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The Dirichlet Problem

Let Q C RY be open and bounded. Given g € C(9RQ) the Dirichlet

Problem is o
ue C3(Q)NCQ)

(Pg) Au=0

ulpg =g

Maximum Principle =- there exists at most one solution.

Definition
Q is called Dirichlet regular if for all g € C(0R) there is a solution u
of (Pg)
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Motivation
Let u€ C?(Q), ¢ € D(Q). Then

/AU@:/UA@
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Let f € L1(Q)
Define
Af:D(Q) — R by

(Bf.9) = | fAp (g eD(@)

Thus Af € D(Q)" — the dual space of D(Q).

Theorem (Weyl)
Af=0 = feC>Q).
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The Sobolev Space H'(Q)

HY(Q) == {u e L*( Q) IDju € L3(Q):

/ o /Q Dju)v W eD(Q),j=1.....d)
D(Q) = C°(Q) (test functions)

Consistency
ve CHQ)NLA(Q), S e lX(Q) = ueH Q)& Du=45



The Sobolev Space H'(Q)

H(Q) is a Hilbert space for the scalar product

(u|v)m ::/ uv+/Vu.Vv,
Q Q

where

Vu:=(Du,...,Dgu)’
d
VuVv .= Z DjuDjv.
j=1
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Poincaré Inequality

Hy(@) = D) @

MR [IVeP (ue Hy®)

Consequence

(ulv)o Z:/QVU.VV

is an equivalent scalar product on H(Q).
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Riesz-Fréchet

Let V be a Hilbert space and L€ V',
Then there exists exactly one v € V such that

(viplv=Lp  (peV).

Moreover
1
2

and v is the unique minimum.

1
VI — Ly = min (S lwl — Lw)
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The Dirichlet Problem via Riesz-Fréchet

Let g € C(092).
Definition
G € C(Q) is an H™l-extension of g, if there exists a constant ¢ >0
such that
| 6a¢l<clieln (v € D)
ie. AGe H Q) :=H}Q)

Consequence
There exists a unique v € H}() such that

/QVV.Vgoz /Q GAyp (¢ €D(Q))
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The Dirichlet Problem via Riesz-Fréchet

Thus
d
— [ vAp = /D-vD-
/Q P J_Zl 0 i P
:/ V.V
Q

- /Q GAp  (peD(Q)).

le.
—~Av=AG in D(Q).

Thus G+ v is harmonic.



The Dirichlet Problem via Riesz-Fréchet

Thus
d
—/QvAgpzj_Zl/QDijjgp
:/ V.V
Q
- [ 6av  (veD@)
l.e.

—~Av=AG in D(Q).

Thus G+ v is harmonic.
Since v € H}(Q) and G|gq = g, we may consider G+ v as a weak

solution.
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The Dirichlet Problem via Riesz-Fréchet

Definition
ug:=v+G.

Theorem (W. A., D. Daners; Bull LMS 2008)

1. ug does not depend on the choice of the H~1-extension of g.
2. ug e C®(Q), Aug =0

3.
4

i < <
ming < ug(x) <maxg (x € Q)

. If (Pg) has a solution u, then u= uy.
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Weak solutions

Open Problem
Does every g € C(09Q) have an H™l-extension?

In any case

The space F of all functions, which have an H~1-extension, is dense
in C(09) and

T:F—=C(Q)NL™(Q), g+ ug

is linear and contractive.
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Weak solutions

Thus T has a continuous extension T on C(9%).
Definition

ug:=Tg

Then ug € C*(Q2), Aug =0,

ing < < Q).
@bng_ug(x)_ng%xg (xeQ)

Definition
ug is called the weak solution of (Py).
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Perron solution

Let g € C(09Q).
w € C(Q) is called a subsolution of (Py) if

—/WA(pSOforalloggpeD(Q)
Q

and limsupw(x) < g(z) for all z € 09.

X—Z

Theorem
ug(x) = sup{w(x), w is subsolution} for all x € Q.



Variational Solution

Let g € C(09) with H1-extension G.
Then there is exactly one v, € H3(Q) such that —Av, = AG.
Set ug == v +G.



Variational Solution

Let g € C(09) with H1-extension G.

Then there is exactly one v, € H3(Q) such that —Av, = AG.
Set ug == v +G.

Furthermore for v, € H}(2) the expression

;/Q|VV|2<AG,v> (v e H3(Q))

becomes minimal.



Variational Solution

Let g € C(09) with H1-extension G.

Then there is exactly one v, € H3(Q) such that —Av, = AG.
Set ug == v +G.

Furthermore for v, € H}(2) the expression

1
5 [IVVE—(aGY)  (ve (@)
becomes minimal.

Let v=u—G.
Thus ug € H}(R) is the unique minimizer of

;/QW(U_ G)?—(AG,u—G)  (ueH\Q)
u—G e H}(Q).
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Variational Solution

Now assume that G € H(Q). Then some terms cancel:

1 ) 1 ) 1 )
f/ V(u—G)| —<AG,u—G):f/ Vul —/Vu.VG—l—f/ VG|
2 /o 2 /o Q 2 /o

—/ yvcy2+/ VG.Vu
Q Q

1 2 1 2
== — = G
2/Qrw 2/Q|v |

Thus we obtain the Dirichlet principle:

Theorem
Assume that g € C(0Q) has an extension G € H*(Q)N C(Q). Then

min{/Q\vu\Z, ue H\(Q), u— G e H{(Q)}

exists and is attained exactly for ug.
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When does the solution have finite energy?

Assume that Q is Dirichlet regular.

Theorem
Let g € C(0R2). Equivalent are:

1. / Vug|? < 00
[V
2. g has an extension G € C(Q)NH(Q)
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Hadamard's example

Q:={xeR? |x| <1}
g(e?) =32 27" cos(22"9)
Then g € C(09Q) and

Vu.|? = oo.
/Q’”g‘ o0

Even worse:
g does not have any extension in C(Q)N H(Q).
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Regular Points

Recall, for each g € C(02) we have the weak solution ug: Q@ =R
of (Pg).

Definition

z € 00 is called regular if for each g € C(90Q)

lim ug (x) = g(2).

xeQ

Q is (Dirichlet-)regular :<= Vg € C(02) : (Pg) has a solution
& each z € 99 is regular
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The weak solution via Brownian motion

Let B, t > 0, denote the Brownian motion.

Denote by P* the Wiener measure at x € RY.

Let 7q :=inf{t >0, B; & Q} be the first hitting time.
Let g € C(0%2). Then

ug(x) =E*[g(Br)]  (x€Q).
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Probabilistic characterization of regular points

z € 09 is regular if and only if
P#[3t >0, B; € Q Vs €0,t]] = 0.

Thus z € Q is regular if and only if the Brownian motion with
starting point z € 90 immediately leaves Q.
z € 00 is regular if for all r >0

B(r,z)\ Q is "large enough".
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Wiener criterion

Let ACRY.

Cap(A) := inf{||ul|}pga), u€ H'(RY),
U open,AC U: u>1ae. on U}

Theorem (Wiener)
A point z € 0% is regular if and only if

§:2"Cap(8(z,2_”)\§2) = o0.

n=1
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Criteria for regularity

> Q Lipschitz = Q is regular.
> d =2, Q simply connected = Q is regular.
» d =3, the Lebesgue cusp is not regular

Surprising

dg € C(0R), g has a real analytic extension at each z € 0%, but
(Pg) has no solution. (W.A., D. Daners: Discrete and Continuous
Dynamical Systems, 2008)
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Keldys

M.V. Keldys On the solvability and stability of the Dirichlet problem.
Uspekhi Mat. Nauk 8 (1941) 144-171
Amer. Math. Soc. Translations 51 (1966) 1-73.



Regularity is non-local

Consider Lebesgue’s cusp Q2 with the crater at the north pole. Call
the cusp point zg (the bottom of the crater). Then zj is the only
singular point on the boundary.



Regularity is non-local

Consider Lebesgue’s cusp Q2 with the crater at the north pole. Call
the cusp point zg (the bottom of the crater). Then zj is the only
singular point on the boundary.

Theorem
Let U be an arbitrarily small neighborhood of the south pole. Then
there exists g € C(0N) such that g(z) =1 for all z € 9Q\ U, but

X"_U;O g (x)

does not exist.
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Semigroups

Let X be a Banach space.

Definition
A semigroup is a mapping T: (0,00) — Z(X) such that

T(t+s)=T(t)T(s) and lim T(t)x=x (x € X).

t—0

Definition
The generator A of T is defined by

T(t)x —
D(A):={xe X : lim x exists }

t\,0



Cauchy Problem

Consequence
For up € D(A)
u=T()uo € CL(Ry, X)

is the unique solution of
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Feller semigroups

Let Q ¢ RY be open and bounded.
We consider the space

Go(Q) :={u € C(Q), ulon =0}
with norm || ul|ac := sup,cq |u(x)|.
Definition
A semigroup (T (t))e>0 on Co(Q2) is called a Feller semigroup if
1. f>0 = T(t)f >0, ie T(t)>0.
2Tl <1 (£20)
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Characterization

Theorem (Phillips)

An operator A on Cy(Q2) generates a Feller semigroup if and only if
1. D(A) is dense
2. f € D(A), f(x0) =sup,eqf(x) >0 = Af(x)<0
3. There is A > 0 such that A\ — A is surjective.
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The Dirichlet Laplacian

Recall: Let u e Go(R).

AucG(Q) = 3IfeG(Q): /QUAQO:/Qfgo (¢ € D(R))

Then Au:=f.
Define Ag on Co(R2) by

D(Ao) = {U S Co(Q), Au e Co(Q)}
Agu = Au.

Theorem (W.A., Ph. Bénilan)

Ao generates a Feller semigroup if and only if Q0 is Dirichlet regular.
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Surjectivity

Proof.

Assume that €2 is Dirichlet regular.

Qg is surjective:

Let f € Go(R) and extend it to RY by 0.

Let w = E4+f, where E, is the Newtonian Potential.

Then w € C(R?) and Aw = f.

Let g = w|pq. Then ug € C(Q), Aug =0.
Let u=w—ug. Then ue G(), Au=f.

O
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Elliptic operators in divergence form

Let aj, bj, ¢, c € L>(Q) be real coefficients, such that

d

> a(x)&g >l (EeRY xeQ).

ij=1

A: Hl%)c - D(Q)/
d d
Au = Z Di(aiiju)+Z(biju+Dj(CjU))+CU

ij=1 Jj=1
Realization Ag in Co(Q):

D(Ao) := {u € Co(Q)NHE.(Q) : Au € Co(Q)}
Aou = Au
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Elliptic operators in divergence form

Assume that P

ZDJCJ'{'C <0,
j=1

/Zdjagp tep)dx <0 (0<peD(Q))
=1

Theorem (W.A., Ph. Bénilan)

Ao generates a Feller semigroup on Co(QQ) if and only if Q is
Dirichlet regular.



Non-divergence Form

Let bj,c € L™(Q), ¢ <0, a;; € C(Q), a;j = aj; be real coefficients,
such that

d

Z a;(x)&i&; > al¢ (x € Q£ e RY)

I?./:]-



Non-divergence Form

Let bj,c € L™(Q), ¢ <0, a;; € C(Q), a;j = aj; be real coefficients,
such that

d

Z a;(x)&i&; > al¢ (x € Q£ e RY)

I?./:]-

d d
Au = Z a,'jD,'Dju—|—ijDju_|_Cu



Non-divergence Form

Let bj,c € L™(Q), ¢ <0, a;; € C(Q), a;j = aj; be real coefficients,
such that

d

Z a,-j(x)f,-fj > Oz’f|2 (X S ﬁ,f S Rd)

ij=1

d d
Au = Z a,-J-D,-DJ-u+Z bjDju+ cu
ij=1 j=1

Realization of A in Co(R):

D(Ao) := {u e Co(QN W2 (Q): Au € Co(Q)}
Agu = Au
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Non-divergence Form

Theorem (W.A., R. Schatzle, Ann. Sc, Normale Pisa 2013)
Assume that Q) satisfies the uniform exterior cone condition or that
2 is Dirichlet regular and the aj; are Hélder continuous.

Then Ag generates a Feller semigroup on Co(2).

Previous work on the Dirichlet problem by N. Krylow.
We prove that the semigroup is even holomorphic.
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Markov Processes

Let (T(t))t>0 be a Feller semigroup on Cp(£2), Q a locally compact

space with countable topological base.
Then there exists a strong Markov process {X;, t > 0} such that for

all f € Co(Q),

(T(t)f)(xs) = IE"(f(xt—i-s) ’Xs)
:E(f(xt—i-s)’fs) a.e.,

where
Fs=o0({Xs, t <s}).



Thank you for your attention



