2.7. Recurrence and transience
Consider a Markov chain {X,, : n € Ny} on state space E with transition matrix P.
DEFINITION 2.7.1. A state i € E is called recurrent if

P;[ X, = i for infinitely many n] = 1.
DEFINITION 2.7.2. A state i € E is called transient if

P;[ X, = i for infinitely many n] = 0.

A recurrent state has the property that a Markov chain starting at this state returns to this
state infinitely often, with probability 1. A transient state has the property that a Markov
chain starting at this state returns to this state only finitely often, with probability 1.

The next theorem is a characterization of recurrent/transient states.

THEOREM 2.7.3. Let ¢ € E be a state. Denote by f; the probability that a Markov chain
which starts at © returns to 1 at least once, that is

Then,

(1) The state i is recurrent if and only if f; = 1.
(2) The state i is transient if and only if f; < 1.

COROLLARY 2.7.4. FEwvery state is either recurrent or transient.

ProoF. For k € N consider the random event
By, = {X,, =i for at least k different values of n € N}.
Then, P;[By] = fF. Also, By D By D .... It follows that

1, iff=1
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P;[ X, = i for infinitely many n] = P;[N;2, Bg] = klgn P;[Bg] = klggo fr= {07 £ r <
It follows that state ¢ is recurrent if f; = 1 and transient if f; < 1. U

Here is one more characterization of recurrence and transience.

THEOREM 2.7.5. Let i € E be a state. Recall that pz(»f) = P;[X,, = i] denotes the probability
that a Markov chain which started at state 1 wvisits state © at time n. Then,
(1) The state i is recurrent if and only if Zlepg‘) = 0.

(2) The state i is transient if and only if Y, pl(?) < 00.

PRrooOF. Let the Markov chain start at state 7. Consider the random variable

Vii= Z Lix,—iy
n=1

which counts the number of returns of the Markov chain to state 7. Note that the random
variable V; can take the value +o00. Then,

Pi[V; > k| = P[Bi] = ff, keN,
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Thus, the expectation of V; can be computed as follows:

(2.7.1) EV] =Y PiVi> k=Y &
k=1 k=1
On the other hand,
(2.7.2) E;[Vi] = E; Z Lix,=i) = ZEz‘]l{Xn:i} = przn)
n=1 n=1 n=1

CASE 1. Assume that state 7 is recurrent. Then, f; = 1 by Theorem 2.7.3. It follows that
E;[Vi] = oo by (2.7.1). (In fact, P;[V; = +o0] = 1 since P[V; > k] = 1 for every k € N).
Hence, 3227, pi"” = oo by (2.7.2)

CASE 2. Assume that state 7 is transient. Then, f; < 1 by Theorem 2.7.3. Thus, E;V; < oo
by (2.7.1) and hence, 3> p\™ < 0o by (2.7.2). O

The next theorem shows that recurrence and transience are class properties: If some state in
a communicating class is recurrent (resp. transient), then all states in this class are recurrent
(resp. transient).

THEOREM 2.7.6.

1. If i € E be a recurrent state and j «~ 1, then j is also recurrent.

2. If1 € E be a transient state and j «~ i, then j is also transient.

Proor. It suffices to prove Part 2. Let ¢ be a transient state and let j «~ i. It follows that
there exist s, € Ny with pgj) > 0 and pg-:) > 0. For all n € N it holds that

p(n+r+8) > &) () (1)

i = Pij Pjj Pji -
Therefore,
o
(n+r+s)
ijj — T)Zpii — s) (r) Zp
Z] Jji n=1 Pji n=1

where the last step holds because 7 is transient. It follows that state j is also transient. [J

Theorem 2.7.6 allows us to introduce the following definitions.

DEFINITION 2.7.7. A communicating class is called recurrent if at least one (equivalently,
every) state in this class is recurrent. A communicating class is transient if at least one
(equivalently, every) state in this class is transient.

DEFINITION 2.7.8. An irreducible Markov chain is called recurrent if at least one (equiva-
lently, every) state in this chain is recurrent. An irreducible Markov chain is called transient
if at least one (equivalently, every) state in this chain is transient.

The next theorem states that it is impossible to leave a recurrent class.

THEOREM 2.7.9. Fvery recurrent communicating class is closed.
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PRrROOF. Let C be a non-closed class. We need to show that it is not recurrent. Since C' is
not closed, there exist states 4,j so that i € C, j ¢ C and i ~ j. This means that there
exists m € N so that pz(-;n) = P;[X,, = j| > 0. If the event {X,, = j} occurs, then after
time m the chain cannot return to state ¢ because otherwise ¢ and j would be in the same
communicating class. It follows that

P;[{X,, = j} N {X,, =i for infinitely many n}] = 0.
This implies that
P;[ X, = i for infinitely many n] < 1.
Therefore, state 7 is not recurrent. O
If some communicating class contains only finitely states and the chain cannot leave this
class, then it looks very plausible that the chain which started in some state of this class will

return to this state infinitely often (and, in fact, will visit any state of this class infinitely
often), with probability 1. This is stated in the next theorem.

THEOREM 2.7.10. FEvery finite closed communicating class is recurrent.

PrOOF. Let C' be a closed communicating class with finitely many elements. Take some
state i € C'. A chain starting in ¢ stays in C forever and since C' is finite, there must be at
least one state 7 € C' which is visited infinitely often with positive probability:

P;[X,, = j for infinitely many n € N| > 0.

At the moment it is not clear whether we can take i = j. But since 7 and j are in the same

(m)

communicating class, there exists m € Ny so that pj;-n > 0. From the inequality

P;[X,, = j for infinitely many n] > p(.’i“)

si - Pi[ X, = j for infinitely many n] > 0

it follows that state j is recurrent. The class C' is then recurrent because it contains at leats
one recurrent state, namely j. U
So, in a Markov chain with finitely many states we have the following equivalencies

(1) A communicating class is recurrent if and only if it is closed.

(2) A communicating class is transient if and only if it is not closed.

LEMMA 2.7.11. Consider an irreducible, recurrent Markov chain with an arbitrary initial
distribution «. Then, for every state j € E the number of visits of the chain to j is infinite
with probability 1.

PROOF. Exercise. O

2.8. Recurrence and transience of random walks

EXAMPLE 2.8.1. A simple random walk on Z is a Markov chain with state space £ = Z and
transition probabilities

Piit1 =D, DPiici=1—p, 1€ZL.
So, from every state the random walk goes one step to the right with probability p, or one
step to the left with probability 1 — p; see Figure 1. Here, p € [0, 1] is a parameter.
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FI1GURE 1. Sample path of a simple random walk on Z with p = % The figure
shows 200 steps of the walk.

THEOREM 2.8.2. Ifp = %, then any state of the simple random walk is recurrent. If p # %,
then any state 1s transient.

ProoOF. By translation invariance, we can restrict our attention to state 0. We can represent
our Markov chain as X,, = & + ... + &,, where &,&, ... are independent and identically
distributed random variables with Bernoulli distribution:

P =1 =p, Pl§&=-1=1-p.

CASE 1. Let p # % Then, E§, = p— (1 —p) = 2p — 1 # 0. By the strong law of large

numbers,

MT%_&I =E& #0 as.

" .
lim —X,, = lim
n—oo M n—oo

In the case p > % we have E&; > 0 and hence, lim,,_,,, X,, = 400 a.s. In the case p < % we
have E£; < 0 and hence, lim,, ,,, X,, = —00 a.s. In both cases it follows that

P[X,, = 0 for infinitely many n] = 0.
Hence, state 0 is transient.

CASE 2. Let p = % In this case, E& = 0 and the argument of Case 1 does not work. We
will use Theorem 2.7.5. The n-step transition probability from 0 to 0 is given by
m {0, it n = 2k + 1 odd,

Poo = 22%(2:), if n = 2k even.

The Stirling formula n! ~ v/27n(%)", as n — oo, yields that

1
p(()%k) ~ ——, ask — oo.

\/7T]€’

Since the series > -, \/LE diverges, it follows that 32°° p{®) = 37 p®) — o0, By Theo-
rem 2.7.5, this implies that 0 is a recurrent state. U
EXAMPLE 2.8.3. The simple, symmetric random walk on Z% is a Markov chain defined as
follows. The state space is the d-dimensional lattice
Z*={(n1,...,nq) i n1,...,nqg € Z}.
4



Let eq, ..., eq be the standard basis of R?, that is

e; =(1,0,0...,0), e2 =(0,1,0,...,0), e3=(0,0,1,...,0), ..., eq=1(0,0,0,...,1).
Let &1, &, ... be independent and identically distributed d-dimensional random vectors such
that .

]P’[fl:ek]:IP’[fz:—ek]:%, kzl,,d, 1€ N.

Define S, =& +...+&,, n € N, and Sy = 0. The sequence Sy, S1, Ss, ... is called the simple
symmetric random walk on Z?. It is a Markov chain with transition probabilities

. d
Diiter = Piji—e; — -+ = Dijiteq — Piji—eq — Zi’ 1€ Z°.

100
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FIGURE 2. Left: Sample path of a simple symmetric random walk on Z2.
Right: Sample path of a simple symmetric random walk on Z?. In both cases
the random walk makes 50000 steps.

THEOREM 2.8.4 (Pdlya, 1921). The simple symmetric random walk on Z% is recurrent if and
only if d = 1,2 and transient if and only if d > 3.

PRrOOF. For d = 1 we already proved the statement in Theorem 2.8.2.

Consider the case d = 2. We compute the n-step transition probability pgé). For an odd n
this probability is 0. For an even n = 2k we have

k k 2
o _ 1 2% 1 (2% BN B (12K 1
Poo 4%;(i,i,k—z’,k—z’) 426\ f ; i) \k—i 92k \ J e
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as k — oo, where the last step is by the Stirling formula. The harmonic series 220:1%

diverges. Therefore, >~ | pgg) = oo and the random walk is recurrent in d = 2 dimensions.

Generalizing the cases d = 1, 2 one can show that for an arbitrary dimension d € N we have,
as k — oo,
(2k) 1
DPoo = ~ (ﬂ_k)d/g'

Since the series Y oo k%2 is convergent for d > 3 it holds that > 7 pgg) < oo and the
random walk is transient in d = 3 dimensions. U

2.9. Existence and uniqueness of the invariant measure

The next two theorems state that any irreducible and recurrent Markov chain has a unique
invariant measure A, up to a multiplication by a constant. This measure may be finite (that
is, > ,epAi < +00) or infinite (that is, Y .. p A = +00).

First we provide an explicit construction of an invariant measure for an irreducible and
recurrent Markov chain. Consider a Markov chain starting at state k € E. Denote the time
of the first return to k by

T, =min{n e N: X,, = k} € NU {+o0}.
The minimum of an empty set is by convention +oc. For a state ¢ € E denote the expected

number of visits to ¢ before the first return to k& by
Tp—1
n=0
THEOREM 2.9.1. For an irreducible and recurrent Markov chain starting at state k € E we
have
(2) For alli € E it holds that 0 < ~; < 0.
(3) v = (7i)ier is an invariant measure.

PROOF.

STEP 1. We show that 7, = 1. By definition of T}, we have Z:’;Bl I¢x,=k} = 1, if the chain
starts at k. It follows that v, = E;1 = 1.

STEP 2. We show that for every state j € F,
(2.9.1) V= sz‘j%'-
icE
(At this moment, both sides of (2.9.1) are allowed to be infinite, but in Step 3 we will show

that both sides are actually finite). The Markov chain is recurrent, thus T, < oo almost
surely. By definition, X7, = k = X,. We have

Ty 00 o)
W =B Y Lixamy =B Y Lixujmery = Y Pu[Xo = 4, T > 1.
n=1 n=1 n=1
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Before visiting state j at time n the chain must have been in some state ¢ at time n — 1,
where ¢ € E can be, in general, arbitrary. We obtain that

v; = ZZIP’k[Xn =7, Xn1 =10, T, >n] = Zzpijpk[anl =14, Ty 2 nl.
icE n=1 el n=1

Introducing the new summation variable m = n — 1, we obtain that

T, —1

%= 05 ) Bilxmimemi} = D0y B Y Ly = Y P
m=0

D) m=0 1<) <D

This proves that (2.9.1) holds.

STEP 3. Let ¢ € E be an arbitrary state. We show that 0 < 7; < oo. Since the chain is

irreducible, there exist n,m € Ny such that p\;” > 0 and p{” > 0. From (2.9.1) it follows

that

Vi = Zpl(in)’n > pi v = i) > 0.
IeE

On the other hand, again using (2.9.1), we obtain that
L=y = Zpl(;n)% > p§,§”’%.
I€E
This implies that v; < 1/ pgzl) < oo. O

The next theorem states the uniqueness of the invariant measure, up to multiplication by a
constant.

THEOREM 2.9.2. Consider an irreducible and recurrent Markov chain and fix some state
k € E. Then, every invariant measure A can be represented in the form

Aj = 07§k) forall j € E,
where ¢ is a constant (not depending on j). In fact, c = .

REMARK 2.9.3. Hence, the invariant measure is unique up to a multiplication by a constant.
In particular, the invariant measures (’yl-(kl))ie g and (”yi(b))ie g, for different states ki, ks € E,
differ by a multiplicative constant.

PROOF. Let A be an invariant measure.

STEP 1. We show that \; > )\k%(-k) for all j € E. We will not use the irreducibility and the
recurrence of the chain in this step. The invariance of the measure A implies that

Aj = Z AigPioj = Z AigPioj T AkDrj-

i0EE to#k
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Applying the same procedure to \;,, we obtain

Aj = Z (Z iy Pivip + )\kpkio> Dioj + AkDij

i0#k \i1#k
= Z Z iy DirioPioj + <)\kpkj + Ak Z pkiopi0j> :
io#k i1#k i0#£k

Applying the procedure to \;, and repeating it over and over again we obtain that for every
n €N,

)\j = Z )\inpinin,1 .. -piliopi0j+)\k Dkj + Z PkioPigs + ...+ Z PlioPigiy « - - Pin_17
10,010y inFk io#£k 10yeesin—17k

Noting that the first term is non-negative, we obtain that
Aj 2> 0+ NePh[ Xy = 5, Th > 1] + MePr[Xo = 5, Th > 2] + ... + MPi[ X, = J, T), > n].

Since this holds for every n € N, we can pass to the limit as n — oo:

A=Y PX, =T > ) = Myl
n=1

It follows that \; > /\wj(.k).

STEP 2. We prove the converse inequality. Consider p; := \; — /\kfyj(.k), j € E. By the above,
p; >0 for all j > 0 so that u = (uj)jer is a measure. Moreover, this measure is invariant
because it is a linear combination of two invariant measures. Finally, note that by definition,

pr = 0. We will prove that this implies that p; = 0 for all j € E. By the irreducibility of

)

our Markov chain, for every j € E we can find n € Ny such that pgz > (. By the invariance

property of u,
0= py = Zumﬁ}? > ujpﬁ-’,ﬁ).
i€E

It follows that ,ujpgz) = 0 but since pg.z) > 0, we must have p; = 0. By the definition of p;

this implies that \; = )\kfyj(.k). 0
We can now summarize Theorems 2.9.1 and 2.9.2 as follows:

THEOREM 2.9.4. A recurrent, irreducible Markov chain has unique (up to a constant multi-
ple) invariant measure.

This invariant measure may be finite or infinite. However, if the Markov chain has only
finitely many states, then the measure must be finite and we can even normalize it to be a
probability measure.

COROLLARY 2.9.5. A finite and irreducible Markov chain has a unique invariant probability
measure.



PROOF. A finite and irreducible Markov chain is recurrent by Theorem 2.7.10. By Theo-
rem 2.9.1, there exists an invariant measure A = (\;);cg. Since the number of states in E is
finite by assumption and \; < oo by Theorem 2.9.1, we have M := )., A\; < oo and hence,
the measure A is finite. To obtain an invariant probability measure, consider the measure

To show that the invariant probability measure is unique, assume that we have two invariant

probability measures v/ = (V));cg and v/ = (V/);cg. Take an arbitrary state k € E. By

(2
Theorem 2.9.2, there are constants ¢ and ¢’ such that v] = ¢ 72-(k) and v = c”%-(k), for all

i € E. But since both v/ and v are probability measures, we have
122”"{:6/2’%@)’ 1:ZV£IZCHZ’}/§’C).
i€E i€E i€E icE
This implies that ¢ = ¢’ and hence, the measures v/ and " are equal. O

Above, we considered only irreducible, recurrent chains. What happens if the chain is irre-
ducible and transient? It turns out that in this case everything is possible:

(1) Tt is possible that there is no invariant measure at all (except the zero measure).

(2) Tt is possible that there is a unique (up to multiplication by a constant) invariant
measure.

(3) It is possible that there are at least two invariant measures which are not constant
multiples of each other.

EXERCISE 2.9.6. Consider a Markov chain on N with transition probabilities p; ;.1 = 1, for
all 7 € N. Show that the only invariant measure is \; = 0, i € N.

EXERCISE 2.9.7. Consider a Markov chain on Z with transition probabilities p; ;11 = 1, for
all © € Z. Show that the invariant measures have the form \; = ¢, i € Z, where ¢ > 0 is
constant.

EXERCISE 2.9.8. Consider a simple random walk on Z with p # % Show that any invariant

measure has the form '
)\i:cl—l—cQ(L) , iEZ,
I-p

for some constants ¢; > 0, ¢ > 0.

2.10. Positive recurrence and null recurrence

The set of recurrent states of a Markov chain can be further subdivided into the set of
positive recurrent states and the set of negative recurrent states. Let us define the notions
of positive recurrence and null recurrence.

Consider a Markov chain on state space E. Take some state ¢ € F, assume that the Markov
chain starts at state ¢ and denote by T; the time of the first return of the chain to state ¢:

T, =min{n € N: X,, =i} € NU {400}.
Denote by m; the expected return time of the chain to state i, that is
m; = E;T; € (0, 00]
9



Note that for a transient state i we always have m; = +00 because the random variable T;
takes the value +oo with strictly positive probability 1— f; > 0, see Theorem 2.7.3. However,
for a recurrent state i the value of m; may be both finite and infinite, as we shall see later.

DEFINITION 2.10.1. A state i € E as called positive recurrent if m; < oo.
DEFINITION 2.10.2. A state i € E is called null recurrent if it is recurrent and m; = +oo.

REMARK 2.10.3. Both null recurrent states and positive recurrent states are recurrent. For
null recurrent states this is required by definition. For a positive recurrent state we have
m; < oo which means that T; cannot attain the value +o00 with strictly positive probability
and hence, state ¢ is recurrent.

THEOREM 2.10.4. Consider an irreducible Markov chain. Then the following statements are
equivalent:

(1) Some state is positive recurrent.
(2) All states are positive recurrent.
(3) The chain has invariant probability measure X = (\;)ick-

Also, if these statements hold, then m; = /\i foralli e E.

PRrOOF. The implication 2 = 1 is evident.

PROOF OF 1 = 3. Let k € E be a positive recurrent state. Then, k is recurrent and all
states of the chain are recurrent by irreducibility. By Theorem 2.9.1, (vfk))ie £ is an invariant
measure. However, we need an invariant probability measure. To construct it, note that

3ot <

jEE

since k is positive recurrent). We can therefore define \; = (k) my, t € F. Then A=
( p 72 ) ) icE
1, and (\;);ep is an invariant probability measure.

PROOF OF 3 = 2. Let (\);ep be an invariant probability measure. First we show that

Ar > 0 for every state k € E. Since A is a probability measure, we have \; > 0 for at least

one [ € E. By irreducibility, we have pl(g) > 0 for some n € Ny and by invariance of A\, we

have
Ne =D pi A = p N> 0.
i€E
This proves that A\, > 0 for every k € E.

By Step 1 from the proof of Theorem 2.9.2 (note that this step does not use recurrence), we
have for all j € F|

Ai > )\k%(k)-
Hence,
mkzzyi’“)<zﬁ:i<oo.
i€E T i€E Ao A
10



It follows that k is positive recurrent, thus establishing statement 2.

PROOF THAT m; = A—lk Assume that statements 1,2,3 hold. In particular, the chain is

recurrent and by Theorem 2.9.2, we must have \; = /\k%-(k) for all « € E. It follows that

Ai 1

i€E i€E
thus proving the required formula. 0

ExXAMPLE 2.10.5. Any state in a finite irreducible Markov chain is positive recurrent. Indeed,
such a chain has an invariant probability measure by Corollary 2.9.5.

EXAMPLE 2.10.6. Consider a simple symmetric random walk on Z or on Z2?. This chain is
irreducible. Any state is recurrent by Pdlya’s Theorem 2.8.4. We show that in fact, any
state is null recurrent. To see this, note that the measure assigning the value 1 to every
state ¢ € F is invariant by the definition of the chain. By Theorem 2.9.2, any other invariant
measure must be of the form \; = ¢, ¢+ € F, for some constant ¢ > 0. However, no measure
of this form is a probability measure. So, there is no invariant probability measure and by
Theorem 2.10.4, all states must be null recurrent.

2.11. Convergence to the invariant probability measure

We are going to state and prove a “strong law of large numbers” for Markov chains. First
recall that the usual strong law of large numbers states that if &;,&s, ... are i.i.d. random
variables with E|&;| < oo, then

£1++€n a.s.

(2.11.1) — E&;.
n n—oo
The statement is not applicable if E|{;| = oo. However, it is an exercise to show that if
&1,&s, ... are i.i.d. random variables which are a.s. nonnegative with E{; = 400, then
+ ) + n a.s.
(2.11.2) ST o N
n n—00

Consider a Markov chain {X,, : n € Ny} with initial distribution o = (e );eg. Given a state
1 € E, denote the number of visits to state ¢ in the first n steps by

n—1
Vi(n) =) Tix—i-
k=0

THEOREM 2.11.1. Consider an irreducible Markov chain {X,, : n € No} with an arbitrary
initial distribution o = (a)icE-

1. If the Markov chain is transient or null recurrent, then for all 1 € E it holds that

Vi(n)

n n—oo

(2.11.3) 0 a.s.

2. If the Markov chain is positive recurrent with invariant probability measure A, then for
all v € E 1t holds that

‘/1(”) — >\7, a.Ss.

n n—o0

11
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PROOF. If the chain is transient, then V;(n) stays bounded as a function of n, with proba-
bility 1. This implies (2.11.3). In the sequel, let the chain be recurrent.

For simplicity, we will assume in this proof that the chain starts in state ¢. Denote the time
of the k-th visit of the chain to ¢ by S, that is

Si=min{n e N: X, =i},
Sy =min{n > Sy : X,, =i},
Sz =min{n > S : X,, =i},

and so on. Note that S, S5s,S53,... are a.s. finite by the recurrence of the chain. Let also
&1,&2,&3, ... be the excursion times between the returns to ¢, that is

=051, =05 —251, §=53— 205,
Then, &1, &5,&3, ... are i.i.d. random variables by the Markov property.
By definition of V;(n) we have
S+t FévmaSn<§G+H A+ FEvm)-
Dividing this by V;(n) we get

E+E&E+ ...+ £Vi(n)_1
Vi(n)
Note that by recurrence, V;(n) — oo a.s.

n—oo

n <§1+§2+...+fvi(n)

(2.11.5) Vitn) = Vi(n)

<

CASE 1. Let the chain be null recurrent. It follows that E¢; = oco. By using (2.11.2)
and (2.11.5), we obtain that

S
Vz(n) n—oo

This proves (2.11.3).

CASE 2. Let the chain be positive recurrent. Then, by Theorem 2.10.4, E&; = m; = /\i < 00.
Using (2.11.1) and (2.11.5) we obtain that

N as, 1
Vl(n) n—yoo )\i.
This proves (2.11.4). O

In the next theorem we prove that the n-step transition probabilities converge, as n — oo,
to the invariant probability measure.

THEOREM 2.11.2. Consider an irreducible, aperiodic, positive recurrent Markov chain {X,, :
n € No} with transition matriz P and invariant probability measure X = (\;)ieg. The initial
distribution o = (;)iep may be arbitrary. Then, for all j € E it holds that

lim P[X, = j] = A;.

n—oo
In particular, lim,, pgl) =)\j foralli,j e E.
REMARK 2.11.3. In particular, the theorem applies to any irreducible and aperiodic Markov
chain with finite state space.

12



For the proof we need the following lemma.

LEMMA 2.11.4. Consider an irreducible and aperiodic Markov chain. Then, for every states
i,j7 € E we can find N = N(i,j) € N such that for alln > N we have pgl) > 0.

PROOF. The chain is irreducible, hence we can find r € Ny such that pg) > 0. Also, the

chain is aperiodic, hence we can find Ny € N such that for all £ > Ny we have p(@ > 0. It

follows that for all & > Nj, ’

k+r k T
pz(‘j+ ) > pz(i )pz(j) > 0.

It follows that for every n := k + r such that n > Ny + r, we have p(m

ij

> 0. O
PrROOF OF THEOREM 2.11.2. We use the “coupling method”.

STEP 1. Consider two Markov chains called {X,, : n € No} and {Y,, : n € Ny} such that

(1) X,, is a Markov chain with initial distribution v and transition matrix P.
(2) Y, is a Markov chain with initial distribution A (the invariant probability measure)
and the same transition matrix P.

(3) The process {X,, : n € Ny} is independent of the process {Y,, : n € Ny}.
Note that both Markov chains have the same transition matrix but different initial distribu-
tions. Fix an arbitrary state b € E. Denote by 1" be the time at which the chains meet at
state b:

T=min{n e N: X,, =Y, =b} € NU{+oc0}.

If the chains do not meet at b, we set T = +o0.

STEP 2. We show that P[T" < oo] = 1. Consider the stochastic process W,, = (X,,Y,)
taking values in E' x E. It is a Markov chain on F x F with transition probabilities given by
PGk = Pijpw, (i,k) € ExXE, (j,1)€ ExE.

The initial distribution of Wy is given by
Wik = Qg (k) € E X E.

Since the chains X, and Y,, are aperiodic and irreducible by assumption of the theorem, we
can apply Lemma 2.11.4 to obtain for every i, 7, k,l € E' a number N = N(i, 7, k,[) € N such
that for all n > N we have

Plaky ) = Py Phe > 0.
Thus, the chain W, is irreducible. Also, it is an exercise to check that the probability measure
S‘(i,k) = \; A, is invariant for W,,. Thus, by Theorem 2.10.4, the Markov chain W,, is positive

recurrent and thereby recurrent. Therefore, T" < oo a.s. by Lemma 2.7.11.

STEP 3. Define the stochastic process {Z,, : n € Ny} by

7 X,, ifn<T,
"lY,, ifn>T.

Then, Z,, is a Markov chain with initial distribution « and the same transition matrix P
as X, and Y,,. (The Markov chain Z, is called the coupling of X,, and Y;,). The chain Y,
starts with the invariant probability measure A and hence, at every time n, Y,, is distributed
according to \. Also, the chain Z,, has the same initial distribution o and the same transition
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matrix P as the chain X,,, so that in particular, the random elements X,, and Z, have the
same distribution at every time n. Using these facts, we obtain that

[P[Xo = j] = Al = [P[X = 5] = PIY, = j] = [P[Z, = 5] = PV, = J].
By definition of Z,,, we can rewrite this as
IP[Xn = j] = M| = [P[X, = j,n <T|+PlY, = j,n >T] - P[Y, = j]|
=|PX,=jn<T]—-PY,=jn<T||
<P[T > n].
But we have shown in Step 2 that P[T" = oo] = 0, hence lim,_,o, P[T" > n] = 0. It follows

that

n—oo

thus establishing the theorem. 0
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