
CHAPTER 2

Markov chains

2.1. Examples

Example 2.1.1 (Markov chain with two states). Consider a phone which can be in two
states: “free”= 0 and “busy”= 1. The set of the states of the phone is

E = {0, 1}.
We assume that the phone can randomly change its state in time (which is assumed to be
discrete) according to the following rules.

1. If at some time n the phone is free, then at time n+ 1 it becomes busy with probability
p or it stays free with probability 1− p.
2. If at some time n the phone is busy, then at time n+ 1 it becomes free with probability
q or it stays busy with probability 1− q.
Denote by Xn the state of the phone at time n = 0, 1, . . .. Thus, Xn : Ω→ {0, 1} is a random
variable and our assumptions can be written as follows:

p00 := P[Xn+1 = 0|Xn = 0] = 1− p, p01 := P[Xn+1 = 1|Xn = 0] = p,

p10 := P[Xn+1 = 0|Xn = 1] = q, p11 := P[Xn+1 = 1|Xn = 1] = 1− q.
We can write these probabilities in form of a transition matrix

P =

(
1− p p
q 1− q

)
.

Additionally, we will make the following assumption which is called the Markov property :
Given that at some time n the phone is in state i ∈ {0, 1}, the behavior of the phone after
time n does not depend on the way the phone reached state i in the past.

Problem 2.1.2. Suppose that at time 0 the phone was free. What is the probability that
the phone will be free at times 1, 2 and then becomes busy at time 3?

Solution. This probability can be computed as follows:

P[X1 = X2 = 0, X3 = 1] = p00 · p00 · p01 = (1− p)2p.

Problem 2.1.3. Suppose that the phone was free at time 0. What is the probability that
it will be busy at time 3?

Solution. We have to compute P[X3 = 1]. We know the values X0 = 0 and X3 = 1, but
the values of X1 and X2 may be arbitrary. We have the following possibilities:

(1) X0 = 0, X1 = 0, X2 = 0, X3 = 1. Probability: (1− p) · (1− p) · p.
(2) X0 = 0, X1 = 0, X2 = 1, X3 = 1. Probability: (1− p) · p · (1− q).
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(3) X0 = 0, X1 = 1, X2 = 0, X3 = 1. Probability: p · q · p.
(4) X0 = 0, X1 = 1, X2 = 1, X3 = 1. Probability: p · (1− q) · (1− q).

The probability we look for is the sum of these 4 probabilities:

P[X3 = 1] = (1− p)2p+ (1− p)(1− q)p+ p2q + p(1− q)2.

Example 2.1.4 (Gambler’s ruin). At each unit of time a gambler plays a game in which he
can either win 1e (which happens with probability p) or he can loose 1e (which happens
with probability 1 − p). Let Xn be the capital of the gambler at time n. Let us agree that
if at some time n the gambler has no money (meaning that Xn = 0), then he stops to play
(meaning that Xn = Xn+1 = . . . = 0). We can view this process as a Markov chain on the
state space E = {0, 1, 2, . . .} with transition matrix

P =


1 0 0 0 0 . . .

1− p 0 p 0 0 . . .
0 1− p 0 p 0 . . .
0 0 1− p 0 p . . .
. . . . . . . . . . . . . . . . . .

 .

2.2. Definition of Markov chains

Let us consider some system. Assume that the system can be in some states and that the
system can change its state in time. The set of all states of the system will be denoted by E
and called the state space of the Markov chain. We always assume that the state space E is
a finite or countable set. Usually, we will denote the states so that E = {1, . . . , N}, E = N,
or E = Z.

Assume that if at some time the system is in state i ∈ E, then in the next moment of time
it can switch to state j ∈ E with probability pij. We will call pij the transition probability
from state i to state j. Clearly, the transition probabilities should be such that

(1) pij ≥ 0 for all i, j ∈ E.
(2)

∑
j∈E pij = 1 for all i ∈ E.

We will write the transition probabilities in form of a transition matrix

P = (pij)i,j∈E.

The rows and the columns of this matrix are indexed by the set E. The element in the i-th
row and j-th column is the transition probability pij. The elements of the matrix P are
non-negative and the sum of elements in any row is equal to 1. Such matrices are called
stochastic.

Definition 2.2.1. A Markov chain with state space E and transition matrix P is a stochastic
process {Xn : n ∈ N0} taking values in E such that for every n ∈ N0 and every states
i0, i1, . . . , in−1, i, j we have

P[Xn+1 = j|Xn = i] = P[Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i](2.2.1)

= pij,

provided that P[X0 = i0, . . . , Xn−1 = in−1, Xn = i] 6= 0 (which ensures that the conditional
probabilities are well-defined).
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Condition (2.2.1) is called the Markov property.

In the above definition it is not specified at which state the Markov chain starts at time 0.
In fact, the initial state can be in general arbitrary and we call the probabilities

(2.2.2) αi := P[X0 = i], i ∈ E,

the initial probabilities. We will write the initial probabilities in form of a row vector α =
(αi)i∈E. This vector should be such that αi ≥ 0 for all i ∈ E and

∑
i∈E αi = 1.

Theorem 2.2.1. For all n ∈ N0 and for all i0, . . . , in ∈ E it holds that

(2.2.3) P[X0 = i0, X1 = i1, . . . , Xn = in] = α0pi0i1pi1i2 . . . pin−1in .

Proof. We use the induction over n. The induction basis is the case n = 0. We have
P[X0 = i0] = αi0 by the definition of initial probabilities, see (2.2.2). Hence, Equation (2.2.3)
holds for n = 0.

Induction assumption: Assume that (2.2.3) holds for some n. We prove that (2.2.3) holds
with n replaced by n + 1. Consider the event A = {X0 = i0, X1 = i1, . . . , Xn = in}. By the
induction assumption,

P[A] = αi0pi0i1pi1i2 . . . pin−1in .

By the Markov property,

P[Xn+1 = in+1|A] = pinin+1 .

It follows that

P[X0 = i0, X1 = i1, . . . , Xn = in, Xn+1 = in+1] = P[Xn+1 = in+1|A] · P[A]

= pinin+1 · αi0pi0i1pi1i2 . . . pin−1in

= αi0pi0i1pi1i2 . . . pin−1inpinin+1 .

This completes the induction. �

Remark 2.2.2. If P[A] = 0, then in the above proof we cannot use the Markov property.
However, in the case P[A] = 0 both sides of (2.2.3) are equal to 0 and (2.2.3) is trivially
satisfied.

Theorem 2.2.2. For every n ∈ N and every state in ∈ E we have

P[Xn = in] =
∑

i0,...,in−1∈E

αi0pi0i1 . . . pin−1in .

Proof. We have

P[Xn = in] =
∑

i0,...,in−1∈E

P[X0 = i0, X1 = i1, . . . , Xn = in]

=
∑

i0,...,in−1∈E

αi0pi0i1 . . . pin−1in ,

where the last step is by Theorem 2.2.1. �
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2.3. n-step transition probabilities

Notation 2.3.1. If we want to indicate that the Markov chain starts at state i ∈ E at time
0, we will write Pi instead of P.

Definition 2.3.2. The n-step transition probabilities of a Markov chain are defined as

p
(n)
ij := Pi[Xn = j].

We will write these probabilities in form of the n-step transition matrix P (n) = (p
(n)
ij )i,j∈E.

By Theorem 2.2.2 we have the formula

p
(n)
ij =

∑
i1,...,in−1∈E

pii1pi1i2 . . . pin−1j.

The next theorem is crucial. It states that the n-step transition matrix P (n) can be computed
as the n-th power of the transition matrix P .

Theorem 2.3.1. We have P (n) = P n = P · . . . · P .

Proof. We use induction over n. For n = 1 we have p
(1)
ij = pij and hence, P (1) = P . Thus,

the statement of the theorem is true for n = 1.

Let us now assume that we already proved that P (n) = P n for some n ∈ N. We compute
P (n+1). By the formula of total probability, we have

p
(n+1)
ij = Pi[Xn+1 = j] =

∑
k∈E

Pi[Xn = k]P[Xn+1 = j|Xn = k] =
∑
k∈E

p
(n)
ik pkj.

On the right hand-side we have the scalar product of the i-th row of the matrix P (n) and the
j-th column of the matrix P . By definition of the matrix multiplication, this scalar product
is exactly the entry of the matrix product P (n)P which is located in the i-th row and j-th
column. We thus have the equality of matrices

P (n+1) = P (n)P.

But now we can apply the induction assumption P (n) = P n to obtain

P (n+1) = P (n)P = P n · P = P n+1.

This completes the induction. �

In the next theorem we consider a Markov chain with initial distribution α = (αi)i∈E and

transition matrix P . Let α(n) = (α
(n)
j )j∈E be the distribution of the position of this chain at

time n, that is

α
(n)
j = P[Xn = j].

We write both α(n) and α as row vectors. The next theorem states that we can compute α(n)

by taking α and multiplying it by the n-step transition matrix P (n) = P n from the right.

Theorem 2.3.2. We have

α(n) = αP n.
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Proof. By the formula of the total probability

α
(n)
j = P[Xn = j] =

∑
i∈E

αiPi[Xn = j] =
∑
i∈E

αip
(n)
ij .

On the right-hand side we have the scalar product of the row α with the j-th column of
P (n) = P n. By definition of matrix multiplication, this means that α(n) = αP n. �

2.4. Invariant measures

Consider a Markov chain on state space E with transition matrix P . Let λ : E → R be a
function. To every state i ∈ E the function assigns some value which will be denoted by
λi := λ(i). Also, it will be convenient to write the function λ as a row vector λ = (λi)i∈E.

Definition 2.4.1. A function λ : E → R is called a measure on E if λi ≥ 0 for all i ∈ E.

Definition 2.4.2. A function λ : E → R is called a probability measure on E if λi ≥ 0 for
all i ∈ E and ∑

i∈E

λi = 1.

Definition 2.4.3. A measure λ is called invariant if λP = λ. That is, for every state j ∈ E
it should hold that

λj =
∑
i∈E

λipij.

Remark 2.4.4. If the initial distribution α of a Markov chain is invariant, that is αP = α,
then for every n ∈ N we have αP n = α which means that at every time n the position of the
Markov chain has the same distribution as at time 0:

X0
d
= X1

d
= X2

d
= . . . .

Example 2.4.5. Let us compute the invariant distribution for the Markov chain from Ex-
ample 2.1.1. The transition matrix is

P =

(
1− p p
q 1− q

)
.

The equation λP = λ for the invariant probability measure takes the following form:

(λ0, λ1)

(
1− p p
q 1− q

)
= (λ0, λ1).

Multiplying the matrices we obtain the following two equations:

λ0(1− p) + λ1q = λ0,

λ0p+ λ1(1− q) = λ1.

From the first equation we obtain that λ1q = λ0p. Solving the second equation we obtain
the same relation which means that the second equation does not contain any information
not contained in the first equation. However, since we are looking for invariant probability
measures, we have an additional equation

λ0 + λ1 = 1.
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Solving this equation together with λ1q = λ0p we obtain the following result:

λ0 =
q

p+ q
, λ1 =

p

p+ q
.

Problem 2.4.6. Consider the phone from Example 2.1.1. Let the phone be free at time 0.
What is (approximately) the probability that it is free at time n = 1000?

Solution. The number n = 1000 is large. For this reason it seems plausible that the
probability that the phone is free (busy) at time n = 1000 should be approximately the
same as the probability that it is free (busy) at time n + 1 = 1001. Denoting the initial
distribution by α = (1, 0) and the distribution of the position of the chain at time n by
α(n) = αP n we thus must have

α(n) ≈ α(n+1) = αP n+1 = αP n · P = α(n)P.

Recall that the equation for the invariant probability measure has the same form λ = λP .
It follows that α(n) must be approximately the invariant probability measure:

α(n) ≈ λ.

For the probability that the phone is free (busy) at time n = 1000 we therefore obtain the
approximations

p
(n)
00 ≈ λ0 =

q

p+ q
, p

(n)
01 ≈ λ1 =

p

p+ q
.

Similar considerations apply to the case when the phone is busy at time 0 leading to the
approximations

p
(n)
10 ≈ λ0 =

q

p+ q
, p

(n)
11 ≈ λ1 =

p

p+ q
.

Note that p
(n)
00 ≈ p

(n)
10 and p

(n)
01 ≈ p

(n)
11 which can be interpreted by saying that the Markov

chain almost forgets its initial state after many steps. For the n-step transition matrix we
therefore may conjecture that

lim
n→∞

P n = lim
n→∞

(
p
(n)
00 p

(n)
01

p
(n)
10 p

(n)
11

)
=

(
λ0 λ1
λ0 λ1

)
.

The above considerations are not rigorous. We will show below that if a general Markov
chain satisfies appropriate conditions, then

(1) The invariant probability measure λ exists and is unique.

(2) For every states i, j ∈ E we have limn→∞ p
(n)
ij = λj.

Example 2.4.7 (Ehrenfest model). We consider a box which is divided into 2 parts. Consider
N balls (molecules) which are located in this box and can move from one part to the other
according to the following rules. Assume that at any moment of time one of the N balls is
chosen at random (all balls having the same probability 1/N to be chosen). This ball moves
to the other part. Then, the procedure is repeated. Let Xn be the number of balls at time
n in Part 1. Then, Xn takes values in E = {0, 1, . . . , N} which is our state space. The
transition probabilities are given by

p0,1 = 1, pN,N−1 = 1, pi,i+1 =
N − i
N

, pi,i−1 =
i

N
, i = 1, . . . , N − 1.
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For the invariant probability measure we obtain the following system of equations

λ0 =
λ1
N
, λN =

λN−1
N

, λj =
N − j + 1

N
λj−1 +

j + 1

N
λj+1, j = 1, . . . , N − 1.

Additionally, we have the equation λ0+ . . .+λN = 1. This system of equations can be solved
directly, but one can also guess the solution without doing computations. Namely, it seems
plausible that after a large number of steps every ball will be with probability 1/2 in Part 1
and with probability 1/2 in Part 2. Hence, one can guess that the invariant probability
measure is the binomial distribution with parameter 1/2:

λj =
1

2N

(
N

j

)
.

One can check that this is indeed the unique invariant probability measure for this Markov
chain.

Example 2.4.8. Let X0, X1, . . . be independent and identically distributed random variables
with values 1, . . . , N and corresponding probabilities

P[Xn = i] = pi, p1, . . . , pN ≥ 0,
N∑
i=1

pi = 1.

Then, X0, X1, . . . is a Markov chain and the transition matrix is

P =

p1 . . . pN
. . . . . . . . .
p1 . . . pN

 .

The invariant probability measure is given by λ1 = p1, . . . , λN = pN .

2.5. Class structure and irreducibility

Consider a Markov chain on a state space E with transition matrix P .

Definition 2.5.1. We say that state i ∈ E leads to state j ∈ E if there exists n ∈ N0 such

that p
(n)
ij 6= 0. We use the notation i j.

Remark 2.5.2. By convention, p
(0)
ii = 1 and hence, every state leads to itself: i i.

Theorem 2.5.1. For two states i, j ∈ E with i 6= j, the following statements are equivalent:

(1) i j.
(2) Pi[∃n ∈ N : Xn = j] 6= 0.
(3) There exist n ∈ N and states i1, . . . , in−1 ∈ E such that pii1 . . . pin−1j > 0.

Proof. We prove that Statements 1 and 2 are equivalent. We have the inequality

(2.5.1) p
(n)
ij ≤ Pi[∃n ∈ N : Xn = j] ≤

∞∑
n=1

Pi[Xn = j] =
∞∑
n=1

p
(n)
ij .

If Statement 1 holds, then for some n ∈ N we have p
(n)
ij > 0. Hence, by (2.5.1), we have

Pi[∃n ∈ N : Xn = j] > 0 and Statement 2 holds. If, conversely, Statement 2 holds, then
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Pi[∃n ∈ N : Xn = j] > 0. Hence, by (2.5.1),
∑∞

n=1 p
(n)
ij > 0, which implies that at least one

summand p
(n)
ij must be strictly positive. This proves Statement 1.

We prove the equivalence of Statements 1 and 3. We have the formula

(2.5.2) p
(n)
ij =

∑
i1,...,in−1∈E

pii1 . . . pin−1j.

If Statement 1 holds, then for some n ∈ N we have p
(n)
ij > 0 which implies that at least one

summand on the right-hand side of (2.5.2) must be strictly positive. This implies Statement
3. If, conversely, Statement 3 holds, then the sum on the right-hand side of (2.5.2) is positive

which implies that p
(n)
ij > 0. Hence, Statement 1 holds. �

Definition 2.5.3. States i, j ∈ E communicate if i j and j  i. Notation: i! j.

Theorem 2.5.2. i! j is an equivalence relation, namely

(1) i! i.
(2) i! j ⇐⇒ j! i.
(3) i! j, j! k ⇒ i! k.

Proof. Statements 1 and 2 follow from the definition. We prove statement 3. If i! j
and j ! k, then, in particular, i  j and j  k. By Theorem 2.5.1, Statement 3,
we can find r ∈ N, s ∈ N and states u1, . . . , ur−1 ∈ E and v1, . . . , vs−1 ∈ E such that
piu1pu1u2 . . . pur−1j > 0 and pjv1pv1v2 . . . pvs−1k > 0. Multiplying both inequalities, we get

piu1pu1u2 . . . pur−1jpjv1pv1v2 . . . pvs−1k > 0.

By Theorem 2.5.1, Statement 3, we have i k. In a similar way one shows that k  i. �

Definition 2.5.4. The communication class of state i ∈ E is the set {j ∈ E : i! j}. This
set consists of all states j which communicate to i.

Since communication of states is an equivalence relation, the state space E can be decom-
posed into a disjoint union of communication classes. Any two communication classes either
coincide completely or are disjoint sets.

Definition 2.5.5. A Markov chain is irreducible if every two states communicate. Hence,
an irreducible Markov chain consists of just one communication class.

Definition 2.5.6. A communication class C is open if there exist a state i ∈ C and a state
k /∈ C such that i k. Otherwise, a communication class is called closed.

If a Markov chain once arrived in a closed communication class, it will stay in this class
forever.

Exercise 2.5.7. Show that a communication class C is open if and only if there exist a
state i ∈ C and a state k /∈ C such that pik > 0.

Theorem 2.5.3. If the state space E is a finite set, then there exists at least one closed
communication class.
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Proof. We use a proof by contradiction. Assume that there is no closed communication
class. Hence, all communication classes are open. Take some state and let C1 be the
communication class of this state. Since C1 is open, there is a path from C1 to some
other communication class C2 6= C1. Since C2 is open, we can go from C2 to some other
communication class C3 6= C3, and so on. Note that in the sequence C1, C2, C3, . . . all classes
are different. Indeed, if for some l < m we would have Cl = Cm (a “cycle”), this would
mean that there is a path starting from Cl, going to Cl+1 and then to Cm = Cl. But this
is a contradiction since then Cl and Cl+1 should be a single communication class, and not
two different classes, as in the construction. So, the classes C1, C2, . . . are different (in fact,
disjoint) and each class contains at least one element. But this is a contradiction since E is
a finite set. �

2.6. Aperiodicity

Definition 2.6.1. The period of a state i ∈ E is defined as

gcd{n ∈ N : p
(n)
ii > 0}.

Here, gcd states for the greatest common divisor. A state i ∈ E is called aperiodic if its
period is equal to 1. Otherwise, the state i is called periodic.

Example 2.6.2. Consider a knight on a chessboard moving according to the usual chess
rules in a random way. For concreteness, assume that at each moment of time all moves of
the knight allowed by the chess rules are counted and then one of these moves is chosen, all
moves being equiprobable.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0ZnZ0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

This is a Markov chain on a state space consisting of 64 squares. Assume that at time 0 the
knight is in square i. Since the knight changes the color of its square after every move, it
cannot return to the original square in an odd number of steps. On the other hand, it can
return to i in an even number of steps with non-zero probability (for example by going to
some other square and then back, many times). So,

p
(2n+1)
ii = 0, p

(2n)
ii > 0.

Hence, the period of any state in this Markov chain is 2.

Example 2.6.3. Consider a Markov chain on a state space of two elements with transition
matrix

P =

(
0 1
1 0

)
,
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We have
p
(2n+1)
ii = 0, p

(2n)
ii = 1.

Hence, the period of any state in this Markov chain is 2.

Exercise 2.6.4. Show that in the Ehrenfest Markov chain (Example 2.4.7) every state is
periodic with period 2.

Lemma 2.6.5. Let i ∈ E be any state. The following conditions are equivalent:

(1) State i is aperiodic.

(2) There is N ∈ N such that for every natural number n > N we have p
(n)
ii > 0.

Proof. If Statement 2 holds, then for some sufficiently large n we have p
(n)
ii > 0 and

p
(n+1)
ii > 0. Since gcd(n, n+ 1) = 1, the state i has period 1. Hence, Statement 1 holds.

Suppose, conversely, that Statement 1 holds. Then, we can find n1, . . . , nr ∈ N such that

gcd{n1, . . . , nr} = 1 and p
(n1)
ii > 0, . . . , p

(nr)
ii > 0. By a result from number theory, the

condition gcd{n1, . . . , nr} = 1 implies that there is N ∈ N such that we can represent any
natural number n > N in the form n = l1n1 + . . .+ lrnr for suitable l1, . . . , lr ∈ N. We obtan
that

p
(l1n1+...+lrnr)
ii ≥ (p

(n1)
ii )l1 · . . . · (p(nr)

ii )lr > 0.

This proves Statement 2.

Lemma 2.6.6. If state i ∈ E is aperiodic and i! j, then j is also aperiodic.

Remark 2.6.7. We can express this by saying that aperiodicity is a class property : If some
state in a communication class is aperiodic, then all states in this communication class are
aperiodic. Similarly, if some state in a communication class is periodic, then all states in this
communication class must be periodic. We can thus divide all communication classes into
two categories: the aperiodic communication classes (consisting of only aperiodic states) and
the periodic communication classes (consisting only of periodic states).

Definition 2.6.8. An irreducible Markov chain is called aperiodic if some (and hence, all)
states in this chain are aperiodic.

Proof of Lemma 2.6.6. From i! j it follows that i  j and j  i. Hence, we can

find r, s ∈ N0 such that p
(r)
ji > 0 and p

(s)
ij > 0. Since the state i is aperiodic, by Lemma 2.6.5

we can find N ∈ N such that for all n > N , we have p
(n)
ii > 0 and hence,

p
(n+r+s)
jj ≥ p

(r)
ji · p

(n)
ii · p

(s)
ij > 0.

It follows that p
(k)
jj > 0 for all k := n+ r+ s > N + r+ s. By Lemma 2.6.5, this implies that

j is aperiodic. �
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