Stochastics II

Exercise Sheet 9

Due: December 18th, 2013

Note: Please submit exercise sheets in groups of two persons!

Problem 1 (6 points)

Let $\{B(t): t \ge 0\}$ be a standard Brownian motion. Calculate the covariance of $B^2(s)$ and $B^2(t)$, for $s, t \ge 0$.

Problem 2 (6 points)

Let $\{B(t): t \ge 0\}$ be a standard Brownian motion. Show that

$$\sum_{k=0}^{n-1} \left(B\left(\frac{k+1}{n}\right) - B\left(\frac{k}{n}\right) \right)^2 \xrightarrow[n \to \infty]{P} 1.$$

Problem 3 (6 points)

Let $\{B_1(t) : t \ge 0\}, \ldots, \{B_d(t) : t \ge 0\}$, where $d \in \mathbb{N}$, be *d* independent standard Brownian motions. A *d*-dimensional Brownian motion is the \mathbb{R}^d -valued stochastic process $B = (B_1, \ldots, B_d)$. Let *U* be an orthogonal $d \times d$ -matrix. Show that the process $\{U \cdot B(t) : t \ge 0\}$ is also a *d*-dimensional Brownian motion.

Remark. A stochastic process with values in \mathbb{R}^d is a collection $\{X_t : t \in T\}$, where each $X_t : \Omega \to \mathbb{R}^d$ is a random vector with values in \mathbb{R}^d .

Problem 4 (6 points)

Let X_1, X_2, \ldots be independent and identically distributed random variables with $X_i \sim N(0, 1)$. Show that

$$\limsup_{n \to \infty} \frac{X_n}{\sqrt{2\log n}} = 1 \text{ a.s.}$$

Hint: You can use without proof that for x > 0 it holds that

$$\frac{1}{x + \frac{1}{x}} e^{-x^2/2} \le \mathbb{P}[X_i \ge x] \le \frac{1}{x} e^{-x^2/2}.$$