Stochastics II

Exercise Sheet 14
Due: February 5th, 2014
Note: Please submit exercise sheets in groups of two persons!
Problem 1 (6 points)
Let $g:[0, \infty) \rightarrow(0, \infty)$ be a monotone increasing function with

$$
\lim _{x \rightarrow+\infty} \frac{g(x)}{x}=+\infty
$$

Show that if a sequence of random variables X_{1}, X_{2}, \ldots satisfies $\sup _{n \in \mathbb{N}} \mathbb{E}\left[g\left(\left|X_{n}\right|\right)\right]<\infty$, then it is uniformly integrable.

Problem 2 ($4+2$ points)
Let $\{B(t): t \geq 0\}$ be a standard Brownian motion. For $a>0$ denote by

$$
T=\inf \{t \geq 0:|B(t)|=a\}
$$

the first exit time of B from the strip $(-a, a)$.
(a) Compute $\mathbb{E} e^{-\lambda T}$ for $\lambda>0$.
(b) Compute $\mathbb{E}\left[T^{2}\right]$. (For example, you may wish to take the derivative of the Laplace transform in λ).

Problem 3 (4+2 points)
Let $\{B(t): t \geq 0\}$ be a standard Brownian motion. For $\mu>0$ (the drift) and $a>0$ (the level) denote by

$$
T=\inf \{t \geq 0: B(t)-\mu t=a\} \in(0,+\infty]
$$

the first time the drifted Brownian motion $B(t)-\mu t$ hits the level a. (If the level a is never reached, then $T=+\infty$).
(a) By using the martingale $e^{\theta B(t)-\frac{1}{2} \theta^{2} t}$ with a suitable $\theta>0$ show that

$$
\mathbb{E} e^{-\lambda T}=e^{-a\left(\mu+\sqrt{\mu^{2}+2 \lambda}\right.}, \quad \lambda>0
$$

(b) By letting $\lambda \downarrow 0$ compute the ruin probability $\mathbb{P}[T \neq+\infty]$.

Problem 4 (6 points)
Show that a sequence of random variables X_{1}, X_{2}, \ldots on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is uniformly integrable if and only if
(a) $\sup _{n \in \mathbb{N}} \mathbb{E}\left|X_{n}\right|<\infty$ and
(b) for every $\varepsilon>0$ there is a $\delta>0$ such that for all $n \in \mathbb{N}$ and all sets $A \in \mathcal{F}$ satisfying $\mathbb{P}[A]<\delta$ it holds that

$$
\mathbb{E}\left[\left|X_{n}\right| \mathbb{I}_{A}\right]<\varepsilon
$$

