Stochastics II

Exercise Sheet 11

Due: January 15th, 2014

Note: Please submit exercise sheets in groups of two persons!

Problem 1 (6 points)

Let $X : \Omega \to \mathbb{R}$ be a square integrable random variable on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{A} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} . The conditional variance $\operatorname{Var}(X | \mathcal{A})$ of X given \mathcal{A} is defined by $\operatorname{Var}(X | \mathcal{A}) = \mathbb{E}(X^2 | \mathcal{A}) - (\mathbb{E}(X | \mathcal{A}))^2$. Show that

 $\operatorname{Var}(X) = \mathbb{E}\left(\operatorname{Var}(X | \mathcal{A})\right) + \operatorname{Var}\left(\mathbb{E}(X | \mathcal{A})\right).$

Problem 2 (6 points)

Let X_1, X_2, \ldots be a sequence of independent random variables with $\mathbb{E}X_i = 0$ and $\operatorname{Var}(X_i) = \sigma_i^2 < \infty$, for all $i \in \mathbb{N}$. Define

$$S_n = \sum_{i=1}^n X_i, \quad V_n = \operatorname{Var} S_n = \sum_{i=1}^n \sigma_i^2, \quad S_0 = V_0 = 0.$$

Show that $\{S_n^2 - V_n : n \in \mathbb{N}_0\}$ is a martingale w.r.t. the natural filtration generated by the random variables X_1, X_2, \ldots

Problem 3 (6 points)

Let (B_1, B_2) be a 2-dimensional standard Brownian motion, that is $\{B_1(t) : t \ge 0\}$ and $\{B_2(t) : t \ge 0\}$ are independent one-dimensional standard Brownian motions. Consider a stopping time $T_a = \inf\{t \ge 0 : B_1(t) = a\}$, for a > 0. Define $V_a = B_2(T_a)$. Show that the density of V_a is given by

$$f_{V_a}(t) = \frac{1}{\pi} \frac{a}{a^2 + t^2}, \quad t \in \mathbb{R},$$

i.e. V_a is a Cauchy-distributed random variable.

Problem 4 (6 points)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathcal{A} \subset \mathcal{F}$ a sub- σ -algebra of \mathcal{F} . Let furthermore $X : \Omega \to \mathbb{R}$ be a square integrable random variable, that is $\mathbb{E}[X^2] < \infty$.

(a) Show that for all \mathcal{A} -measurable random variables $Z: \Omega \to \mathbb{R}$ with $\mathbb{E}[Z^2] < \infty$ it holds that

$$\mathbb{E}\left[\left(X - \mathbb{E}\left(X \mid \mathcal{A}\right) + Z\right)^{2}\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left(X \mid \mathcal{A}\right)\right)^{2}\right] + \mathbb{E}[Z^{2}]$$

(b) Show that for all \mathcal{A} -measurable random variables $Y: \Omega \to \mathbb{R}$ with $\mathbb{E}[Y^2] < \infty$ it holds that

$$\mathbb{E}\left[\left(X-Y\right)^{2}\right] \geq \mathbb{E}\left[\left(X-\mathbb{E}\left(X\left|\mathcal{A}\right)\right)^{2}\right].$$

Remark. Part (b) means that among all random variables depending only on the information contained in the σ -algebra \mathcal{A} , the best approximation to X (in the mean square sense) is the conditional expectation $\mathbb{E}[X|\mathcal{A}]$.