The Dirichlet Problem and Feller Semigroups

Wolfgang Arendt

Ulm

Workshop "Probability, Analysis and Geometry"
University of Ulm - Moscow State University
Ulm, September 2-6, 2013

The Dirichlet Problem

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded. Given $g \in C(\partial \Omega)$ the Dirichlet Problem is

The Dirichlet Problem

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded. Given $g \in C(\partial \Omega)$ the Dirichlet Problem is

$$
\left(P_{g}\right) \quad\left\{\begin{aligned}
u & \in C^{2}(\Omega) \cap C(\bar{\Omega}) \\
\Delta u & =0 \\
\left.u\right|_{\partial \Omega} & =g
\end{aligned}\right.
$$

The Dirichlet Problem

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded. Given $g \in C(\partial \Omega)$ the Dirichlet Problem is

$$
\left(P_{g}\right) \quad\left\{\begin{aligned}
u & \in C^{2}(\Omega) \cap C(\bar{\Omega}) \\
\Delta u & =0 \\
\left.u\right|_{\partial \Omega} & =g
\end{aligned}\right.
$$

Maximum Principle \Rightarrow there exists at most one solution.

The Dirichlet Problem

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded. Given $g \in C(\partial \Omega)$ the Dirichlet Problem is

$$
\left(P_{g}\right) \quad\left\{\begin{aligned}
u & \in C^{2}(\Omega) \cap C(\bar{\Omega}) \\
\Delta u & =0 \\
\left.u\right|_{\partial \Omega} & =g
\end{aligned}\right.
$$

Maximum Principle \Rightarrow there exists at most one solution.
Definition
Ω is called Dirichlet regular if for all $g \in C(\partial \Omega)$ there is a solution u of (P_{g})

Weakly harmonic functions

Motivation
Let $u \in C^{2}(\Omega), \varphi \in \mathcal{D}(\Omega)$. Then

$$
\int_{\Omega} \Delta u \varphi=\int_{\Omega} u \Delta \varphi
$$

Weakly harmonic functions

Motivation
Let $u \in C^{2}(\Omega), \varphi \in \mathcal{D}(\Omega)$. Then

$$
\int_{\Omega} \Delta u \varphi=\int_{\Omega} u \Delta \varphi
$$

Let $f \in L^{1}(\Omega)$
Define
$\Delta f: \mathcal{D}(\Omega) \rightarrow \mathbb{R}$ by

$$
\langle\Delta f, \varphi\rangle:=\int_{\Omega} f \Delta \varphi \quad(\varphi \in \mathcal{D}(\Omega))
$$

Thus $\Delta f \in \mathcal{D}(\Omega)^{\prime}$ - the dual space of $\mathcal{D}(\Omega)$.

Weakly harmonic functions

Motivation
Let $u \in C^{2}(\Omega), \varphi \in \mathcal{D}(\Omega)$. Then

$$
\int_{\Omega} \Delta u \varphi=\int_{\Omega} u \Delta \varphi
$$

Let $f \in L^{1}(\Omega)$
Define
$\Delta f: \mathcal{D}(\Omega) \rightarrow \mathbb{R}$ by

$$
\langle\Delta f, \varphi\rangle:=\int_{\Omega} f \Delta \varphi \quad(\varphi \in \mathcal{D}(\Omega))
$$

Thus $\Delta f \in \mathcal{D}(\Omega)^{\prime}$ - the dual space of $\mathcal{D}(\Omega)$.
Theorem (Weyl)
$\Delta f=0 \quad \Rightarrow \quad f \in C^{\infty}(\Omega)$.

The Sobolev Space $H^{1}(\Omega)$

$$
\begin{aligned}
H^{1}(\Omega):= & \left\{u \in L^{2}(\Omega), \exists D_{j} u \in L^{2}(\Omega):\right. \\
& \left.-\int_{\Omega} u \frac{\partial v}{\partial x_{j}}=\int_{\Omega}\left(D_{j} u\right) v \quad \forall v \in \mathcal{D}(\Omega), j=1, \ldots, d\right\} \\
\mathcal{D}(\Omega):= & C_{c}^{\infty}(\Omega) \quad \text { (test functions) }
\end{aligned}
$$

The Sobolev Space $H^{1}(\Omega)$

$$
\begin{aligned}
H^{1}(\Omega):= & \left\{u \in L^{2}(\Omega), \exists D_{j} u \in L^{2}(\Omega):\right. \\
& \left.-\int_{\Omega} u \frac{\partial v}{\partial x_{j}}=\int_{\Omega}\left(D_{j} u\right) v \quad \forall v \in \mathcal{D}(\Omega), j=1, \ldots, d\right\} \\
\mathcal{D}(\Omega):= & C_{c}^{\infty}(\Omega) \quad \text { (test functions) }
\end{aligned}
$$

Consistency

$$
u \in C^{1}(\Omega) \cap L^{2}(\Omega), \frac{\partial u}{\partial x_{j}} \in L^{2}(\Omega) \Rightarrow u \in H^{1}(\Omega) \& D_{j} u=\frac{\partial u}{\partial x_{j}}
$$

The Sobolev Space $H^{1}(\Omega)$

$H^{1}(\Omega)$ is a Hilbert space for the scalar product

$$
(u \mid v)_{H^{1}}:=\int_{\Omega} u v+\int_{\Omega} \nabla u \cdot \nabla v
$$

where

$$
\begin{aligned}
\nabla u & :=\left(D_{1} u, \ldots, D_{d} u\right)^{\top} \\
\nabla u \cdot \nabla v & :=\sum_{j=1}^{d} D_{j} u D_{j} v .
\end{aligned}
$$

Poincaré Inequality

$$
H_{0}^{1}(\Omega):=\overline{\mathcal{D}(\Omega)^{H^{1}}(\Omega)}
$$

Poincaré Inequality

$$
\begin{gathered}
H_{0}^{1}(\Omega):=\overline{\mathcal{D}(\Omega)}{ }^{H^{1}(\Omega)} \\
\lambda_{1} \int_{\Omega}|u|^{2} \leq \int_{\Omega}|\nabla u|^{2} \quad\left(u \in H_{0}^{1}(\Omega)\right)
\end{gathered}
$$

Poincaré Inequality

$$
\begin{gathered}
H_{0}^{1}(\Omega):=\overline{\mathcal{D}(\Omega)^{H^{1}}(\Omega)} \\
\lambda_{1} \int_{\Omega}|u|^{2} \leq \int_{\Omega}|\nabla u|^{2} \quad\left(u \in H_{0}^{1}(\Omega)\right)
\end{gathered}
$$

Consequence

$$
(u \mid v)_{0}:=\int_{\Omega} \nabla u \cdot \nabla v
$$

is an equivalent scalar product on $H_{0}^{1}(\Omega)$.

Riesz-Fréchet

Let V be a Hilbert space and $L \in V^{\prime}$.

Riesz-Fréchet

Let V be a Hilbert space and $L \in V^{\prime}$.
Then there exists exactly one $v \in V$ such that

$$
(v \mid \varphi)_{V}=L \varphi \quad(\varphi \in V)
$$

Riesz-Fréchet

Let V be a Hilbert space and $L \in V^{\prime}$.
Then there exists exactly one $v \in V$ such that

$$
(v \mid \varphi)_{V}=L \varphi \quad(\varphi \in V)
$$

Moreover

$$
\frac{1}{2}\|v\|_{V}^{2}-L v=\min _{w \in V}\left(\frac{1}{2}\|w\|_{V}^{2}-L w\right)
$$

and v is the unique minimum.

The Dirichlet Problem via Riesz-Fréchet

Let $g \in C(\partial \Omega)$.
Definition
$G \in C(\bar{\Omega})$ is an H^{-1}-extension of g, if there exists a constant $c \geq 0$ such that

$$
\left|\int_{\Omega} G \Delta \varphi\right| \leq c\|\varphi\|_{H^{1}} \quad(\varphi \in \mathcal{D}(\Omega))
$$

i.e. $\Delta G \in H^{-1}(\Omega):=H_{0}^{1}(\Omega)^{\prime}$

The Dirichlet Problem via Riesz-Fréchet

Let $g \in C(\partial \Omega)$.
Definition
$G \in C(\bar{\Omega})$ is an H^{-1}-extension of g, if there exists a constant $c \geq 0$ such that

$$
\left|\int_{\Omega} G \Delta \varphi\right| \leq c\|\varphi\|_{H^{1}} \quad(\varphi \in \mathcal{D}(\Omega))
$$

i.e. $\Delta G \in H^{-1}(\Omega):=H_{0}^{1}(\Omega)^{\prime}$

Consequence
There exists a unique $v \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla v \cdot \nabla \varphi=\int_{\Omega} G \Delta \varphi \quad(\varphi \in \mathcal{D}(\Omega))
$$

The Dirichlet Problem via Riesz-Fréchet

Thus

$$
-\int_{\Omega} v \Delta \varphi=\sum_{j=1}^{d} \int_{\Omega} D_{j} v D_{j} \varphi
$$

The Dirichlet Problem via Riesz-Fréchet

Thus

$$
\begin{aligned}
-\int_{\Omega} v \Delta \varphi & =\sum_{j=1}^{d} \int_{\Omega} D_{j} v D_{j} \varphi \\
& =\int_{\Omega} \nabla v \cdot \nabla \varphi
\end{aligned}
$$

The Dirichlet Problem via Riesz-Fréchet

Thus

$$
\begin{aligned}
-\int_{\Omega} v \Delta \varphi & =\sum_{j=1}^{d} \int_{\Omega} D_{j} v D_{j} \varphi \\
& =\int_{\Omega} \nabla v \cdot \nabla \varphi \\
& =\int_{\Omega} G \Delta \varphi \quad(\varphi \in \mathcal{D}(\Omega)) .
\end{aligned}
$$

The Dirichlet Problem via Riesz-Fréchet

Thus

$$
\begin{aligned}
-\int_{\Omega} v \Delta \varphi & =\sum_{j=1}^{d} \int_{\Omega} D_{j} v D_{j} \varphi \\
& =\int_{\Omega} \nabla v \cdot \nabla \varphi \\
& =\int_{\Omega} G \Delta \varphi \quad(\varphi \in \mathcal{D}(\Omega)) .
\end{aligned}
$$

I.e.

$$
-\Delta v=\Delta G \text { in } \mathcal{D}(\Omega)^{\prime} .
$$

The Dirichlet Problem via Riesz-Fréchet

Thus

$$
\begin{aligned}
-\int_{\Omega} v \Delta \varphi & =\sum_{j=1}^{d} \int_{\Omega} D_{j} v D_{j} \varphi \\
& =\int_{\Omega} \nabla v \cdot \nabla \varphi \\
& =\int_{\Omega} G \Delta \varphi \quad(\varphi \in \mathcal{D}(\Omega)) .
\end{aligned}
$$

I.e.

$$
-\Delta v=\Delta G \text { in } \mathcal{D}(\Omega)^{\prime} .
$$

Thus $G+v$ is harmonic.

The Dirichlet Problem via Riesz-Fréchet

Thus

$$
\begin{aligned}
-\int_{\Omega} v \Delta \varphi & =\sum_{j=1}^{d} \int_{\Omega} D_{j} v D_{j} \varphi \\
& =\int_{\Omega} \nabla v \cdot \nabla \varphi \\
& =\int_{\Omega} G \Delta \varphi \quad(\varphi \in \mathcal{D}(\Omega)) .
\end{aligned}
$$

I.e.

$$
-\Delta v=\Delta G \text { in } \mathcal{D}(\Omega)^{\prime} .
$$

Thus $G+v$ is harmonic.
Since $v \in H_{0}^{1}(\Omega)$ and $\left.G\right|_{\partial \Omega}=g$, we may consider $G+v$ as a weak solution.

The Dirichlet Problem via Riesz-Fréchet

Definition
$u_{g}:=v+G$.

The Dirichlet Problem via Riesz-Fréchet

Definition

$u_{g}:=v+G$.
Theorem (W. A., D. Daners; Bull LMS 2008)

1. u_{g} does not depend on the choice of the H^{-1}-extension of g.

The Dirichlet Problem via Riesz-Fréchet

Definition

$u_{g}:=v+G$.
Theorem (W. A., D. Daners; Bull LMS 2008)

1. u_{g} does not depend on the choice of the H^{-1}-extension of g.
2. $u_{g} \in C^{\infty}(\Omega), \Delta u_{g}=0$

The Dirichlet Problem via Riesz-Fréchet

Definition

$u_{g}:=v+G$.
Theorem (W. A., D. Daners; Bull LMS 2008)

1. u_{g} does not depend on the choice of the H^{-1}-extension of g.
2. $u_{g} \in C^{\infty}(\Omega), \Delta u_{g}=0$
3. $\min _{\partial \Omega} g \leq u_{g}(x) \leq \max _{\partial \Omega} g \quad(x \in \Omega)$

The Dirichlet Problem via Riesz-Fréchet

Definition

$u_{g}:=v+G$.
Theorem (W. A., D. Daners; Bull LMS 2008)

1. u_{g} does not depend on the choice of the H^{-1}-extension of g.
2. $u_{g} \in C^{\infty}(\Omega), \Delta u_{g}=0$
3. $\min _{\partial \Omega} g \leq u_{g}(x) \leq \max _{\partial \Omega} g \quad(x \in \Omega)$
4. If $\left(P_{g}\right)$ has a solution u, then $u=u_{g}$.

Weak solutions

Open Problem
Does every $g \in C(\partial \Omega)$ have an H^{-1}-extension?

Weak solutions

Open Problem
Does every $g \in C(\partial \Omega)$ have an H^{-1}-extension?
In any case
The space F of all functions, which have an H^{-1}-extension, is dense in $C(\partial \Omega)$ and

$$
T: F \rightarrow C(\Omega) \cap L^{\infty}(\Omega), g \mapsto u_{g}
$$

is linear and contractive.

Weak solutions

Thus T has a continuous extension \tilde{T} on $C(\partial \Omega)$.

Weak solutions

Thus T has a continuous extension \tilde{T} on $C(\partial \Omega)$.
Definition
$u_{g}:=\tilde{T}_{g}$

Weak solutions

Thus T has a continuous extension \tilde{T} on $C(\partial \Omega)$.
Definition
$u_{g}:=\tilde{T} g$
Then $u_{g} \in C^{\infty}(\Omega), \Delta u_{g}=0$,

$$
\min _{\partial \Omega} g \leq u_{g}(x) \leq \max _{\partial \Omega} g \quad(x \in \Omega)
$$

Weak solutions

Thus T has a continuous extension \tilde{T} on $C(\partial \Omega)$.
Definition
$u_{g}:=\tilde{T} g$
Then $u_{g} \in C^{\infty}(\Omega), \Delta u_{g}=0$,

$$
\min _{\partial \Omega} g \leq u_{g}(x) \leq \max _{\partial \Omega} g \quad(x \in \Omega)
$$

Definition
u_{g} is called the weak solution of $\left(P_{g}\right)$.

Perron solution

Let $g \in C(\partial \Omega)$.
$w \in C(\bar{\Omega})$ is called a subsolution of $\left(P_{g}\right)$ if

$$
-\int_{\Omega} w \Delta \varphi \leq 0 \text { for all } 0 \leq \varphi \in \mathcal{D}(\Omega)
$$

and $\limsup w(x) \leq g(z)$ for all $z \in \partial \Omega$.
$x \rightarrow z$

Perron solution

Let $g \in C(\partial \Omega)$.
$w \in C(\bar{\Omega})$ is called a subsolution of $\left(P_{g}\right)$ if

$$
-\int_{\Omega} w \Delta \varphi \leq 0 \text { for all } 0 \leq \varphi \in \mathcal{D}(\Omega)
$$

and $\limsup w(x) \leq g(z)$ for all $z \in \partial \Omega$.
$x \rightarrow z$
Theorem
$u_{g}(x)=\sup \{w(x), w$ is subsolution $\}$ for all $x \in \Omega$.

Variational Solution

Let $g \in C(\partial \Omega)$ with H^{-1}-extension G.
Then there is exactly one $v_{g} \in H_{0}^{1}(\Omega)$ such that $-\Delta v_{g}=\Delta G$.
Set $u_{g}:=v_{g}+G$.

Variational Solution

Let $g \in C(\partial \Omega)$ with H^{-1}-extension G.
Then there is exactly one $v_{g} \in H_{0}^{1}(\Omega)$ such that $-\Delta v_{g}=\Delta G$.
Set $u_{g}:=v_{g}+G$.
Furthermore for $v_{g} \in H_{0}^{1}(\Omega)$ the expression

$$
\frac{1}{2} \int_{\Omega}|\nabla v|^{2}-\langle\Delta G, v\rangle \quad\left(v \in H_{0}^{1}(\Omega)\right)
$$

becomes minimal.

Variational Solution

Let $g \in C(\partial \Omega)$ with H^{-1}-extension G.
Then there is exactly one $v_{g} \in H_{0}^{1}(\Omega)$ such that $-\Delta v_{g}=\Delta G$.
Set $u_{g}:=v_{g}+G$.
Furthermore for $v_{g} \in H_{0}^{1}(\Omega)$ the expression

$$
\frac{1}{2} \int_{\Omega}|\nabla v|^{2}-\langle\Delta G, v\rangle \quad\left(v \in H_{0}^{1}(\Omega)\right)
$$

becomes minimal.
Let $v=u-G$.
Thus $u_{g} \in H_{0}^{1}(\Omega)$ is the unique minimizer of

$$
\left\{\begin{aligned}
\frac{1}{2} \int_{\Omega}|\nabla(u-G)|^{2}-\langle\Delta G, u-G\rangle \quad\left(u \in H^{1}(\Omega)\right) \\
u-G \in H_{0}^{1}(\Omega)
\end{aligned}\right.
$$

Variational Solution

Now assume that $G \in H^{1}(\Omega)$. Then some terms cancel:

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}|\nabla(u-G)|^{2}-\langle\Delta G, u-G\rangle= & \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} \nabla u \cdot \nabla G+\frac{1}{2} \int_{\Omega}|\nabla G|^{2} \\
& -\int_{\Omega}|\nabla G|^{2}+\int_{\Omega} \nabla G \cdot \nabla u
\end{aligned}
$$

Variational Solution

Now assume that $G \in H^{1}(\Omega)$. Then some terms cancel:

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}|\nabla(u-G)|^{2}-\langle\Delta G, u-G\rangle= & \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} \nabla u \cdot \nabla G+\frac{1}{2} \int_{\Omega}|\nabla G|^{2} \\
& -\int_{\Omega}|\nabla G|^{2}+\int_{\Omega} \nabla G \cdot \nabla u \\
= & \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{1}{2} \int_{\Omega}|\nabla G|^{2}
\end{aligned}
$$

Variational Solution

Now assume that $G \in H^{1}(\Omega)$. Then some terms cancel:

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}|\nabla(u-G)|^{2}-\langle\Delta G, u-G\rangle= & \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\int_{\Omega} \nabla u \cdot \nabla G+\frac{1}{2} \int_{\Omega}|\nabla G|^{2} \\
& -\int_{\Omega}|\nabla G|^{2}+\int_{\Omega} \nabla G \cdot \nabla u \\
= & \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{1}{2} \int_{\Omega}|\nabla G|^{2}
\end{aligned}
$$

Thus we obtain the Dirichlet principle:
Theorem
Assume that $g \in C(\partial \Omega)$ has an extension $G \in H^{1}(\Omega) \cap C(\bar{\Omega})$. Then

$$
\min \left\{\int_{\Omega}|\nabla u|^{2}, \quad u \in H^{1}(\Omega), u-G \in H_{0}^{1}(\Omega)\right\}
$$

exists and is attained exactly for u_{g}.

When does the solution have finite energy?

Assume that Ω is Dirichlet regular.

When does the solution have finite energy?

Assume that Ω is Dirichlet regular.
Theorem
Let $g \in C(\partial \Omega)$. Equivalent are:

1. $\int_{\Omega}\left|\nabla u_{g}\right|^{2}<\infty$

When does the solution have finite energy?

Assume that Ω is Dirichlet regular.
Theorem
Let $g \in C(\partial \Omega)$. Equivalent are:

1. $\int_{\Omega}\left|\nabla u_{g}\right|^{2}<\infty$
2. g has an extension $G \in C(\bar{\Omega}) \cap H^{1}(\Omega)$

Hadamard's example

$$
\begin{aligned}
& \Omega:=\left\{x \in \mathbb{R}^{2},|x|<1\right\} \\
& g\left(e^{i \theta}\right):=\sum_{n=1}^{\infty} 2^{-n} \cos \left(2^{2 n} \theta\right)
\end{aligned}
$$

Hadamard's example

$$
\begin{aligned}
& \Omega:=\left\{x \in \mathbb{R}^{2},|x|<1\right\} \\
& g\left(e^{i \theta}\right):=\sum_{n=1}^{\infty} 2^{-n} \cos \left(2^{2 n} \theta\right) \\
& \text { Then } g \in \mathrm{C}(\partial \Omega) \text { and }
\end{aligned}
$$

$$
\int_{\Omega}\left|\nabla u_{g}\right|^{2}=\infty .
$$

Hadamard's example

$$
\begin{aligned}
& \Omega:=\left\{x \in \mathbb{R}^{2},|x|<1\right\} \\
& g\left(e^{i \theta}\right):=\sum_{n=1}^{\infty} 2^{-n} \cos \left(2^{2 n} \theta\right) \\
& \text { Then } g \in \mathrm{C}(\partial \Omega) \text { and } \\
& \qquad \int_{\Omega}\left|\nabla u_{g}\right|^{2}=\infty .
\end{aligned}
$$

Even worse:
g does not have any extension in $\mathrm{C}(\bar{\Omega}) \cap H^{1}(\Omega)$.

Regular Points

Recall, for each $g \in C(\partial \Omega)$ we have the weak solution $u_{g}: \Omega \rightarrow \mathbb{R}$ of $\left(P_{g}\right)$.

Regular Points

Recall, for each $g \in C(\partial \Omega)$ we have the weak solution $u_{g}: \Omega \rightarrow \mathbb{R}$ of $\left(P_{g}\right)$.
Definition
$z \in \partial \Omega$ is called regular if for each $g \in C(\partial \Omega)$

$$
\lim _{\substack{x \rightarrow z \\ x \in \Omega}} u_{g}(x)=g(z)
$$

Regular Points

Recall, for each $g \in C(\partial \Omega)$ we have the weak solution $u_{g}: \Omega \rightarrow \mathbb{R}$ of $\left(P_{g}\right)$.
Definition
$z \in \partial \Omega$ is called regular if for each $g \in C(\partial \Omega)$

$$
\lim _{\substack{x \rightarrow z \\ x \in \Omega}} u_{g}(x)=g(z) .
$$

Ω is (Dirichlet-)regular: $\Leftrightarrow \forall g \in C(\partial \Omega):\left(P_{g}\right)$ has a solution \Leftrightarrow each $z \in \partial \Omega$ is regular

The weak solution via Brownian motion

Let $B_{t}, t \geq 0$, denote the Brownian motion.
Denote by P^{x} the Wiener measure at $x \in \mathbb{R}^{d}$.

The weak solution via Brownian motion

Let $B_{t}, t \geq 0$, denote the Brownian motion.
Denote by P^{x} the Wiener measure at $x \in \mathbb{R}^{d}$.
Let $\tau_{\Omega}:=\inf \left\{t>0, B_{t} \notin \Omega\right\}$ be the first hitting time.

The weak solution via Brownian motion

Let $B_{t}, t \geq 0$, denote the Brownian motion.
Denote by P^{x} the Wiener measure at $x \in \mathbb{R}^{d}$.
Let $\tau_{\Omega}:=\inf \left\{t>0, B_{t} \notin \Omega\right\}$ be the first hitting time.
Let $g \in C(\partial \Omega)$. Then

$$
u_{g}(x)=\mathbb{E}^{x}\left[g\left(B_{\tau_{\Omega}}\right)\right] \quad(x \in \Omega)
$$

Probabilistic characterization of regular points

$z \in \partial \Omega$ is regular if and only if

$$
P^{z}\left[\exists t>0, B_{s} \in \Omega \forall s \in[0, t]\right]=0
$$

Probabilistic characterization of regular points

$z \in \partial \Omega$ is regular if and only if

$$
P^{z}\left[\exists t>0, B_{s} \in \Omega \forall s \in[0, t]\right]=0 .
$$

Thus $z \in \Omega$ is regular if and only if the Brownian motion with starting point $z \in \partial \Omega$ immediately leaves Ω.

Probabilistic characterization of regular points

$z \in \partial \Omega$ is regular if and only if

$$
P^{z}\left[\exists t>0, B_{s} \in \Omega \forall s \in[0, t]\right]=0 .
$$

Thus $z \in \Omega$ is regular if and only if the Brownian motion with starting point $z \in \partial \Omega$ immediately leaves Ω.
$z \in \partial \Omega$ is regular if for all $r>0$

$$
B(r, z) \backslash \Omega \text { is "large enough". }
$$

Wiener criterion

Let $A \subset \mathbb{R}^{d}$.

$$
\begin{aligned}
\operatorname{Cap}(A):=\inf & \left\{\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2}, u \in H^{1}\left(\mathbb{R}^{d}\right),\right. \\
& \exists U \text { open, } A \subset U: u \geq 1 \text { a.e. on } U\}
\end{aligned}
$$

Wiener criterion

Let $A \subset \mathbb{R}^{d}$.

$$
\begin{aligned}
& \operatorname{Cap}(A):=\inf \left\{\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2}, u \in H^{1}\left(\mathbb{R}^{d}\right),\right. \\
&\exists U \text { open }, A \subset U: u \geq 1 \text { a.e. on } U\}
\end{aligned}
$$

Theorem (Wiener)
A point $z \in \partial \Omega$ is regular if and only if

$$
\sum_{n=1}^{\infty} 2^{n} \operatorname{Cap}\left(B\left(z, 2^{-n}\right) \backslash \Omega\right)=\infty
$$

Criteria for regularity

- Ω Lipschitz $\Longrightarrow \Omega$ is regular.

Criteria for regularity

- Ω Lipschitz $\Longrightarrow \Omega$ is regular.
- $d=2, \Omega$ simply connected $\Longrightarrow \Omega$ is regular.

Criteria for regularity

- Ω Lipschitz $\Longrightarrow \Omega$ is regular.
- $d=2, \Omega$ simply connected $\Longrightarrow \Omega$ is regular.
- $d=3$, the Lebesgue cusp is not regular

Criteria for regularity

- Ω Lipschitz $\Longrightarrow \Omega$ is regular.
- $d=2, \Omega$ simply connected $\Longrightarrow \Omega$ is regular.
- $d=3$, the Lebesgue cusp is not regular

Surprising
$\exists g \in \mathrm{C}(\partial \Omega)$, g has a real analytic extension at each $z \in \partial \Omega$, but $\left(P_{g}\right)$ has no solution. (W.A., D. Daners: Discrete and Continuous
Dynamical Systems, 2008)

Partielle

 DifferenzialgleichungenEine Einführung in analytische und numerische Methoden

Keldÿs

M.V. Keldy̆s On the solvability and stability of the Dirichlet problem. Uspekhi Mat. Nauk 8 (1941) 144-171 Amer. Math. Soc. Translations 51 (1966) 1-73.

Regularity is non-local

Consider Lebesgue's cusp Ω with the crater at the north pole. Call the cusp point z_{0} (the bottom of the crater). Then z_{0} is the only singular point on the boundary.

Regularity is non-local

Consider Lebesgue's cusp Ω with the crater at the north pole. Call the cusp point z_{0} (the bottom of the crater). Then z_{0} is the only singular point on the boundary.

Theorem

Let U be an arbitrarily small neighborhood of the south pole. Then there exists $g \in C(\partial \Omega)$ such that $g(z)=1$ for all $z \in \partial \Omega \backslash U$, but

$$
\lim _{x \rightarrow z_{0}} u_{g}(x)
$$

does not exist.

Semigroups

Let X be a Banach space.

Semigroups

Let X be a Banach space.
Definition
A semigroup is a mapping $T:(0, \infty) \rightarrow \mathscr{L}(X)$ such that

$$
T(t+s)=T(t) T(s) \quad \text { and } \quad \lim _{t \rightarrow 0} T(t) x=x \quad(x \in X)
$$

Semigroups

Let X be a Banach space.
Definition
A semigroup is a mapping $T:(0, \infty) \rightarrow \mathscr{L}(X)$ such that

$$
T(t+s)=T(t) T(s) \quad \text { and } \quad \lim _{t \rightarrow 0} T(t) x=x \quad(x \in X)
$$

Definition

The generator A of T is defined by

$$
\begin{aligned}
D(A) & :=\left\{x \in X: \lim _{t \searrow 0} \frac{T(t) x-x}{t} \text { exists }\right\} \\
A x & :=\lim _{t \searrow 0} \frac{T(t) x-x}{t}
\end{aligned}
$$

Cauchy Problem

Consequence
For $u_{0} \in D(A)$

$$
u:=T(\cdot) u_{0} \in \mathrm{C}^{1}\left(\mathbb{R}_{+}, X\right)
$$

is the unique solution of

$$
\left\{\begin{array}{l}
\dot{u}(t)=A u(t) \\
u(0)=u_{0} .
\end{array}\right.
$$

Feller semigroups

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded.
We consider the space

$$
C_{0}(\Omega):=\left\{u \in C(\bar{\Omega}),\left.u\right|_{\partial \Omega}=0\right\}
$$

with norm $\|u\|_{\infty}:=\sup _{x \in \Omega}|u(x)|$.

Feller semigroups

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded.
We consider the space

$$
C_{0}(\Omega):=\left\{u \in C(\bar{\Omega}),\left.u\right|_{\partial \Omega}=0\right\}
$$

with norm $\|u\|_{\infty}:=\sup _{x \in \Omega}|u(x)|$.
Definition
A semigroup $(T(t))_{t \geq 0}$ on $C_{0}(\Omega)$ is called a Feller semigroup if

$$
\begin{aligned}
& \text { 1. } f \geq 0 \quad \Rightarrow \quad T(t) f \geq 0 \text {, i.e. } T(t) \geq 0 . \\
& \text { 2. }\|T(t)\| \leq 1 \quad(t \geq 0)
\end{aligned}
$$

Characterization

Theorem (Phillips)
An operator A on $C_{0}(\Omega)$ generates a Feller semigroup if and only if

Characterization

Theorem (Phillips)
An operator A on $C_{0}(\Omega)$ generates a Feller semigroup if and only if

1. $D(A)$ is dense

Characterization

Theorem (Phillips)
An operator A on $C_{0}(\Omega)$ generates a Feller semigroup if and only if

1. $D(A)$ is dense
2. $f \in D(A), f\left(x_{0}\right)=\sup _{x \in \Omega} f(x)>0 \quad \Rightarrow \quad A f\left(x_{0}\right) \leq 0$

Characterization

Theorem (Phillips)
An operator A on $C_{0}(\Omega)$ generates a Feller semigroup if and only if

1. $D(A)$ is dense
2. $f \in D(A), f\left(x_{0}\right)=\sup _{x \in \Omega} f(x)>0 \quad \Rightarrow \quad A f\left(x_{0}\right) \leq 0$
3. There is $\lambda>0$ such that $\lambda-A$ is surjective.

The Dirichlet Laplacian

Recall: Let $u \in C_{0}(\Omega)$.
$\Delta u \in C_{0}(\Omega) \quad: \Leftrightarrow \quad \exists f \in C_{0}(\Omega): \int_{\Omega} u \Delta \varphi=\int_{\Omega} f \varphi \quad(\varphi \in \mathcal{D}(\Omega))$
Then $\Delta u:=f$.

The Dirichlet Laplacian

Recall: Let $u \in C_{0}(\Omega)$.
$\Delta u \in C_{0}(\Omega) \quad: \Leftrightarrow \quad \exists f \in C_{0}(\Omega): \int_{\Omega} u \Delta \varphi=\int_{\Omega} f \varphi \quad(\varphi \in \mathcal{D}(\Omega))$
Then $\Delta u:=f$.
Define Δ_{0} on $C_{0}(\Omega)$ by

$$
\begin{aligned}
D\left(\Delta_{0}\right) & :=\left\{u \in C_{0}(\Omega), \Delta u \in C_{0}(\Omega)\right\} \\
\Delta_{0} u & :=\Delta u .
\end{aligned}
$$

The Dirichlet Laplacian

Recall: Let $u \in C_{0}(\Omega)$.
$\Delta u \in C_{0}(\Omega) \quad: \Leftrightarrow \quad \exists f \in C_{0}(\Omega): \int_{\Omega} u \Delta \varphi=\int_{\Omega} f \varphi \quad(\varphi \in \mathcal{D}(\Omega))$
Then $\Delta u:=f$.
Define Δ_{0} on $C_{0}(\Omega)$ by

$$
\begin{aligned}
D\left(\Delta_{0}\right) & :=\left\{u \in C_{0}(\Omega), \Delta u \in C_{0}(\Omega)\right\} \\
\Delta_{0} u & :=\Delta u .
\end{aligned}
$$

Theorem (W.A., Ph. Bénilan)
Δ_{0} generates a Feller semigroup if and only if Ω is Dirichlet regular.

Surjectivity

Proof.

Assume that Ω is Dirichlet regular.
Δ_{0} is surjective:

Surjectivity

Proof.

Assume that Ω is Dirichlet regular.
Δ_{0} is surjective:
Let $f \in C_{0}(\Omega)$ and extend it to \mathbb{R}^{d} by 0 .
Let $w=E_{d} * f$, where E_{d} is the Newtonian Potential.
Then $w \in C\left(\mathbb{R}^{d}\right)$ and $\Delta w=f$.

Surjectivity

Proof.

Assume that Ω is Dirichlet regular.
Δ_{0} is surjective:
Let $f \in C_{0}(\Omega)$ and extend it to \mathbb{R}^{d} by 0 .
Let $w=E_{d} * f$, where E_{d} is the Newtonian Potential.
Then $w \in C\left(\mathbb{R}^{d}\right)$ and $\Delta w=f$.
Let $g=\left.w\right|_{\partial \Omega}$. Then $u_{g} \in C(\bar{\Omega}), \Delta u_{g}=0$.
Let $u=w-u_{g}$. Then $u \in C_{0}(\Omega), \Delta u=f$.

Elliptic operators in divergence form

Let $a_{i j}, b_{j}, c_{j}, c \in L^{\infty}(\Omega)$ be real coefficients, such that

$$
\sum_{i, j=1}^{d} a_{i j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2} \quad\left(\xi \in \mathbb{R}^{d}, x \in \Omega\right)
$$

Elliptic operators in divergence form

Let $a_{i j}, b_{j}, c_{j}, c \in L^{\infty}(\Omega)$ be real coefficients, such that

$$
\sum_{i, j=1}^{d} a_{i j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2} \quad\left(\xi \in \mathbb{R}^{d}, x \in \Omega\right)
$$

$$
\begin{aligned}
\mathcal{A} & : H_{\mathrm{loc}}^{1} \rightarrow \mathcal{D}(\Omega)^{\prime} \\
\mathcal{A} u & :=\sum_{i, j=1}^{d} D_{i}\left(a_{i j} D_{j} u\right)+\sum_{j=1}^{d}\left(b_{j} D_{j} u+D_{j}\left(c_{j} u\right)\right)+c u
\end{aligned}
$$

Elliptic operators in divergence form

Let $a_{i j}, b_{j}, c_{j}, c \in L^{\infty}(\Omega)$ be real coefficients, such that

$$
\sum_{i, j=1}^{d} a_{i j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2} \quad\left(\xi \in \mathbb{R}^{d}, x \in \Omega\right)
$$

$$
\begin{aligned}
\mathcal{A} & : H_{\mathrm{loc}}^{1} \rightarrow \mathcal{D}(\Omega)^{\prime} \\
\mathcal{A} u & :=\sum_{i, j=1}^{d} D_{i}\left(a_{i j} D_{j} u\right)+\sum_{j=1}^{d}\left(b_{j} D_{j} u+D_{j}\left(c_{j} u\right)\right)+c u
\end{aligned}
$$

Realization A_{0} in $\mathrm{C}_{0}(\Omega)$:

$$
\begin{aligned}
D\left(A_{0}\right) & :=\left\{u \in \mathrm{C}_{0}(\Omega) \cap H_{\mathrm{loc}}^{1}(\Omega): \mathcal{A} u \in \mathrm{C}_{0}(\Omega)\right\} \\
A_{0} u & :=\mathcal{A} u
\end{aligned}
$$

Elliptic operators in divergence form

Assume that

$$
\sum_{j=1}^{d} D_{j} c_{j}+c \leq 0
$$

i.e.

$$
\int_{\Omega}\left(-\sum_{j=1}^{d} \frac{\partial \varphi}{\partial x_{j}} c_{j}+c \varphi\right) \mathrm{d} x \leq 0 \quad(0 \leq \varphi \in \mathcal{D}(\Omega))
$$

Elliptic operators in divergence form

Assume that

$$
\sum_{j=1}^{d} D_{j} c_{j}+c \leq 0
$$

i.e.

$$
\int_{\Omega}\left(-\sum_{j=1}^{d} \frac{\partial \varphi}{\partial x_{j}} c_{j}+c \varphi\right) \mathrm{d} x \leq 0 \quad(0 \leq \varphi \in \mathcal{D}(\Omega))
$$

Theorem (W.A., Ph. Bénilan)
A_{0} generates a Feller semigroup on $C_{0}(\Omega)$ if and only if Ω is Dirichlet regular.

Non-divergence Form

Let $b_{j}, c \in L^{\infty}(\Omega), c \leq 0, a_{i j} \in C(\bar{\Omega}), a_{i j}=a_{j i}$ be real coefficients, such that

$$
\sum_{i, j=1}^{d} a_{i j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2} \quad\left(x \in \bar{\Omega}, \xi \in \mathbb{R}^{d}\right)
$$

Non-divergence Form

Let $b_{j}, c \in L^{\infty}(\Omega), c \leq 0, a_{i j} \in C(\bar{\Omega}), a_{i j}=a_{j i}$ be real coefficients, such that

$$
\begin{gathered}
\sum_{i, j=1}^{d} a_{i j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2} \quad\left(x \in \bar{\Omega}, \xi \in \mathbb{R}^{d}\right) \\
\mathcal{A} u:=\sum_{i, j=1}^{d} a_{i j} D_{i} D_{j} u+\sum_{j=1}^{d} b_{j} D_{j} u+c u
\end{gathered}
$$

Non-divergence Form

Let $b_{j}, c \in L^{\infty}(\Omega), c \leq 0, a_{i j} \in \mathrm{C}(\bar{\Omega}), a_{i j}=a_{j i}$ be real coefficients, such that

$$
\begin{gathered}
\sum_{i, j=1}^{d} a_{i j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2} \quad\left(x \in \bar{\Omega}, \xi \in \mathbb{R}^{d}\right) \\
\mathcal{A} u:=\sum_{i, j=1}^{d} a_{i j} D_{i} D_{j} u+\sum_{j=1}^{d} b_{j} D_{j} u+c u
\end{gathered}
$$

Realization of \mathcal{A} in $\mathrm{C}_{0}(\Omega)$:

$$
\begin{aligned}
D\left(A_{0}\right) & :=\left\{u \in \mathrm{C}_{0}(\Omega) \cap W_{\mathrm{loc}}^{2, d}(\Omega): \mathcal{A} u \in \mathrm{C}_{0}(\Omega)\right\} \\
A_{0} u & :=\mathcal{A} u
\end{aligned}
$$

Non-divergence Form

Theorem (W.A., R. Schätzle, Ann. Sc, Normale Pisa 2013)
Assume that Ω satisfies the uniform exterior cone condition or

Non-divergence Form

Theorem (W.A., R. Schätzle, Ann. Sc, Normale Pisa 2013)
Assume that Ω satisfies the uniform exterior cone condition or that Ω is Dirichlet regular and the $a_{i j}$ are Hölder continuous.

Non-divergence Form

Theorem (W.A., R. Schätzle, Ann. Sc, Normale Pisa 2013)
Assume that Ω satisfies the uniform exterior cone condition or that Ω is Dirichlet regular and the $a_{i j}$ are Hölder continuous.
Then A_{0} generates a Feller semigroup on $C_{0}(\Omega)$.

Non-divergence Form

Theorem (W.A., R. Schätzle, Ann. Sc, Normale Pisa 2013)
Assume that Ω satisfies the uniform exterior cone condition or that Ω is Dirichlet regular and the $a_{i j}$ are Hölder continuous.
Then A_{0} generates a Feller semigroup on $C_{0}(\Omega)$.
Previous work on the Dirichlet problem by N. Krylow.

Non-divergence Form

Theorem (W.A., R. Schätzle, Ann. Sc, Normale Pisa 2013)
Assume that Ω satisfies the uniform exterior cone condition or that Ω is Dirichlet regular and the $a_{i j}$ are Hölder continuous.
Then A_{0} generates a Feller semigroup on $C_{0}(\Omega)$.
Previous work on the Dirichlet problem by N. Krylow.
We prove that the semigroup is even holomorphic.

Markov Processes

Let $(T(t))_{t \geq 0}$ be a Feller semigroup on $C_{0}(\Omega), \Omega$ a locally compact space with countable topological base.

Markov Processes

Let $(T(t))_{t \geq 0}$ be a Feller semigroup on $C_{0}(\Omega), \Omega$ a locally compact space with countable topological base.
Then there exists a strong Markov process $\left\{X_{t}, t \geq 0\right\}$ such that for all $f \in C_{0}(\Omega)$,

$$
\begin{aligned}
(T(t) f)\left(X_{s}\right) & =\mathbb{E}\left(f\left(X_{t+s}\right) \mid X_{s}\right) \\
& =\mathbb{E}\left(f\left(X_{t+s}\right) \mid \mathcal{F}_{s}\right) \quad \text { a.e. }
\end{aligned}
$$

where

$$
\mathcal{F}_{s}=\sigma\left(\left\{X_{t}, t \leq s\right\}\right)
$$

Thank you for your attention

