Stochastics II
Exercise Sheet 7
Due: December 4th, 2013

Note: Please submit exercise sheets in groups of two persons!

Problem 1 (6 points)
Let \(\{N^{(1)}(t) : t \geq 0\} \) and \(\{N^{(2)}(t) : t \geq 0\} \) be independent Poisson processes with intensities \(\lambda_1 > 0 \) and \(\lambda_2 > 0 \), respectively. Show, that \(\{N_t = N^{(1)}_t + N^{(2)}_t\} \) is a Poisson process with intensity \(\lambda_1 + \lambda_2 \).

Hint: You can use the following definition of the Poisson process: \(\{N_t : t \geq 0\} \) is a Poisson process with intensity \(\lambda > 0 \) if \(N_0 = 0 \), \(N \) has independent increments, and \(N(t) - N(s) \sim \text{Poi}(\lambda(t-s)) \) for every \(0 \leq s < t \).

Problem 2 (6 points)
Let \(\{B^{(1)}(t), t \geq 0\} \) and \(\{B^{(2)}(t) : t \geq 0\} \) be two independent standard Brownian motions. For which numbers \(a_1, a_2 \in \mathbb{R} \) is \(\{Y(t) : t \geq 0\} \) with \(Y(t) = a_1 B^{(1)}(t) + a_2 B^{(2)}(t) \) a standard Brownian motion?

Problem 3 (6 points)
Let \(\{N_t : t \geq 0\} \) be a Poisson process with intensity \(\lambda > 0 \). Let \(Y \) be a random variable with \(\mathbb{P}[Y = +1] = \mathbb{P}[Y = -1] = \frac{1}{2} \) which is independent of the process \(\{N_t : t \geq 0\} \). Define a stochastic process \(\{X_t : t \geq 0\} \) by \(X_t = Y \cdot (-1)^{N_t} \).

(a) Let \(t > 0 \) be arbitrary but fixed. Calculate the probability that \(N_t \) is even respectively odd.

(b) Let \(t > 0 \) be arbitrary but fixed. Calculate the probability that \(X_t \) is 1 respectively \(-1\).

(c) Calculate the covariance of \(X_t \) and \(X_s \), where \(s, t > 0 \).

Hint: \(e^a = \sum_{k=0}^{\infty} \frac{a^k}{k!} \).

Problem 4 (6 points)
Let \(X = (X_1, \ldots, X_m)^T \) be a \(m \)-dimensional standard Gaussian random vector, that is \(X_1, \ldots, X_m \sim N(0, 1) \) and \(X_1, \ldots, X_m \) are independent. Let \(A \) be any \(d \times m \)-matrix and \(b \in \mathbb{R}^d \). Define the random vector \(Y = AX + b \).

(a) Prove that \(\mathbb{E} Y = b \) and \(\text{Cov}(Y) = AA^T \). (Here, \(\text{Cov}(Y) \) is the covariance matrix of \(Y \)).

(b) Prove the formula for the characteristic function of \(Y \):
\[
\mathbb{E} e^{i\langle t,Y \rangle} = e^{i\langle t,b \rangle - \frac{1}{2} \langle t, \Sigma t \rangle}, \quad t \in \mathbb{R}^d,
\]
where \(\Sigma = AA^T \) and \(\langle t, s \rangle = \sum_{k=1}^{d} t_k s_k \) is the scalar product of \(t = (t_1, \ldots, t_d) \) and \(s = (s_1, \ldots, s_d) \).