
CHAPTER 3

Renewal processes and Poisson process

3.1. Definition of renewal processes and limit theorems

Let ξ1, ξ2, . . . be independent and identically distributed random variables with P[ξk > 0] = 1.
Define their partial sums

Sn = ξ1 + . . .+ ξn, n ∈ N, S0 = 0.

Note that the sequence S1, S2, . . . is increasing. We call S1, S2, . . . the renewal times (or
simply renewals) and ξ1, ξ2, . . . the interrenewal times.

Definition 3.1.1. The process {Nt : t ≥ 0} given by

Nt =
∞∑
n=1

1{Sn≤t}

is called the renewal process.

Theorem 3.1.2 (Law of large numbers for renewal processes). Let m := Eξ1 ∈ (0,∞), then

Nt

t

a.s.→ 1

m
, as t→∞.

Idea of proof. By the definition of Nt we have the inequality

SNt ≤ t ≤ SNt+1.

Dividing this by Nt we obtain

(3.1.1)
SNt

Nt

≤ t

Nt

≤ SNt+1

Nt + 1
· Nt + 1

Nt

.

We have Nt →∞ as t→∞ since there are infinitely many renewals and thus, the function
Nt (which is non-decreasing by definition) cannot stay bounded. By the law of large numbers,
both sides of (3.1.1) a.s. converge to m as t→∞. By the sandwich lemma, we have

t

Nt

a.s.→ m, as t→∞.

This proves the claim. �

Theorem 3.1.3 (Central limit theorem for renewal processes). Let m := Eξ1 ∈ (0,∞) and
σ2 := Var ξ1 ∈ (0,∞). Then,

Nt − t
m

σ
m3/2

√
t

d→ N(0, 1), as t→∞.
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Idea of proof. The usual central limit theorem for Sn = ξ1 + . . .+ ξn states that

Sn − nm
σ
√
n

d−→
n→∞

N(0, 1).

Denoting by N a standard normal random variable we can write this as follows: For large
n, we have an approximate equality of distributions

Sn ≈ nm+ σ
√
nN.

This means that the interval [0, nm + σ
√
nN ] contains approximately n renewals. By the

law of large numbers for renewal processes, see Theorem 3.1.2, it seems plausible that the
interval [nm, nm + σ

√
nN ] contains approximately σ

√
nN/m renewals. It follows that the

interval [0, nm] contains approximately n − σ
√
nN/m renewals. Let us now introduce the

variable t = nm. Then, n → ∞ is equivalent to t → ∞. Consequently, for large t in the
interval [0, t] we have approximately

t

m
− σ
√
t

m3/2
N

renewals. By definition, this number of renewals is Nt. This means that

Nt − t
m

σ
m3/2

√
t
≈ N,

for large t. �

Definition 3.1.4. The renewal function H(t) is the expected number of renewals in the
interval [0, t]:

H(t) = ENt, t ≥ 0.

Remark 3.1.5. Denoting by F ∗k(t) = P[Sk ≤ t] the distribution function of Sk, we have the
formula

H(t) = ENt = E
∞∑
k=1

1Sk≤t =
∞∑
k=1

E1Sk≤t =
∞∑
k=1

P[Sk ≤ t] =
∞∑
k=1

F ∗k(t).

Theorem 3.1.6 (Weak renewal theorem). Let m := Eξ1 ∈ (0,∞). It holds that

lim
t→∞

H(t)

t
=

1

m
.

Idea of proof. By Theorem 3.1.2, Nt

t

a.s.→ 1
m

as t→∞. In order to obtain Theorem 3.1.6,
we have to take expectation of both sides and interchange the limit and the expectation.
The rigorous justification will be omitted. �

Definition 3.1.7. The random variables ξk are called lattice if there are a > 0, b ∈ R so
that ξk with probability 1 takes values in the set aZ + b, that is

P[ξk ∈ {an+ b : n ∈ Z}] = 1.

Theorem 3.1.8 (Blackwell renewal theorem). Assume that ξ1 is non-lattice and let m :=
Eξ1 ∈ (0,∞). Then, for all s > 0,

lim
t→∞

(H(t+ s)−H(t)) =
s

m
.

Proof. Omitted �
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3.2. Stationary processes and processes with stationary increments

Consider a stochastic process {Xt, t ≥ 0}. For concreteness, we have chosen the index
set T to be [0,∞), but similar definitions apply to stochastic processes with index sets
T = R,N,N0,Z.

Definition 3.2.1. The process {Xt : t ≥ 0} is called stationary if for all n ∈ N, 0 ≤ t1 ≤
. . . ≤ tn and all h ≥ 0,

(Xt1 , . . . , Xtn)
d
= (Xt1+h, . . . , Xtn+h).

Example 3.2.2. Let {Xt : t ∈ N0} be independent and identically distributed random
variables. We claim that the process X is stationary. Let µ be the probability distribution
of Xt, that is µ(A) = P[Xt ∈ A], for all Borel sets A ⊂ R. Then, for all Borel sets
A1, . . . , An ⊂ R,

P[Xt1+h ∈ A1, . . . , Xtn+h ∈ An] = µ(A1) · . . . · µ(An) = P[Xt1 ∈ A1, . . . , Xtn ∈ An].

This proves that X is stationary.

Example 3.2.3. Let {Xt : t ∈ N0} be a Markov chain starting with an invariant probability
distribution λ. Then, Xt is stationary.

Proof. Let us first compute the joint distribution of (Xh, Xh+1, . . . , Xh+m). For any states
i0, . . . , im ∈ E we have

P[Xh = i0, Xh+1 = i1, . . . , Xh+m = im] = P[Xh = i0] · pi0i1 · . . . · pim−1im .

Since the initial measure λ of the Markov chain is invariant, we have P[Xh = i0] = λi0 . We
therefore obtain that

P[Xh = i0, Xh+1 = i1, . . . , Xh+m = im] = λi0pi0i1 · . . . · pim−1im .

This expression does not depend on h thus showing that

(Xh, Xh+1, . . . , Xh+m)
d
= (X0, X1, . . . , Xm).

If we drop some components in the first vector and the corresponding components in the
second vector, the vectors formed by the remaining components still have the same distri-
bution. In this way we can prove that (Xt1+h, Xt2+h, . . . , Xtn+h) has the same distribution
as (Xt1 , Xt2 , . . . , Xtn). �

Definition 3.2.4. The process {Xt : t ≥ 0} has stationary increments if for all n ∈ N,
h ≥ 0 and 0 ≤ t0 ≤ t1 ≤ . . . ≤ tm, we have the following equality in distribution:

(Xt1+h−Xt0+h, Xt2+h−Xt1+h, . . . , Xtn+h−Xtn−1+h)
d
= (Xt1−Xt0 , Xt2−Xt1 , . . . , Xtn−Xtn−1).

Definition 3.2.5. The process {Xt : t ≥ 0} has independent increments if for all n ∈ N and
0 ≤ t0 ≤ t1 ≤ . . . ≤ tn, the random variables

Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent.

Later we will consider two examples of processes which have both stationary and independent
increments: the Poisson Process and the Brownian Motion.
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3.3. Poisson process

The Poisson process is a special case of renewal process in which the interrenewal times
are exponentially distributed. Namely, let ξ1, ξ2, . . . be independent identically distributed
random variables having exponential distribution with parameter λ > 0, that is

P[ξk ≤ x] = 1− e−λx, x ≥ 0.

Define the renewal times Sn by

Sn = ξ1 + . . .+ ξn, n ∈ N, S0 = 0.

It’s an exercise to show (for example, by induction) that the density of Sn is given by

fSn(x) =
λnxn−1

(n− 1)!
e−λx, x ≥ 0.

The distribution of Sn is called the Erlang distribution with parameters n and λ. It is a
particular case of the Gamma distribution.

Definition 3.3.1. The Poisson process with intensity λ > 0 is a process {Nt : t ≥ 0} defined
by

Nt =
∞∑
k=1

1{Sk≤t}.

Note that Nt counts the number of renewals in the interval [0, t]. The next theorem explains
why the Poisson process was named after Poisson.

Theorem 3.3.2. For all t ≥ 0 it holds that Nt ∼ Poi(λt).

Proof. We need to prove that for all n ∈ N0,

P[Nt = n] =
(λt)n

n!
e−λt.

Step 1. Let first n = 0. Then,

P[Nt = 0] = P[ξ1 > t] = e−λt,

thus establishing the required formula for n = 0.

Step 2. Let n ∈ N. We compute the probability P[Nt = n]. By definition of Nt we have

P[Nt = n] = P[Nt ≥ n]− P[Nt ≥ n+ 1] = P[Sn ≤ t]− P[Sn+1 ≤ t].

Using the formula for the density of Sn we obtain that

P[Nt = n] =

∫ t

0

fSn(x)dx−
∫ t

0

fSn+1(x)dx =

∫ t

0

(
λnxn−1

(n− 1)!
e−λx − λn+1xn

n!
e−λx

)
dx.

The expression under the sign of the integral is equal to

d

dx

(
(λx)n

n!
e−λx

)
.

Thus, we can compute the integral as follows:

P[Nt = n] =

(
(λx)n

n!
e−λx

)∣∣∣∣x=t
x=0

=
(λt)n

n!
e−λt,
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where the last step holds since we assumed that n 6= 0. �

Remark 3.3.3. From the above theorem it follows that the renewal function of the Poisson
process is given by H(t) = ENt = λt.

For the next theorem let U1, . . . , Un be independent random variables which are uniformly dis-
tributed on the interval [0, t]. Denote by U(1) ≤ . . . ≤ U(n) the order statistics of U1, . . . , Un.

Theorem 3.3.4. The conditional distribution of the random vector (S1, . . . , Sn) given that
{Nt = n} coincides with the distribution of (U(1), . . . , U(n)):

(S1, . . . , Sn)|{Nt = n} d
= (U(1), . . . , U(n)).

Proof. We will compute the densities of both vectors and show these densities are equal.

Step 1. The joint density of the random variables (ξ1, . . . , ξn+1) has (by independence) the
product form

fξ1,...,ξn+1(u1, . . . , un+1) =
n+1∏
k=1

λe−λuk , u1, . . . , un+1 > 0.

Step 2. We compute the joint density of (S1, . . . , Sn+1). Consider a linear transformation
A defined by

A(u1, u2, . . . , un+1) = (u1, u1 + u2, . . . , u1 + . . .+ un+1).

The random variables (S1, . . . , Sn+1) can be obtained by applying the linear transformation
A to the variables (ξ1, . . . , ξn+1):

(S1, . . . , Sn+1) = A(ξ1, . . . , ξn+1).

The determinant of the transformation A is 1 since the matrix of this transformation is
triangular with 1’s on the diagonal. By the density transformation theorem, the density of
(S1, . . . , Sn+1) is given by

fS1,...,Sn+1(t1, . . . , tn+1) =
n+1∏
k=1

λe−λ(tk−tk−1) = λn+1e−λtn+1 ,

where 0 = t0 < t1 < . . . < tn+1. Otherwise, the density vanishes. Note that the formula for
the density depends only on tn+1 and does not depend on t1, . . . , tn.

Step 3. We compute the conditional density of (S1, . . . , Sn) given that Nt = n. Let
0 < t1 < . . . < tn < t. Intuitively, the conditional density of (S1, . . . , Sn) given that Nt = n
is given by

fS1,...,Sn(t1, . . . , tn|Nt = n) = lim
ε↓0

P[t1 < S1 < t1 + ε, . . . , tn < S1 < tn + ε|Nt = n]

εn

= lim
ε↓0

P[t1 < S1 < t1 + ε, . . . , tn < Sn < tn + ε,Nt = n]

εnP[Nt = n]

= lim
ε↓0

P[t1 < S1 < t1 + ε, . . . , tn < Sn < tn + ε, Sn+1 > t]

εnP[Nt = n]
.
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Using the formula for the joint density of (S1, . . . , Sn+1) and noting that this density does
not depend on t1, . . . , tn, we obtain that

P[t1 < S1 < t1 + ε, . . . , tn < Sn < tn + ε, Sn+1 > t]

εnP[Nt = n]
=

∫∞
t
λn+1e−λtn+1dtn+1

P[Nt = n]
=
n!

tn
,

where in the last step we used that Nt has Poisson distribution with parameter λt. So, we
have

fS1,...,Sn(t1, . . . , tn|Nt = n) =

{
n!
tn
, for 0 < t1 < . . . < tn < t,

0, otherwise.

Step 4. The joint density of the order statistics (U(1), . . . , U(n)) is known (Stochastik I) to
be given by

fU(1),...,U(n)
(t1, . . . , tn) =

{
n!
tn
, for 0 < t1 < . . . < tn < t,

0, otherwise.

This coincides with the conditional density of (S1, . . . , Sn) given that Nt = n, thus proving
the theorem. �

Theorem 3.3.5. The Poisson process {Nt : t ≥ 0} has independent increments and these
increments have Poisson distribution, namely for all t, s ≥ 0 we have

Nt+s −Nt ∼ Poi(λs).

Proof. Take some points 0 = t0 ≤ t1 ≤ . . . ≤ tn. We determine the distribution of the
random vector

(Nt1 , Nt2 −Nt1 , . . . , Ntn −Ntn−1).

Take some x1, . . . , xn ∈ N0. We compute the probability

P := P[Nt1 = x1, Nt2 −Nt1 = x2, . . . , Ntn −Ntn−1 = xn].

Let x = x1 + . . .+ xn. By definition of conditional probability,

P = P[Nt1 = x1, Nt2 −Nt1 = x2, . . . , Ntn −Ntn−1 = xn|Ntn = x] · P[Ntn = x].

Given that Ntn = x, the Poisson process has x renewals in the interval [0, tn] and by The-
orem 3.3.4 these renewals have the same distribution as x independent random variables
which have uniform distribution on the interval [0, tn], after arranging them in an increasing
order. Hence, in order to compute the conditional probability we can use the multinomial
distribution:

P =

(
x!

x1! . . . xn!

n∏
k=1

(tk − tk−1)xk
txkn

)
· (λtn)x

x!
e−λtn .

After making transformations we arrive at

P =
n∏
k=1

(
(λ(tk − tk−1))xk

xk!
e−λ(tk−tk−1)

)
.

From this formula we see that the random variables Nt1 , Nt2 − Nt1 ,. . . , Ntn − Ntn−1 are
independent and that they are Poisson distributed, namely

Ntk −Ntk−1
∼ Poi(λ(tk − tk−1)).

This proves the theorem. �
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Theorem 3.3.6. The Poisson process has stationary increments.

Proof. Take some h ≥ 0, and some 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn. We have to show that the
distribution of the random vector

(Nt1+h −Nt0+h, Nt2+h −Nt1+h, . . . , Ntn+h −Ntn−1+h)

does not depend on h. However, we know from Theorem 3.3.5 that the components of this
vector are independent and that

Ntk+h −Ntk−1+h ∼ Poi(λ(tk − tk−1)),
which does not depend on h. �

3.4. Lattice renewal processes

In this section we show how the theory of Markov chains can be used to obtain some proper-
ties of renewal processes whose interrenewal times are integer. Let ξ1, ξ2, . . . be independent
and identically distributed random variables with values in N = {1, 2, . . .}. Let us write

rn := P[ξ1 = n], n ∈ N.
We will make the aperiodicity assumption:

(3.4.1) gcd{n ∈ N : rn 6= 0} = 1.

For example, this condition excludes renewal processes for which the ξk’s take only even
values. Define the renewal times Sn = ξ1 + . . .+ ξn, n ∈ N.

Theorem 3.4.1. Let m := Eξ1 be finite. Then,

lim
n→∞

P[∃k ∈ N : Sk = n] =
1

m
.

So, the probability that there is a renewal at time n converges, as n→∞, to 1
m

.

Proof. Step 1. Consider a Markov chain defined as follows: Let

Xn = inf{t ≥ n : t is renewal time} − n.
The random variable Xn (which is called the forward renewal time) represents the length of
the time interval between n and the first renewal following n. (Please think why Xn has the
Markov property). Note that at renewal times we have Xn = 0.
The state space of this chain is

E = {0, 1, . . . ,M − 1}, if M <∞,
E = {0, 1, 2, . . .}, if M =∞,

where M is the maximal value which the ξk’s can attain:

M = sup{i ∈ N : ri > 0} ∈ N ∪ {∞}.
The transition probabilities of this Markov chain are given by

pi,i−1 = 1 for i = 1, 2, . . . ,M − 1,

p0,i = ri+1 for i = 1, . . . ,M − 1.
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Step 2. We prove that the chain is irreducible. Starting at any state i ∈ E we can reach
state 0 by following the path

i→ i− 1→ i− 2→ . . .→ 0.

So, every state leads to state 0. Let us prove that conversely, state 0 leads to every state. Let
first M be finite. Starting in state 0 we can reach any state i ∈ E with positive probability
by following the path

0→M − 1→M − 2→ . . .→ i.

If M is infinite, then for every i ∈ E we can find some K > i such that rK > 0. Starting at
state 0 we can reach state i by following the path

0→ K − 1→ K − 2→ . . .→ i.

We have shown that every state leads to 0 and 0 leads to every state, so the chain is
irreducible.

Step 3. We prove that the chain is aperiodic. By irreducibility, we need to show that state
0 is aperiodic. For every i such that ri 6= 0 we can go from 0 to 0 in i steps by following the
path

0→ i− 1→ i− 2→ . . .→ 0.

By (3.4.1) the greatest common divisor of all such i’s is 1, so the period of state 0 is 1 and
it is aperiodic.

Step 4. We claim that the unique invariant probability measure of this Markov chain is
given by

λi =
ri+1 + ri+2 + . . .

m
, i ∈ E.

Indeed, the equations for the invariant probability measure look as follows:

λj =
M−1∑
i=0

pijλi = p0,jλ0 + pj+1,jλj+1 = rj+1λ0 + λj+1.

It follows that

λj − λj+1 = rj+1λ0.

We obtain the following equations:

λ0 − λ1 = r1λ0,

λ1 − λ2 = r2λ0,

λ2 − λ3 = r3λ0,

. . .

By adding all these equations starting with the (j + 1)-st one, we obtain that

λj = (rj+1 + rj+2 + . . .)λ0.

It remains to compute λ0. By adding the equations for all j = 0, 1, . . . ,M − 1 we obtain
that

1 = λ0 + λ1 + . . . = (r1 + 2r2 + 3r3 + . . .)λ0 = mλ0.
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It follows that

λ0 =
1

m
.

This proves the formula for the invariant probability distribution.

Step 5. Our chain is thus irreducible, aperiodic, and positive recurrent. By the theorem on
the convergence to the invariant probability distribution we have

lim
n→∞

P[Xn = 0] = λ0 =
1

m
.

Recalling that we have Xn = 0 if and only if n is a renewal time, we obtain that

lim
n→∞

P[∃k ∈ N : Sn = k] = lim
n→∞

P[Xn = 0] =
1

m
,

thus proving the claim of the theorem. �
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