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Note: Please submit exercise sheets in groups of two persons!

Problem 1 (6 points)

Let {B(t) : t ≥ 0} be a standard Brownian motion. Calculate the covariance of B2(s) and B2(t),
for s, t ≥ 0.

Problem 2 (6 points)

Let {B(t) : t ≥ 0} be a standard Brownian motion. Show that
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Problem 3 (6 points)

Let {B1(t) : t ≥ 0}, . . . , {Bd(t) : t ≥ 0}, where d ∈ N, be d independent standard Brownian
motions. A d-dimensional Brownian motion is the Rd-valued stochastic process B = (B1, . . . , Bd).
Let U be an orthogonal d×d-matrix. Show that the process {U ·B(t) : t ≥ 0} is also a d-dimensional
Brownian motion.

Remark. A stochastic process with values in Rd is a collection {Xt : t ∈ T}, where each Xt : Ω→ Rd

is a random vector with values in Rd.

Problem 4 (6 points)

Let X1, X2, . . . be independent and identically distributed random variables with Xi ∼ N(0, 1).
Show that
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Hint: You can use without proof that for x > 0 it holds that
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