Stochastics II

Exercise Sheet 7

Due: December 4th, 2013
Note: Please submit exercise sheets in groups of two persons!
Problem 1 (6 points)
Let $\left\{N^{(1)}(t): t \geq 0\right\}$ and $\left\{N^{(2)}(t): t \geq 0\right\}$ be independent Poisson processes with intensities $\lambda_{1}>0$ and $\lambda_{2}>0$, respectively. Show, that $\left\{N_{t}\right\}=\left\{N_{t}^{(1)}+N_{t}^{(2)}\right\}$ is a Poisson process with intensity $\lambda_{1}+\lambda_{2}$.
Hint: You can use the following definition of the Poisson process: $\left\{N_{t}: t \geq 0\right\}$ is a Poisson process with intensity $\lambda>0$ if $N(0)=0, N$ has independent increments, and $N(t)-N(s) \sim \operatorname{Poi}(\lambda(t-s))$ for every $0 \leq s<t$.

Problem 2 (6 points)
Let $\left\{B^{(1)}(t), t \geq 0\right\}$ and $\left\{B^{(2)}(t): t \geq 0\right\}$ be two independent standard Brownian motions. For which numbers $a_{1}, a_{2} \in \mathbb{R}$ is $\{Y(t): t \geq 0\}$ with $Y(t)=a_{1} B^{(1)}(t)+a_{2} B^{(2)}(t)$ a standard Brownian motion?

Problem 3 (6 points)
Let $\left\{N_{t}: t \geq 0\right\}$ be a Poisson process with intensity $\lambda>0$. Let Y be a random variable with $\mathbb{P}[Y=+1]=\mathbb{P}[Y=-1]=\frac{1}{2}$ which is independent of the process $\left\{N_{t}: t \geq 0\right\}$. Define a stochastic process $\left\{X_{t}: t \geq 0\right\}$ by $X_{t}=Y \cdot(-1)^{N_{t}}$.
(a) Let $t>0$ be arbitrary but fixed. Calculate the probability that N_{t} is even respectively odd.
(b) Let $t>0$ be arbitrary but fixed. Calculate the probability that X_{t} is 1 respectively -1 .
(c) Calculate the covariance of X_{t} and X_{s}, where $s, t>0$.

Hint: $\quad e^{a}=\sum_{k=0}^{\infty} \frac{a^{k}}{k!}$.

Problem 4 (6 points)
Let $X=\left(X_{1}, \ldots, X_{m}\right)^{T}$ be a m-dimensional standard Gaussian random vector, that is $X_{1}, \ldots, X_{m} \sim$ $\mathrm{N}(0,1)$ and X_{1}, \ldots, X_{m} are independent. Let A be any $d \times m$-matrix and $b \in \mathbb{R}^{d}$. Define the random vector

$$
Y=A X+b
$$

(a) Prove that $\mathbb{E} Y=b$ and $\operatorname{Cov}(Y)=A A^{T}$. (Here, $\operatorname{Cov}(Y)$ is the covariance matrix of $\left.Y\right)$.
(b) Prove the formula for the characteristic function of Y :

$$
\mathbb{E} e^{i\langle t, Y\rangle}=e^{i\langle t, b\rangle-\frac{1}{2}\langle t, \Sigma t\rangle}, \quad t \in \mathbb{R}^{d},
$$

where $\Sigma=A A^{T}$ and $\langle t, s\rangle=\sum_{k=1}^{d} t_{k} s_{k}$ is the scalar product of $t=\left(t_{1}, \ldots, t_{d}\right)$ and $s=$ $\left(s_{1}, \ldots, s_{d}\right)$.

