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Problem 1

Consider a Markov chain on the state space E = {1, 2, 3, 4} with transition matrix

P =


1/2 0 1/2 0
1/3 0 0 2/3
1 0 0 0

1/3 2/3 0 0

 .

(a) Identify the communicating classes of this Markov chain.

(b) Which of these classes are closed? Which classes are recurrent?

Problem 2

At all times, an urn contains N balls – some white balls and some black balls. At each stage, a
coin having probability p, 0 < p < 1, of landing heads is flipped. If heads appears, then a ball is
drawn at random from the urn and is replaced by a white ball; if tails appears, then a ball is drawn
at random from the urn and is replaced by a black ball. Let Xn denote the number of white balls
in the urn after the n-th stage. Then X0, X1, . . . forms a Markov chain.

(a) Compute the transition probabilities and determine the communicating classes of this chain.

(b) Compute limn→∞ P(Xn = k) for k = 0, 1, . . . , N .

Problem 3

On a 8 × 8 chessboard a bishop (der Läufer) moves according to the usual chess rules. It starts
in the left top corner of the chessboard and at any moment of time performs a move chosen at
random from the set of all moves allowed by the chess rules. All moves allowed by the rules are
equiprobable. What is (approximately) the probability that after 106 moves the bishop returns to
the left top corner of the chessboard?

Problem 4

Let {B(t) : t ≥ 0} be a standard Brownian motion. Compute

(a) P[B(1) < B(2) < B(3)].

(b) P[B(1) < B(3) < B(2)].

Problem 5

Let {N(t) : t ≥ 0} be a Poisson process with intensity λ > 0. Compute

P[N(1) = 1, N(2) = 2, N(3) = 3].

Problem 6

Let {B(t) : t ≥ 0} be a standard Brownian motion. Define the set Z := {t ≥ 0 : B(t) = 0}. Show



that
P[Leb(Z) = 0] = 1,

where Leb denotes the Lebesgue measure on R.

Problem 7

Assume that the positions of the stars are modeled by a Poisson process on R3 with intensity equal
to the Lebesgue measure. Let R be the distance from the origin to the closest star. Compute the
distribution function of R.

Problem 8

Prove that the Brownian motion and the Poisson process are stochastically continuous processes.

Problem 9

Let X be a square integrable random variable on a probability space (Ω,F ,P) and A ⊂ F be a
sub-σ-algebra of F . Show that E(X|A) is the orthogonal projection of X onto L2(Ω,A,P), meaning
that

E[Y (X − E(X|A))] = 0

for every square integrable, A-measurable random variable Y on Ω.

Problem 10

Let {N(t) : t ≥ 0} be a renewal process with F being the distribution function of the corresponding
interarrival times. Let F ∗n be the n-th convolution power of F . Show that for all t ≥ 0,

EN2(t) =
∞∑
n=1

(2n− 1)F ∗n(t).

Problem 11

Let X1, X2, . . . be absolutely continuous i.i.d. random variables with density function f0 (which is
strictly positive everywhere) and let f1 be another density function. For n ∈ N define

Ln =
n∏

k=1

f1(Xk)

f0(Xk)
, L0 = 1.

Show that {Ln : n ∈ N0} is a martingale w.r.t. the natural filtration Fn = σ{X1, . . . , Xn}.

Problem 12

Let {Xn : n ∈ N0} and {Yn : n ∈ N0} be two martingales w.r.t. some filtration {Fn}n∈N0 . Show
that if X0 = Y0 = 0, then

E [XnYn] =
n∑

k=1

E[(Xk −Xk−1)(Yk − Yk−1)].

Problem 13

Let p, q > 1, 1
p

+ 1
q

= 1 and {|Xn|p : n ∈ N}, {|Yn|q : n ∈ N0} be uniformly integrable families of



random variables. Show that the family {XnYn}n∈N is uniformly integrable as well.

Problem 14

Let ξ1, ξ2, . . . be i.i.d. random variables with P[ξk > 0] = 1 and Eξk = 1. Show that

Xn := ξ1 · . . . · ξn, n ∈ N, X0 = 1,

is a martingale.

Problem 15

Let N, ξ1, ξ2, . . . be independent random variables such that N ∼ Poi(λ) and P[ξk = 1] = p,
P[ξk = 0] = 1− p. Compute the distribution of the random variable

S := ξ1 + . . .+ ξN .

Problem 16

Let ξ1, ξ2, . . . be independent random variables with P[ξk ≤ t] = 1− e−t, t ≥ 0. Show that

lim sup
n→∞

Xn

log n
= 1 a.s.


