Stochastics II

Exercise Sheet 12

Due: January 22nd, 2014
Note: Please submit exercise sheets in groups of two persons!
Problem 1 ($3+3$ points)
Let ξ_{1}, ξ_{2}, \ldots be a sequence of i.i.d. random variables with

$$
\mathbb{P}\left[\xi_{k}=1\right]=\mathbb{P}\left[\xi_{k}=-1\right]=p \in(0,1 / 2) \text { and } \mathbb{P}\left[\xi_{k}=0\right]=1-2 p .
$$

Define $S_{n}=\xi_{1}+\cdots+\xi_{n}, S_{0}=0$ and $T=\min \left\{n \in \mathbb{N}: S_{n} \in\{-a, b\}\right\}$ with $a, b \in \mathbb{N}$.
(a) Show that $S_{n}^{2}-2 p n$ is a martingale.
(b) Calculate $\mathbb{E} T$.

Hint: In order to show that T is finite a.s. you can estimate $\mathbb{P}[T>n] \leq \mathbb{P}\left[-a<S_{n}<b\right]$ by the central limit theorem.

Problem 2 $2+2+2+2+1$ points)
Let $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ and $\left\{Y_{n}: n \in \mathbb{N}_{0}\right\}$ be submartingales w.r.t. the filtration $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}_{0}}$ and $m, n \in \mathbb{N}$. Prove the following statements:
(a) $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{m}\right] \geq X_{m}$, for all $m<n$.
(b) $\mathbb{E}\left[X_{n}\right] \geq \mathbb{E}\left[X_{m}\right]$, for all $m<n$.
(c) $\left\{X_{n} \vee Y_{n}: n \in \mathbb{N}_{0}\right\}$ is a submartingale w.r.t. $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}_{0}}$. Here, $x \vee y$ denotes $\max (x, y)$.
(d) Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing and convex function such that $\mathbb{E}\left|\varphi\left(X_{n}\right)\right|<\infty$ for all $n \in \mathbb{N}$. Then $\left\{\varphi\left(X_{n}\right): n \in \mathbb{N}_{0}\right\}$ is a submartingale w.r.t. $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}_{0}}$.
(e) Give an example of a submartingale $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$, such that $\left\{X_{n}^{2}: n \in \mathbb{N}_{0}\right\}$ is not a submartingale. Hint: X_{n} does not have to be random.

Problem 3 (3 points)
Let X and Y be random variables defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E} Y^{2}=\mathbb{E} X^{2}<\infty$ and let $\mathcal{G} \subset \mathcal{F}$ be a σ-algebra. Show that if $\mathbb{E}[Y \mid \mathcal{G}]=X$ a.s. then it holds $X=Y$ a.s.

Problem 4 (6 points)
Let ξ_{1}, ξ_{2}, \ldots be a sequence of independent random variables with $\mathbb{E} \xi_{i}=0$ for all $i \in \mathbb{N}$. Show that for each $k \in \mathbb{N}$ the sequence $\left\{X_{n}^{(k)}: n \in \mathbb{N}_{0}\right\}$ given by

$$
X_{n}^{(k)}=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \xi_{i_{1}} \ldots \xi_{i_{k}}, \quad X_{0}=0,
$$

is a martingale w.r.t. the filtration generated by ξ_{1}, ξ_{2}, \ldots.

