Stochastik II

Exercise Sheet 3
Due: November 5th, 2013
Note: Please submit exercise sheets in groups of two persons!
Problem 1 (6 points)
Suppose that weather can be either sunny (state 0) or rainy (state 1). If the weather is sunny on one day, then the next day will be sunny with probability $1-p$ and rainy with probability p. If the weather is rainy on one day, then the next day will be rainy with probability $1-q$ and sunny with probability q, where $p, q \in(0,1)$.
(a) Show that the n-step transition matrix of the corresponding Markov chain is equal to

$$
P^{n}=\frac{1}{p+q}\left(\begin{array}{ll}
q & p \\
q & p
\end{array}\right)+\frac{(1-p-q)^{n}}{p+q}\left(\begin{array}{cc}
p & -p \\
-q & q
\end{array}\right) .
$$

(b) Show that $\lim _{n \rightarrow \infty} P^{n}=\frac{1}{p+q}\left(\begin{array}{ll}q & p \\ q & p\end{array}\right)$.

Hint to (a): Use induction over n.

Problem 2 (6 points)
Three girls A, B and C are playing table tennis. In each game, two of the girls are playing against each other and the third girl does not play. In game $n+1$, the winner of game n plays against the girl which did not participated in game n. The probability that girl x beats girl y in any game is $s_{x} /\left(s_{x}+s_{y}\right)$, where $x, y \in\{A, B, C\}, x \neq y$, and $s_{A}, s_{B}, s_{C}>0$ represent the "strengths" of the girls. Denote by X_{n} the girl which is not playing the n-th game.
(a) Construct the transition matrix of this Markov chain.
(b) Assume that in the first game, the girls A and B play. Determine the probability that the same girls will play each other again in the fourth game.

Problem 3 (6 points)
Let X_{0}, X_{1}, \ldots be independent identically distributed random variables with values $1, \ldots, N$ and probabilities $\mathbb{P}\left[X_{i}=k\right]=a_{k}$, where $k=1, \ldots, N$.
(a) Show that X_{0}, X_{1}, \ldots is a Markov chain and compute its transition matrix and initial distribution.
(b) Compute the invariant probability measure of this Markov chain.

