < T ]|
≤ P[T > n].

But we have shown in Step 2 that P[T = ∞] = 0, hence limn→∞ P[T > n] = 0. It follows
that

lim
n→∞

P[Xn = j] = λj,

thus establishing the theorem. �
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