Winter term 2013/14 January 29th, 2014

Stochastics II

Exercise Sheet 14

Due: February 5th, 2014

Note: Please submit exercise sheets in groups of two persons!

Problem 1 (6 points)

Let $g: [0,\infty) \to (0,\infty)$ be a monotone increasing function with

$$\lim_{x \to +\infty} \frac{g(x)}{x} = +\infty.$$

Show that if a sequence of random variables X_1, X_2, \ldots satisfies $\sup_{n \in \mathbb{N}} \mathbb{E}[g(|X_n|)] < \infty$, then it is uniformly integrable.

Problem 2 (4 + 2 points)

Let $\{B(t): t \ge 0\}$ be a standard Brownian motion. For a > 0 denote by

$$T = \inf\{t \ge 0 : |B(t)| = a\}$$

the first exit time of B from the strip (-a, a).

- (a) Compute $\mathbb{E}e^{-\lambda T}$ for $\lambda > 0$.
- (b) Compute $\mathbb{E}[T^2]$. (For example, you may wish to take the derivative of the Laplace transform in λ).

Problem 3 (4 + 2 points)

Let $\{B(t): t \ge 0\}$ be a standard Brownian motion. For $\mu > 0$ (the drift) and a > 0 (the level) denote by

$$T = \inf\{t \ge 0 \colon B(t) - \mu t = a\} \in (0, +\infty]$$

the first time the drifted Brownian motion $B(t) - \mu t$ hits the level a. (If the level a is never reached, then $T = +\infty$).

(a) By using the martingale $e^{\theta B(t) - \frac{1}{2}\theta^2 t}$ with a suitable $\theta > 0$ show that

$$\mathbb{E}e^{-\lambda T} = e^{-a\left(\mu + \sqrt{\mu^2 + 2\lambda}\right)}, \quad \lambda > 0.$$

(b) By letting $\lambda \downarrow 0$ compute the ruin probability $\mathbb{P}[T \neq +\infty]$.

Problem 4 (6 points)

Show that a sequence of random variables X_1, X_2, \ldots on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is uniformly integrable if and only if

- (a) $\sup_{n \in \mathbb{N}} \mathbb{E}|X_n| < \infty$ and
- (b) for every $\varepsilon > 0$ there is a $\delta > 0$ such that for all $n \in \mathbb{N}$ and all sets $A \in \mathcal{F}$ satisfying $\mathbb{P}[A] < \delta$ it holds that

$$\mathbb{E}[|X_n|\mathbb{1}_A] < \varepsilon.$$