
CHAPTER 4

Brownian motion

Brownian motion is one of the most important and interesting stochastic processes. The
history of the Brownian motion began in 1827 when the botanist Robert Brown looked
through a microscope at small particles (pollen grains) suspended in water. He noted that
the particles were moving chaotically. The mechanism causing this chaotic motion can be
explained as follows. The particle collides with water molecules. Any collisions results in
a displacement of the particle in some direction. The number of collisions is large, but the
impact of any collision is small. To compute the total displacement of the particle caused by
all collisions we have to add a very large number of very small random variables (impacts of
individual collisions), like in the central limit theorem.

A similar situation appears when we try to model a price of an asset. The price, considered
as a function of time, is subject to random changes due to the influence of some random
events. If we assume that any random event has a very small impact on the price and that
the number of events is very large, we are in the same situation when modelling the Brownian
particle. This is why the Brownian motion is one of the main building blocks for stochastic
processes used in financial mathematics.

In this chapter we will define a stochastic process {B(t) : t ≥ 0} (called the Brownian motion
or the Wiener process) which is a mathematical model for the experiment described above.

4.1. Discrete approximation to the Brownian motion

Let us now try to model the motion of a small pollen grain particle in a fluid mathematically.
First of all, we will model the motion of the particle in one dimension (that is, on the real
line), because to model the motion in three dimensions we can model the three coordinates
of the particle separately. So, we want to model a particle which moves on the real line due
to random impacts which can shift the particle to the left or to the right. Assume without
restriction of generality that at time 0 the particle starts at position 0. Denote by N the
parameter describing the number of collisions of the particle with water molecules per unit
time. This parameter should be very large. Assume that any collision causes a displacement
of the particle by a distance δ > 0 (which should be very small) either to the left or to the
right, both possibilities having the same probability 1/2. A sample path of such particle (the
coordinate of the particle as a function of time) is shown on Figure 1, left. Note that in this
model we ignore the inertia of the particle. That is, the impacts are assumed to change the
position of the particle, but we don’t try to model the speed of the particle. This approach
is justified if the fluid has large viscosity.
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Figure 1. Left: A sample path of the process BN,δ. Right: A sample path
of the Brownian motion

A more precise description of the model is as follows. Let ξ1, ξ2, . . . be independent and
identically distributed random variables with

P[ξi = +1] = P[ξi = −1] =
1

2
.

Define a stochastic process {BN,δ(t) : t ≥ 0} describing the position of the particle at time t
as follows. The position of the particle at time t = k

N
, where k ∈ N0, is given by the sum of

the first k impacts:

BN,δ

(
k

N

)
= δ · (ξ1 + . . .+ ξk).

For t ∈ ( k
N
, k+1
N

) we can define BN,δ(t) by linear interpolation, as in Figure 1.

It is clear from the definition that the process {BN,δ(t) : t ≥ 0} has the following two prop-
erties:

(1) Bn,δ(0) = 0.
(2) For every integer numbers 0 ≤ k1 ≤ k2 ≤ . . . ≤ kn, the increments

BN,δ

(
k1

N

)
, BN,δ

(
k2

N

)
−BN,δ

(
k1

N

)
, . . . , BN,δ

(
kn
N

)
−BN,δ

(
kn−1

N

)
are independent.

Let us now determine the approximate distribution of these increments. First of all, let us
look at the position of the particle at time 1:

BN,δ(1) = δ · (ξ1 + . . .+ ξN).

This position is a random variable and its expectation and variance are given by

EBN,δ(1) = 0, VarBN,δ(1) = δ2N.

Now, we want to see what happens in the scaling limit as N →∞ (meaning that the number
of collisions of particle with water molecules is very large) and, at the same time, δ → 0
(meaning that the displacement caused by any collision is very small); see Figure 1, right. It
is natural to require that VarBN,δ(1) should stay constant (independent of N and δ) because
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otherwise we will not obtain any meaningful limit. We will choose this constant to be equal
to 1 which leads to the requirement

δ =
1√
N
.

If this relation holds, then by the central limit theorem we obtain that

BN,δ(1) =
ξ1 + . . .+ ξN√

N

d−→
N→∞

N(0, 1).

Similarly, for more general increments one obtains the following property:

BN,δ(t+ h)−BN,δ(t)
d−→

N→∞
N(0, h).

So, in the limit, the increments of our process should have the normal distribution.

4.2. Definition of the Brownian motion

The considerations of the preceding section make the following definition natural.

Definition 4.2.1. A stochastic process B = {B(t) : t ≥ 0} defined on a probability space
(Ω,F ,P) is called Brownian motion or Wiener process if

(1) B(0) = 0.
(2) B has independent increments, that is for all 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn the random

variables
B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1)

are independent.
(3) B has normal increments, that is for all t ≥ 0 and h > 0,

B(t+ h)−B(t) ∼ N(0, h).

(4) B has continuous sample paths, that is for all ω ∈ Ω, the function t 7→ B(t;ω) is
continuous in t.

First of all, one has to ask whether a process satisfying these four requirements exists.
This question is non-trivial and will be positively answered in Section 4.5 below. Here
we sketch an idea of a possible approach to proving existence. The first three properties
in the definition of the Brownian motion deal with the finite dimensional distributions of
the process B only. It can be shown using Kolmogorov’s existence theorem that a process
with finite-dimensional distributions satisfying coonditions 1, 2, 3 exists. To be able to
apply Kolmogorov’s existence theorem one has to verify that the family of finite-dimensional
distributions given by conditions 1, 2, 3 is consistent, that is that these conditions do not
contradict each other. Essentially, this verification boils down to the following argument. If
we know that for some 0 ≤ t1 ≤ t2 ≤ t3 the increments

B(t2)−B(t1) ∼ N(0, t2 − t1) and B(t3)−B(t2) ∼ N(0, t3 − t2)

are independent, then by the convolution property of the normal distribution, we must have

B(t3)−B(t1) = (B(t3)−B(t2)) + (B(t2)−B(t1)) ∼ N(0, (t3− t2) + (t2− t1)) = N(0, t3− t1).

Since this is in agreement with condition 3, there seems to be no contradiction between the
conditions 1, 2, 3. Thus, we can apply Kolmogorov’s existence theorem to construct a process
satisfying conditions 1, 2, 3. However, Kolmogorov’s theorem does not guarantee that the
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resulting process satisfies condition 4, so that an additional modification of the construction
is needed to make condition 4 satisfied. This is why we choose a different approach to prove
the existence of a process satisfying conditions 1, 2, 3, 4; see Section 4.5.

The following example shows that it is not possible to drop condition 4 from the definition
of the Brownian motion.

Example 4.2.2. Assume that we have a process {B(t) : t ≥ 0} satisfying conditions 1, 2,
3, 4. We will show how, by modifying B, we can construct a process B̃ which satisfies
properties 1, 2, 3, but violates property 4. this proves that property 4 is not a corollary of
properties 1, 2, 3. Take a random variable U ∼ U[0, 1] independent of the process B. Define
a new process {B̃(t) : t ≥ 0} by

B̃(t) =

{
B(t), if t 6= U,

0, if t = U.

This process has the same finite-dimensional distributions as B. Indeed, the vectors

(B(t1), . . . , B(tn)) and (B̃(t1), . . . , B̃(tn))

are equal unless U ∈ {t1, . . . , tn}, but this event has probability 0. So, both random vectors
are a.s. equal and hence, have the same distribution. This implies that the process {B̃(t) : t ≥
0} also satisfies conditions 1, 2, 3. However, it does not satisfy condition 4 because the
probability that its sample path is continuous is 0. Namely, we have

lim
t→U,t 6=U

B̃(t) = lim
t→U,t 6=U

B(t) = B(U).

This limit is a.s. different from B̃(U) = 0 because

P[B(U) = 0] =

∫ 1

0

P[B(u) = 0]du =

∫ 1

0

0du = 0.

Thus, the probability that the sample path of B̃ has a discontinuity at U is 1.

4.3. Multivariate Gaussian distributions and Gaussian processes

It follows from the definition of the Brownian motion that its one-dimensional distributions
are Gaussian, namely

B(t) ∼ N(0, t).

What about the multidimensional distributions of the Brownian motion? It turns out that
these distributions are so-called multivariate Gaussian distributions. The aim of this section
is to define the multivariate Gaussian distributions.

By definition, a random variable X has a (univariate) Gaussian distribution with parameters
µ ∈ R and σ2 > 0 (notation: X ∼ N(µ, σ2)) if the density of X has the form

fX(t) =
1√
2πσ

e−
(t−µ)2

2σ2 , t ∈ R.

It is convenient to extend this definition to the case µ ∈ R, σ2 = 0 by declaring X ∼ N(µ, 0)
if X = µ almost surely. The characteristic function of a Gaussian random variable X ∼
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N(µ, σ2) has the form

ϕX(s) = eisµ−
1
2
σ2s2 , s ∈ R.

The random variable X is called standard Gaussian if it is Gaussian with µ = 0 and σ2 = 1,
that is if the density of X is given by

fX(t) =
1√
2π
e−

t2

2 , t ∈ R.

We will now extend the definition of the Gaussian distribution from random variables to
random vectors. Let us start with the definition of a standard Gaussian random vector.

Definition 4.3.1. Fix dimension d ∈ N. A random vector X = (X1, . . . , Xd)
T is called

d-dimensional standard Gaussian if

(1) X1, . . . , Xd ∼ N(0, 1) are standard Gaussian random variables and
(2) X1, . . . , Xd are independent random variables.

By independence, the joint density of a d-dimensional standard Gaussian vector X is given
by

fX1,...,Xd(t1, . . . , td) =
1

(
√

2π)d
e−

1
2

(t21+...+t2d) =
1

(
√

2π)d
e−

1
2
〈t,t〉,

where t = (t1, . . . , td) ∈ Rd; see Figure 2.

Figure 2. The 2-dimensional standard Gaussian density.

The expectation vector of X is equal to zero (because all components Xi have zero mean by
definition). The covariance matrix of X is the d×d-identity matrix (because the variance of
any component Xi is 1 and different components are independent and hence uncorrelated):

EX =


0
0
...
0

 , CovX =


1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1

 .
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The next lemma states that the standard Gaussian distribution remains unchanged under
rotations of the space around the origin.

Lemma 4.3.2. If X is d-dimensional standard Gaussian random vector and A an orthogonal
d× d-matrix, then the random vector AX is also standard Gaussian.

Proof. Recall that the orthogonality of the matrix A means that AAT = ATA = Id. It
follows that detA = ±1 and in particular, A is invertible. By the transformation formula,
the density of the random vector AX is

fAX(t) = fX(A−1t)| det(A−1)| = fX(A−1t) =
1

(
√

2π)d
e−

1
2
〈A−1t,A−1t〉 =

1

(
√

2π)d
e−

1
2
〈t,t〉 = fX(t),

where we used that 〈A−1t, A−1t〉 = 〈(A−1)TA−1t, t〉 = 〈(AAT )−1t, t〉 = 〈t, t〉. �

Then next lemma will be used in the construction of the Brownian motion in Section 4.5.

Lemma 4.3.3. Let X1 and X2 be independent Gaussian random variables with mean 0 and
VarX1 = VarX2 = σ2. Then, the random variables

Y1 =
X1 +X2√

2
and Y2 =

X1 −X2√
2

are also independent and Gaussian with mean zero and variance σ2.

Proof. By definition, the random vector (X1/σ,X2/σ)T is 2-dimensional standard Gauss-
ian. By Lemma 4.3.2, we obtain that the random vector(

Y1
σ
Y2
σ

)
=

( 1√
2

1√
2

1√
2
− 1√

2

)(
X1

σ
X2

σ

)
is also two-dimensional standard Gaussian, because the matrix in the above equality is
orthogonal. It follows that the random vector (Y1/σ, Y2/σ)T is also 2-dimensional standard
Gaussian. Hence, the random variables Y1/σ and Y2/σ are independent and standard Gauss-
ian. �

Now we are going to define the general (non-standard) multivariate Gaussian distribution.
Essentially, we declare a random vector to be multivariate Gaussian if this random vector
can be represented as an affine transform of some standard Gaussian random vector.

Definition 4.3.4. A random vector Y = (Y1, . . . , Yd)
T is called d-dimensional Gaussian if

there is some m ∈ N, some m-dimensional standard Gaussian vector X = (X1, . . . , Xm)T ,
some d×m-matrix A and some µ ∈ Rd so that

Y
d
= AX + µ.

Exercise 4.3.5. Show that the expectation and the covariance matrix of Y are given by

EY = µ, Cov Y = AAT .

Notation 4.3.6. We usually denote the covariance matrix by Σ := Cov Y = AAT (not by
Σ2), and write Y ∼ Nd(µ,Σ). Note that the parameter µ takes values in Rd, whereas the
covariance matrix Σ can be any symmetric, positive semidefinite matrix.
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Figure 3. A two-dimensional (non-standard) Gaussian density

Any affine transformation of a Gaussian vector is again a Gaussian vector:

Lemma 4.3.7. If Y ∼ Nd(µ,Σ) is a d-dimensional Gaussian vector, A′ is a d′ × d-matrix
and µ′ ∈ Rd′, then

A′Y + µ′ ∼ Nd′(A
′µ+ µ′, A′ΣA′T )

Proof. By definition, we can represent Y in the form Y = AX + µ, where AAT = Σ and
the vector X is m-dimensional standard Gaussian. The d′-dimensional random vector

A′Y + µ′ = A′(AX + µ) + µ′ = (A′A)X + (A′µ+ µ′)

is also an affine transform of X and hence, multivariate Gaussian. The parameters of A′Y +µ′

are given by

E[A′Y + µ′] = A′µ+ µ′, Cov(A′Y + µ′) = (A′A)(A′A)T = A′AATA′T = A′ΣA′T .

�

Remark 4.3.8. In particular, any component Yi of a Gaussian random vector (Y1, . . . , Yd)
T

is a Gaussian random variable. The converse is not true: If Y1, . . . , Yd are Gaussian ran-
dom variables, then it’s in general not true that (Y1, . . . , Yd)

T is a Gaussian random vector.
However, if we additionally require that Y1, . . . , Yd should be independent, the statement
becomes true.

Lemma 4.3.9. Let Y1, . . . , Yd be independent Gaussian random variables. Then, (Y1, . . . , Yd)
T

is a Gaussian random vector.

Proof. Let Yi ∼ N(µi, σ
2
i ). Then, we can write Yi = σiXi + µi, where Xi are standard

normal and independent. So, the random vector (Y1, . . . , Yd)
T is an affine transformation

of some standard Gaussian random vector (X1, . . . , Xd)
T and hence, itself d-dimensional

Gaussian. �
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Lemma 4.3.10. The characteristic function of a d-dimensional Gaussian random vector Y ∼
Nd(µ,Σ) is given by

ϕY (t) := Eei〈t,Y 〉 = ei〈µ,t〉−
1
2
〈t,Σt〉, t ∈ Rd.

Proof. Fix t = (t1, . . . , td) ∈ Rd. The mapping y 7→ 〈t, y〉 is a linear map from Rd to R
whose matrix is given by (t1, . . . , td). By Lemma 4.3.7, the random variable Z := 〈t, Y 〉 is
Gaussian with expectation 〈µ, t〉 and variance 〈t,Σt〉. We have

ϕY (t) = Eei〈t,Y 〉 = EeiZ = ϕZ(1) = ei〈µ,t〉−
1
2
〈t,Σt〉.

where in the last step we used the known formula for the characteristic function of the
Gaussian random variable Z. �

Exercise 4.3.11. Let X1, X2, . . . be a sequence of d-dimensional Gaussian vectors whose
expectations µn converge to µ and covariance matrices Σn converge to Σ. Show that Xn

converges in distribution to Nd(µ,Σ).

What is the density of a multivariate Gaussian distribution Nd(µ,Σ)? First of all, this
density does not always exist, as the following example shows.

Example 4.3.12. Let us construct an example of a two-dimensional Gaussian random vector
which has no density. Let X be a standard normal random variable. The two-dimensional
vector (X,X)T is Gaussian because it can be represented as a linear transformation AX,
where

A : x 7→
(
x
x

)
.

However, the random vector (X,X)T has no density (with respect to the two-dimensional
Lebesgue measure) because X takes values in the line {(x, x) : x ∈ R} which has Lebesgue
measure 0. Note that the covariance matrix of (X,X)T is equal to(

1 1
1 1

)
.

This matrix is degenerate, meaning that its determinant is 0.

The next lemma gives a formula for the density of the multivariate Gaussian distribution in
the case when Σ a non-degenerate matrix.

Lemma 4.3.13. The density of a d-dimensional Gaussian random vector Y ∼ Nd(µ,Σ),
where Σ is a non-degenerate matrix, is given by

fY (t) =
1

(
√

2π)d
√

det Σ
e−

1
2
〈t−µ,Σ−1(t−µ)〉.

If the matrix Σ is degenerate, then Y has no density with respect to the Lebesgue measure
on Rd.

Proof. Since the matrix Σ is positive semidefinite, we can write Σ = Σ1/2 · Σ1/2 for some
symmetric matrix Σ1/2. We have the representation

Y
d
= Σ1/2X + µ,
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where X is a standard Gaussian vector on Rd. Consider the transformation

T : Rd → Rd, x 7→ Σ1/2x+ µ.

Then, T (X)
d
= Y .

1. If Σ is degenerate, then the image of T is a subspace of Rd having dimension strictly
smaller than d. It follows that the image of T has Lebesgue measure 0. So, Y takes values
in a subset of Rd which has Lebesgue measure 0. It follows that Y has no density.

2. If we assume that det Σ 6= 0, we have the inverse transformation

T−1(y) = Σ−1/2(y − µ).

The density of X is

fX(x) =
1

(
√

2π)d
e−

1
2
〈x,x〉, x ∈ Rd.

Now we can compute the density of Y by using the transformation of density theorem:

fY (y) = fX(T−1(y))| detT−1| = 1

(
√

2π)d
√

det Σ
e−

1
2
〈Σ−1/2(y−µ),Σ−1/2(y−µ)〉, y ∈ Rd.

Using the symmetry of the matrix Σ1/2, we obtain

fY (y) =
1

(
√

2π)d
√

det Σ
e−

1
2
〈(y−µ),Σ−1(y−µ)〉, y ∈ Rd.

which is the required formula. �

For general random vectors it is known that the independence of components implies their
uncorrelatedness, but the converse is, generally speaking, not true. It is an important prop-
erty of the multivariate Gaussian distribution that for this distribution, the independence
and the uncorrelatedness of the components are equivalent.

Theorem 4.3.14. Let Y = (Y1, . . . , Yd)
T be a random vector with multivariate Gaussian

distribution. Then, the following properties are equivalent:

(1) The random variables Y1, . . . , Yd are independent.
(2) Cov(Yi, Yj) = 0 for all i 6= j.

Proof. It is known that (1) implies (2) even without the multivariate Gaussian assumption.
We prove that (2) implies (1). Assume that Cov(Yi, Yj) = 0 for all i 6= j. The components
Yk are Gaussian, say Yk ∼ N(µk, σ

2
k). By the uncorrelatedness, the covariance matrix of Y

is a diagonal matrix, whereas the expectation vector of Y may be, in general, arbitrary:

Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
...

...
0 0 . . . σ2

d

 , µ =


µ1

µ2
...
µd

 .

The characteristic function of Y is given by

ϕY1,...,Yd(t1, . . . , td) = ei〈µ,t〉−
1
2
〈t,Σt〉 = ei

∑d
k=1 µktk−

1
2

∑d
k=1 σ

2
kt

2
k =

d∏
k=1

eiµktk−
1
2
σ2
kt

2
k =

d∏
k=1

ϕYk(tk).
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This implies that Y1, . . . , Yd are independent. �

Recall that two random vectors X = (X1, . . . , Xn)T and Y = (Y1, . . . , Ym)T defined on
a common probability space are called independent if for every Borel sets A ⊂ Rn and
B ⊂ Rm we have

P[X ∈ A, Y ∈ B] = P[X ∈ A] · P[Y ∈ B].

Exercise 4.3.15. Let (X1, . . . , Xn, Y1, . . . , Ym) be a Gaussian random vector. Show that the
random vectors (X1, . . . , Xn) and (Y1, . . . , Ym) are independent if and only if

Cov(Xi, Yj) = 0

for all i = 1, . . . , n and j = 1, . . . ,m.

4.4. Brownian motion as a Gaussian process

A stochastic process is called Gaussian if its finite-dimensional distributions are multivariate
Gaussian. More precisely:

Definition 4.4.1. A stochastic process {X(t) : t ∈ T} is called Gaussian if for every n ∈ N
and every t1, . . . , tn ∈ T , the random vector (X(t1), . . . , X(tn))T is n-dimensional Gaussian.

Example 4.4.2. Let us show that the Brownian motion is a Gaussian process. Take some
0 ≤ t1 ≤ t2 ≤ . . . ≤ tn. We show that the vector (B(t1), . . . , B(tn)) is Gaussian. Consider
the random variables

∆i = B(ti)−B(ti−1).

By the definition of the Brownian motion, these random variables are independent and each
has Gaussian distribution. It follows from Lemma 4.3.9 that the random vector (∆1, . . . ,∆n)
is n-dimensional Gaussian. We can represent (B(t1), . . . , B(tn)) as a linear transform of
(∆1, . . . ,∆n):

B(ti) = ∆1 + . . .+ ∆i.

It follows from Lemma 4.3.7 that the vector (B(t1), . . . , B(tn)) is also n-dimensional Gauss-
ian.

Remark 4.4.3. The finite dimensional distributions of a Gaussian process are uniquely
determined by the expectation function µ(t) = EX(t) and the covariance function

Γ(t1, t2) = Cov(X(t1), X(t2)).

Example 4.4.4. If B is a Brownian motion, then

EB(t) = 0, Γ(t1, t2) = min(t1, t2).

Conversely, we have the following characterization of the Brownian motion.

Theorem 4.4.5. A stochastic process {B(t) : t ≥ 0} is a Brownian motion if and only if

(1) B is Gaussian;
(2) EB(t) = 0 for all t ≥ 0;
(3) Cov(B(t1), B(t2)) = min(t1, t2) for all t1, t2 ≥ 0;
(4) B has continuous sample paths.
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Proof. It is an exercise to show that the above four conditions are equivalent to the
conditions from the definition of the Brownian motion. �

The next theorem is called the weak Markov property of the Brownian motion.

Theorem 4.4.6. Let {B(t) : t ≥ 0} be a Brownian motion. Fix some u ≥ 0. Then:

(1) The process Bu(s) = B(u+ s)−B(u), s ≥ 0, is also a Brownian motion.
(2) The processes {B(t) : 0 ≤ t ≤ u} and {Bu(s) : s ≥ 0} are independent.

Proof. We will verify conditions of Theorem 4.4.5. The process Bu is Gaussian. Indeed,
for every s1, . . . , sn, the random vector (Bu(s1), . . . , Bu(sn)) can be written as a linear trans-
formation of the Gaussian random vector (B(u+ t1), . . . , B(u+ tn), B(u)). Also, the process
Bu has continuous sample paths because B does so by definition of the Brownian motion. In
order to show that Bu is a Brownian motion, we compute the expectation and the covariance
function of Bu. The expectation is given by

EBu(s) = E(B(u+ s)−B(u)) = 0.

The covariance function is given by

Cov(Bu(s1), Bu(s2)) = Cov(B(u+ s1)−B(u), B(u+ s2)−B(u))

= min(u+ s1, u+ s2)− u− u+ u

= min(s1, s2).

So, Bu is a Brownian motion.

We prove that the processes {B(t) : 0 ≤ t ≤ u} and {Bu(s) : s ≥ 0} are independent. First
of all, we need to define what does this mean.

Definition 4.4.7. Two stochastic process {X(t) : t ∈ T} and {Y (s) : s ∈ S} defined on the
same probability space are called independent if for all t1, . . . , tn ∈ T and s1, . . . , sm ∈ S the
vector (X(t1), . . . , X(tn)) is independent of (Y (s1), . . . , Y (sm)).

To show that the processes {B(t) : 0 ≤ t ≤ u} and {Bu(s) : s ≥ 0} are independent, it suffices
to show that there is no correlation between these two processes. Take some 0 ≤ t ≤ u and
s ≥ 0. Then,

Cov(B(t), Bu(s)) = Cov(B(t), B(u+ s)−B(u)) = ti − ti = 0.

This proves the independence. �

The next theorem states the self-similarity property of the Brownian motion.

Theorem 4.4.8. Let {B(t) : t ≥ 0} be a Brownian motion and let a > 0. Then, the process{
B(at)√

a
: t ≥ 0

}
is again a Brownian motion.

Proof. Exercise.
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4.5. Lévy’s construction of the Brownian motion

Theorem 4.5.1. The Brownian motion exists. Concretely: It is possible to construct a
probability space (Ω,F ,P) and a stochastic process {B(t) : t ≥ 0} on this probability space
such that

(1) B(0) = 0.
(2) B has independent increments.
(3) B(t+ h)−B(t) ∼ N(0, h) for all t, h ≥ 0.
(4) For every ω ∈ Ω the function t 7→ B(t;ω) is continuous in t.

Proof. First we will show how to construct the Brownian motion for t ∈ [0, 1].

Step 1: Construction on the set of dyadic rationals. Consider the sets

Dn =

{
k

2n
: k = 0, 1, . . . , 2n

}
, n ∈ N0.

The first few sets are given by

D0 = {0, 1}, D1 =

{
0,

1

2
, 1

}
, D2 =

{
0,

1

4
,
1

2
,
3

4
, 1

}
, . . .

Note also that D0 ⊂ D1 ⊂ . . .. Let D be the set of dyadic rationals in [0, 1]:

D =
∞⋃
n=0

Dn.

By Kolmogorov’s existence theorem, we can construct a probability space (Ω,F ,P) carrying
a collection {Zt : t ∈ D} of independent standard normal random variables indexed by D.

For every n ∈ N0 we will construct a family of random variables {B(d) : d ∈ Dn} such that

(1) For all r < s < t in Dn the random variables B(t) − B(s) ∼ N(0, t − s) and
B(s)−B(r) ∼ N(0, s− r) are independent.

(2) The processes {B(d) : d ∈ Dn} and {Zt : t ∈ D\Dn} are independent.

We use induction over n.

Case n = 0: For n = 0 we define B(0) = 0, B(1) = Z1 ∼ N(0, 1).

Passing from n− 1 to n: Assume we have constructed {B(d) : d ∈ Dn−1} for which Proper-
ties (1) and (2) hold. We construct {B(d) : d ∈ Dn} as follows. For d ∈ Dn\Dn−1 define

B(d) =
B(d− 2−n) +B(d+ 2−n)

2
+

Zd

2
n+1
2

.

Property (2) holds because for d ∈ Dn, the random variable B(d) is defined in terms of the
random variables {Zt : t ∈ Dn} only.

We prove Property (1). Define random variables:

X1 :=
B(d+ 2−n)−B(d− 2−n)

2
∼ N(0, 2−n−1),

X2 :=
Zd

2
n+1
2

∼ N(0, 2−n−1).

12



The random variables X1 and X2 are independent by Property (2) (which, by the induction
assumption, holds for n− 1 instead of n). By Lemma 4.3.3, the random variables

X1 +X2 = B(d)−B(d− 2−n) ∼ N(0, 2−n),

X1 −X2 = B(d− 2−n)−B(d) ∼ N(0, 2−n)

are independent.

The above shows that any two “neighboring” increments of the form B(d) − B(d − 2−n),
B(d−2−n)−B(d), where d ∈ Dn\Dn−1, are independent. In fact, we show that all increments

B(d)−B(d− 2−n), d ∈ Dn\{0},

are independent. This implies Property (2). The vector formed by these increments is Gauss-
ian since it is a linear transform of the standard Gaussian vector {Zt : t ∈ Dn}. Consider
two intervals of the form

I1 = [d1 − 2−n, d1], I2 = [d2 − 2−n, d2], d1, d2 ∈ Dn\{0}, d1 < d2.

They are separated by some d ∈ Dj, where we choose j to be minimal with this property.
We prove that the increments of B over these intervals are independent. We have considered
the case if j = n above. Therefore, let j < n. The intervals I1 and I2 are contained in
K1 = [d − 2−j, d] and K2 = [d + 2−j, d] since otherwise, we could replace d by d ± 2−j

which has smaller j. By the induction assumption, the increments of B over the intervals K1

and K2 are independent. The increments over the intervals I1 and I2 are defined using the
increments over K1 and K2 and some disjoint subsets of the family {Zt : t ∈ Dn}. Hence,
the increments over I1 and I2 are independent.

This completes the construction of {B(t) : t ∈ D}.
Step 2: Extending the construction to [0, 1]. Define a sequence F0, F1, . . . of random func-
tions on the interval [0, 1] as follows. Let F0(t) = Z1t, for t ∈ [0, 1]. Further, define

Fn(t) =

{
0, t ∈ Dn−1,

2−
n+1
2 Zt, t ∈ Dn\Dn−1,

and let Fn(t) be defined by linear interpolation between the points from Dn.

For d ∈ Dn we defined in Step 1

B(d) =
n∑
i=0

Fi(d) =
∞∑
i=0

Fi(d).

We prove that there is a measurable set Ω1 ⊂ Ω with P[Ω1] = 1 such that for all ω ∈ Ω1

there exists N = N(ω) ∈ N such that for all n > N ,

(4.5.1) sup
t∈[0,1]

|Fn(t)| ≤ 3
√
n2−n/2.

Let us prove (4.5.1). Let c > 1. Then, for large enough n,

(4.5.2) P[|Zd| > c
√
n] = 2P[Zd > c

√
n] ≤ 2e−c

2n/2.

13



Here, we used the asymptotics

P[Zd > x] ∼ 1√
2πx

e−x
2/2, x→∞,

which can be proven using the L’Hôspital rule. We have, using (4.5.2),

∞∑
n=0

P[∃d ∈ Dn : |Zd| ≥ c
√
n] ≤

∞∑
n=0

∑
d∈Dn

P[|Zd| ≥ c
√
n] ≤

∞∑
n=0

(2n + 1) · 2e−c2n/2 <∞,

where the last step holds if c >
√

2 log 2, for example, if c = 3. By the Borel-Cantelli lemma,
we obtain that (4.5.1) holds.

It follows from (4.5.1) that for all ω ∈ Ω1 the series
∑∞

n=0 Fn(t;ω) converges uniformly
over t ∈ [0, 1]. The sum of the series is denoted by B(t;ω). Since the sum of a uniformly
convergent series of continuous functions is continuous, we have that for all ω ∈ Ω1 the
function t 7→ B(t;ω) is continuous.

Step 3: We show that the process {B(t) : t ∈ [0, 1]} constructed in Step 2 has independent
and normal increments. Take some 0 ≤ t1 ≤ . . . ≤ tn ≤ 1. Since the set D is dense in [0, 1]
we can find t1,n ≤ . . . ≤ tn,k ∈ D so that limk→∞ ti,k = ti. By the continuity of B we have

∆i+1 := B(ti+1)−B(ti) = lim
k→∞

(B(ti+1,k)−B(ti,k)) = lim
k→∞

∆i+1,k,

where ∆i+1,k := B(ti+1,k)−B(ti,k). The vector (∆1,k, . . . ,∆n,k) is Gaussian by the construc-
tion from Step 1, with mean 0. Again, by the construction of Step 1, we have

Cov(∆i+1,k,∆j,k) = (ti+1,k − ti,k)1i=j → (ti+1 − ti)1i=j, k →∞.

It follows (see Exercise 4.3.11), the random vector (∆1, . . . ,∆n) is also Gaussian, with mean
0 and with covariance matrix

Cov(∆i+1,∆j) = (ti+1 − ti)1i=j.

In particular, the components of this vector are independent and the variance of ∆i+1 is
ti+1 − ti. This proves that {B : t ∈ [0, 1]} has independent increments and that B(t + h) −
B(t) ∼ N(0, h).

Step 4: We extend the construction to all t ≥ 0. Take independent copiesB0 = B,B1, B2, . . .
of the process {B(t) : t ∈ [0, 1]} constructed in Steps 1–3 and glue them together. Concretely,
for t ∈ [n, n+ 1] define

B(t) = Bn(t− n) +
n−1∑
i=0

Bi(1).

The process {B(t) : t ≥ 0} defined in this way is Gaussian and has continuous sample paths.
It is not difficult to check that its covariance function coincides with the covariance function
of the Brownian motion. So, the process {B(t) : t ≥ 0} is the Brownian motion. �

4.6. Non-differentiability of Brownian motions paths

Theorem 4.6.1 (Paley, Wiener, Zygmund). Let {B(t) : t ≥ 0} be a Brownian motion defined
on a probability space (Ω,F ,P). Then, with probability 1, the function t→ B(t) is nowhere
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differentiable. Concretely: There is a measurable set Ω′ ⊂ Ω with P[Ω′] = 1 such that for all
ω ∈ Ω′ and for all t0 ≥ 0 the function t→ B(t;ω) has no derivate at t0.

Remark 4.6.2. We will prove even more. For a function f : R→ R define

D+f(t) = lim sup
h↓0

f(t+ h)− f(t)

h
(upper right derivative),

D−f(t) = lim inf
h↓0

f(t+ h)− f(t)

h
(lower right derivative).

If D+f(t) = D−f(t) is finite, then we say that f is differentiable from the right. In a similar
way one can define the upper left derivative and the lower left derivative. Consider the set

A := {ω ∈ Ω : ∃t0 ∈ [0, 1] such that −∞ < D−B(t0;ω) ≤ D+B(t0;ω) < +∞}.
We would like to show that P[A] = 0, that is for almost every sample path of the Brownian
motion and for every t0 ≥ 0 we have D+B(t0) = +∞, or D−B(t0) = −∞, or both. However,
it is not immediately clear whether the set A is measurable. Therefore, we will prove a
somewhat weaker statement: There is a measurable set A′ with P[A′] = 0 such that A ⊂ A′.

Proof. We have A ⊂ ∪M∈NAM , where

AM =

{
ω ∈ Ω : ∃t0 ∈ [0, 1] such that sup

h∈[0,1]

∣∣∣∣B(t0 + h)−B(t0)

h

∣∣∣∣ ≤M

}
.

Fix some M ∈ N. We show that P[AM ] = 0. Take some n ∈ N, n ≥ 3. Any t0 ∈ [0, 1] must
be in some interval t0 ∈ [k−1

2n
, k

2n
], k = 1, . . . , 2n. If the event AM occurs and t0 ∈ [k−1

2n
, k

2n
],

then the following three events also occur:

(1) F
(1)
n,k : |B(k+1

2n
)−B( k

2n
)| ≤ |B(k+1

2n
)−B(t0)|+ |B(t0)−B( k

2n
)| ≤ 3M

2n
.

(2) F
(2)
n,k : |B(k+2

2n
)−B(k+1

2n
)| ≤ |B(k+2

2n
)−B(t0)|+ |B(t0)−B(k+1

2n
)| ≤ 5M

2n
.

(3) F
(3)
n,k : |B(k+3

2n
)−B(k+2

2n
)| ≤ |B(k+3

2n
)−B(t0)|+ |B(t0)−B(k+2

2n
)| ≤ 7M

2n
.

Consider the event Fn,k = F
(1)
n,k ∩ F

(2)
n,k ∩ F

(3)
n,k . Then, for every n ≥ 3 we have

AM ⊂
2n⋃
k=1

Fn,k.

We well estimate the probabilities P[F
(1)
n,k ], P[F

(2)
n,k ], P[F

(3)
n,k ]. For example, for P[F

(3)
n,k ] we have

P[F
(3)
n,k ] = P

[∣∣∣∣B(k + 3

2n

)
−B

(
k + 2

2n

)∣∣∣∣ ≤ 7M

2n

]
= P

[
|N |√

2n
<

7M

2n

]
= P

[
|N | ≤ 7M√

2n

]
,

where N is a standard normal random variable. Denoting by fN(t) its density (which is
smaller than 1/

√
2π < 1/2), we have

P[F
(3)
n,k ] =

∫ 7M

2n/2

− 7M

2n/2

fN(t)dt ≤ 7M

2n/2
.

Similarily, one shows that

P[F
(1)
n,k ] ≤ 7M

2n
, P[F

(2)
n,k ] ≤ 7M

2n/2
.
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Since the events F
(1)
n,k , F

(2)
n,k , F

(3)
n,k are independent (by the independence of increments of the

Brownian motion), we have

P[Fn,k] = P[F
(1)
n,k ] · P[F

(2)
n,k ] · P[F

(3)
n,k ] ≤ (7M)3

23n/2
.

It follows that

P[AM ] ≤ P[∪2n

k=1Fn,k] ≤ 2n
(7M)3

23n/2
=

(7M)3

2n/2
.

Since this holds for every n ≥ 3, we have P[AM ] = 0 and hence, the set A′ := ∪M∈NAM has
probability 0. We can now take Ω′ = Ω\A′. �
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