Stochastics II

Exercise Sheet 9
Due: December 18th, 2013
Note: Please submit exercise sheets in groups of two persons!
Problem 1 (6 points)
Let $\{B(t): t \geq 0\}$ be a standard Brownian motion. Calculate the covariance of $B^{2}(s)$ and $B^{2}(t)$, for $s, t \geq 0$.

Problem 2 (6 points)
Let $\{B(t): t \geq 0\}$ be a standard Brownian motion. Show that

$$
\sum_{k=0}^{n-1}\left(B\left(\frac{k+1}{n}\right)-B\left(\frac{k}{n}\right)\right)^{2} \xrightarrow[n \rightarrow \infty]{P} 1
$$

Problem 3 (6 points)
Let $\left\{B_{1}(t): t \geq 0\right\}, \ldots,\left\{B_{d}(t): t \geq 0\right\}$, where $d \in \mathbb{N}$, be d independent standard Brownian motions. A d-dimensional Brownian motion is the \mathbb{R}^{d}-valued stochastic process $B=\left(B_{1}, \ldots, B_{d}\right)$. Let U be an orthogonal $d \times d$-matrix. Show that the process $\{U \cdot B(t): t \geq 0\}$ is also a d-dimensional Brownian motion.

Remark. A stochastic process with values in \mathbb{R}^{d} is a collection $\left\{X_{t}: t \in T\right\}$, where each $X_{t}: \Omega \rightarrow \mathbb{R}^{d}$ is a random vector with values in \mathbb{R}^{d}.

Problem 4 (6 points)
Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with $X_{i} \sim \mathrm{~N}(0,1)$. Show that

$$
\limsup _{n \rightarrow \infty} \frac{X_{n}}{\sqrt{2 \log n}}=1 \text { a.s. }
$$

Hint: You can use without proof that for $x>0$ it holds that

$$
\frac{1}{x+\frac{1}{x}} e^{-x^{2} / 2} \leq \mathbb{P}\left[X_{i} \geq x\right] \leq \frac{1}{x} e^{-x^{2} / 2}
$$

